
258 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 30, NO. 1, JANUARY 2022

Stackelberg Game Approach for Robust
Optimization With Fuzzy Variables

Jie Han , Member, IEEE, Chunhua Yang , Senior Member, IEEE, Cheng-Chew Lim , Life Senior Member, IEEE,
Xiaojun Zhou , Member, IEEE, and Peng Shi , Fellow, IEEE

Abstract—In this article, a new robust optimization method is
proposed to simultaneously optimize the expectation and vari-
ability of system performance with parametric uncertainties and
fuzzy variables. The expectation-entropy model is presented to
characterize the fuzzy robust optimization problem as an equiv-
alent biobjective optimization problem. An approximate mapping
method is developed to calculate the response of fuzzy variables,
which improves the computational efficiency of objective functions.
Then, according to the decision makers’ preference for objectives,
the optimization framework based on Stackelberg game is estab-
lished. A leader–follower state transition algorithm is designed to
search for the equilibrium solutions. Two practical case studies
are provided to show the effectiveness of the new optimization
approach in both subjective judgment and objective assessment.

Index Terms—Approximate mapping method, fuzzy variable,
robust optimization, Stackelberg game, state transition algorithm
(STA).

I. INTRODUCTION

IN MANY real-world optimization problems, the uncertain-
ties involved are nonprobabilistic in nature. This kind of

uncertainty is related to vagueness and imprecision provided
by experts in terms of both objective values and subjective
judgment [1]–[3]. Handling such uncertainties calls for the use of
the fuzzy variable that captures the characteristics of vagueness
and imprecision.

The optimization methods with fuzzy variables have been
studied in areas such as robust optimization [4]. More specif-
ically, robust optimization theory provides risk-averse methods
to find solutions that are insensitive to uncertainties. For uncon-
strained robust optimization problems, there are two approaches:
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worst-case robust optimization and realistic robust optimiza-
tion [5], [6]. The worst-case robust optimization approach guar-
antees that the value of objective function will never violate the
robustness requirements, and the obtained solution can cope with
uncertainties for all possible values of parameters. However, the
solution is highly conservative to be unrealistic in practical appli-
cations. The realistic robust optimization approach establishes
a tradeoff model that takes into account both robustness and
optimality aiming to improve the average system performance.
The solution of the realistic robust optimization approach offers
performance that can be close to the optimum for most possible
values of uncertain parameters.

The realistic robust optimization approach is effective for
many engineering applications [6], and the most common way is
to simultaneously optimize the expectation (which can represent
optimality) and variability (which can represent robustness) of
system performance under uncertain environment [7], [8]. For
the fuzzy uncertainty, the expectation-entropy model is proposed
to balance the optimality and robustness [9]. The fuzzy expecta-
tion is the average value of fuzzy variable in the sense of uncer-
tain measure and represents the size of uncertain variable. The
fuzzy entropy is a measure to quantify the uncertainty of fuzzy
variable resulting from information deficiency and represents
the robustness of an uncertain variable [10]. The calculation of
expectation and entropy of the fuzzy system is usually based
on the alpha-cut (α-cut) technique, which requires to find the
maximum and minimum values of fuzzy response at different
cut sets of fuzzy variables. To save the computational cost of
finding extreme points, the surrogate model based on Chebyshev
polynomials was adopted to predict the fuzzy response [7]. To
improve the approximation accuracy, an efficient approximate
mapping method based on the polynomial chaos Kriging (PC-
Kriging) metamodel is studied and used to calculate the fuzzy
expectation and entropy.

When assessing the tradeoff between expectation and entropy
in fuzzy robust optimization problems, there exist three highly
valued strategies for searching a solution: Pareto-based strategy,
Nash-based strategy, and Stackelberg-based strategy [11]. The
Pareto-based optimization methods are well known in engineer-
ing. For instance, Marano and Quaranta [12] used a multiobjec-
tive genetic optimization algorithm to find the Pareto front for
the fuzzy-based robust structural design problem. Note that for
a Pareto optimal solution, there are three characteristics when
searching [13].
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1) The objectives (players’ payoff in the game) are equivalent
to each other, and there is no objective function dominates
others.

2) The objectives (players’ payoff in the game) take joint
actions to reach a compromise so that the group can
achieve its optimal state.

3) The objectives (players’ payoff in the game) can commu-
nicate with each other before the optimization process.

In practical robust optimization, there exists a strong sub-
jectivity during the decision-making processes. For example,
with different market requirement and customer demand, the
decision makers may have different preferences for optimality
and robustness. In this kind of robust optimization problem,
the objectives have a hierarchical relationship, that is, the pre-
ferred objective dominates the objective that is without prefer-
ence. Therefore, the Pareto-based optimization method is not
suitable to solve the fuzzy robust optimization problem with
preferences.

Nash equilibrium is a noncooperative game, in which each
player acts independently, without communication and collab-
oration. The objectives in Nash-based optimization have equal
status [14], and it is difficult to use Nash game strategy to balance
objectives with hierarchical relationship.

Stackelberg game is a leader–follower sequential game [15],
[16], which is well suited to the hierarchical decision making
problem. The leader can anticipate the reactions of follower and
optimize his decision accordingly. Thus, the leader stands in a
strong position and can achieve more satisfactory results. The
Stackelberg game strategy has applied to many areas, such as
security domain and manufacturing process [17]. For the opti-
mization problem with multiple goals, the subjective preferences
will determine the quality of solutions. In order to better meet
the decision maker’s preferences, it is reasonable to allocate the
leader positions to relatively important goals and the follower
positions to other goals. Therefore, to handle the hierarchical
relationship between robustness and optimality, the Stackelberg
game is investigated in this article to solve the fuzzy robust
optimization problem.

The challenge for the fuzzy robust optimization with
expectation-entropy model is twofold: 1) how to efficiently
calculate the objective functions of fuzzy expectation and en-
tropy, and 2) how to balance the expectation and entropy based
on objective assessment and subjective preference. To solve
these problems, this article proposes a fuzzy robust optimiza-
tion method with improvements in objective calculation and
optimization framework. The main contribution of this study
is as follows.

1) The objective functions of fuzzy expectation and entropy
are calculated based on an approximate mapping method,
which uses the adaptive PC-Kriging metamodel to effi-
ciently predict the response of fuzzy variables.

2) A Stackelberg-based robust optimization framework is
proposed to handle the relationship between robustness
and optimality, which can not only objectively address
the tradeoff but also subjectively choose priority target,
so that it can provide a reasonable optimal robust solution
according to the preferences of decision makers.

3) The search of Stackelberg equilibrium solution is solved
by a state transition algorithm (STA), which overcomes the
nonlinearity and nonconvexity of the objective functions.

The rest of this article is organized as follows. In Section II,
the expectation-entropy model for fuzzy robust optimization is
established. Section III gives the approximate mapping method
for objective function calculation. Section IV provides the
framework of the optimization method based on the Stackelberg
game. In Section V, two examples are studied to demonstrate
the efficiency of the proposed method in Section V. Finally,
Section VI concludes this article.

II. EXPECTATION-ENTROPY MODEL FOR

FUZZY ROBUST OPTIMIZATION

We consider the optimization problem with fuzzy variable

Problem P0
min
x
f(x,p)

s.t. xl ≤ x ≤ xu (1)

where f(x,p) is the fuzzy performance function, and the vector
x represents decision variable, with xl and xu being the lower
and upper bounds, respectively. The parameter p is the fuzzy
variable, and the membership function is used to represent
the degree of uncertainty. The robust optimization method is
designed to handle the parameter uncertainties. In this section,
Problem P0 is transformed to a fuzzy robust optimization prob-
lem with the expectation-entropy model.

Here, some basic definitions for fuzzy robust optimization
based on uncertainty theory are presented [10].

Definition 1: Let β denote a fuzzy variable with assigned
membership functionμ and r be a real number; then, the concept
of possibility Pos{·}, necessity Nec{·}, and credibility Cr{·} of
an event “β ≤ r” is defined by

Pos{β ≤ r} = sup
b≤r

μ(b)

Nec{β ≤ r} = 1− Pos{β > r} = 1− sup
b>r

μ(b)

Cr{β ≤ r} =
1

2
(Pos{β ≤ r}+ Nec{β ≤ r})

=
1

2

(
sup
b≤r

μ(b) + 1− sup
b>r

μ(b)
)
.

Definition 2: Let β denote a fuzzy variable. The expected
value of β is defined by

E[β] =

∫ +∞

0

Cr{β ≥ r}dr −
∫ 0

−∞
Cr{β ≤ r}dr. (2)

Definition 3: Let β denote a fuzzy variable. The entropy of β
is defined by

H[β] =

∫ +∞

−∞
(−Cr{β = r} lnCr{β = r})dr

+

∫ +∞

−∞
(−(1−Cr{β=r}) ln(1−Cr{β=r}))dr. (3)

The fuzzy entropy provides a measure of uncertainty. In
general, the entropy of a crisp number is minimum and the
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entropy of an equipossible fuzzy variable is maximum. Thus,
the smaller the fuzzy entropy, the lesser the fuzziness of the
variable.

Based on the fuzzy expectation E[·] and fuzzy entropy H[·],
respectively, as defined in (2) and (3), the robust model of
Problem P0 with fuzzy variables can be formulated as

Problem P1

min
x
E[f(x,p)]

min
x
H[f(x,p)]

s.t.xl ≤ x ≤ xu. (4)

Remark 1: If the parameter in a function is considered as
a fuzzy variable, the response of the function is also a fuzzy
variable. Thus, to solve the above problem, the first step is to
obtain the membership function of f(x,p).

Remark 2: Problem P1 is a biobjective optimization problem.
The expected value E[·] can represent the average optimality of
the performance function, while the entropy valueH[·] can indi-
cate the robustness and variability of the performance function.

III. APPROXIMATE MAPPING METHOD FOR OBJECTIVE

FUNCTION CALCULATION

In this section, we propose an approximate mapping method
to compute the objective functions in Problem P1 based on the
adaptive PC-Kriging metamodel. First, the membership func-
tion of the performance function value is calculated based on
the α-cut technique, which need to obtain the maximum and
minimum values of f(·) at different cut sets of the fuzzy variable
p. To reduce the computational cost of finding extreme values,
an approximate mapping method based on the PC-Kriging meta-
model is then used to predict the membership function values.
Moreover, based on the analysis of fuzzy set and PC-Kriging
model, two learning strategies are investigated to adaptively
improve the prediction accuracy.

A. Objective Function Calculation Based on the α-Cut
Technique

Based on Zadeh’s extension principle [18], [19], the member-
ship function of fuzzy performance f(·) in (4) can be calculated
according to the following definition.

Definition 4: Let p = {p1, . . . , pn} be n fuzzy variables with
membership functions μP1

(p1), . . . , μPn
(pn); f is the function

between p and y such that y = f(p). Then, the membership
function of y can be defined by

μY (y) = sup
(p1,...,pn)∈f−1(y)

min{μP1
(p1), . . . , μPn

(pn)}

where f−1 is the inverse form of f .
Thus, to find the membership function of y, it is equivalent

to find the upper and lower bounds of y at different cut level α
(y+α and y−α), which can be expressed as

Problem P2
y+α = max

p
f(x,p)

y−α = min
p
f(x,p)

where p ∈ [p−α,p+α], and the values of p−α and p+α (α ∈
[0, 1]) denote the lower and upper bounds of the fuzzy variable
p at the cut level α, respectively.

With limited selected cut level α, the fuzzy response of
y = f(x,p) can be constructed, and the membership function
of f(x,p) can be derived from Problem P2. Then, the objec-
tive values of expectation and entropy in Problem P1 can be
calculated.

Remark 3: Problem P2 is nested in Problem P1, and it needs
to be solved for every candidate solution of x.

To decrease the computational cost of the optimization, an
approximate mapping method based on the PC-Kriging meta-
model is proposed. This method establishes a mapping model
from x to y±α to estimate the membership function of f(x,p).
A short theoretical background of the PC-Kriging metamodeling
approach is presented in the following.

B. Approximate Mapping Method Based
on the PC-Kriging Metamodel

The PC-Kriging metamodel [20] is an approximation of
the input–output function, which combines the advantages of
polynomial chaos expansions and Kriging modeling. The PC-
Kriging metamodel uses flexible surface shape to predict com-
plex systems response, and it has been applied in many sensi-
tivity analysis problems and optimization problems [21], [22].

In Problem P2, given m samples containing the input (X)
and output (Y α) as

X = [x1, . . . ,xm]T

Y α = [y+α,y−α]T

where

y+α = [max f(x1,p), . . . ,max f(xm,p)]

y−α = [min f(x1,p), . . . ,min f(xm,p)]

the approximate mapping function between X and Y α based
on the PC-Kriging metamodel can be denoted as

ŷ±α =
∑
a∈A

ωaψa(x) + Z(x) (5)

where
∑

a∈A ωaψa(x) corresponds to a polynomial chaos ex-
pansion with orthonormal polynomials ψa(x) and coefficients
ωa, which describes the trend of the PC-Kriging model; the func-
tion Z(x) is a realization of Gaussian process, which represents
local deviations. The PC-Kriging model can be interpreted as a
universal Kriging model with a specific trend.

Based on the PC-Kriging metamodel in (5), the nested double-
loop optimization structure is simplified to a single-loop op-
timization problem. As the PC-Kriging metamodel contains
stochastic process, the output results include the predicted value
ŷ±α and the prediction varianceσ2

ŷ±α . This variance can quantify
the uncertainty of the prediction, which can be analyzed for
improving the model design.
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C. Adaptive Learning Strategy

To improve the approximation accuracy of the mapping
method, two learning strategies are proposed based on the prop-
erty of fuzzy set and PC-Kriging model.

1) Learning Strategy Based on Interval Limitation: Accord-
ing to the theory of fuzzy set, for fuzzy variable p with any
two cut levels α1, α2 ∈ [0, 1], if α1 ≤ α2, then the cut sets
[p−α2 , p+α2 ] ⊆ [p−α1 , p+α1 ]. Thus, in Problem P2, the follow-
ing is true:

α1 ≤ α2 ⇒ y+α1 ≥ y+α2 and y−α1 ≤ y−α2 . (6)

Therefore, to evaluate the approximate value, the steps of the
learning strategy based on interval limitation are as follows.
First, we calculate the value of y at the cut level ofα = 1 because
it is a fixed number. Then, by gradually decreasing the value of
α, the predicted value ŷ±α is checked according to the limitation
in (6). If the predicted value does not satisfy the limitation, it
means that the PC-Kriging metamodel cannot provide a convinc-
ing membership function value, and it is necessary to perform
calculations using an accurate method (such as an optimization
method). After obtaining the accurate values, the pair of data (x
and y±α) is considered as a new sample that can be used to update
the PC-Kriging metamodel. If the predicted value satisfies the
limitation, the following strategy is used for further evaluation.

2) Learning Strategy Based on Variation Limitation: Ac-
cording to the stochastic property of PC-Kriging, the second
strategy aims to identify the potentially “dangerous” point,
whose PC-Kriging variance is high. Therefore, a learning func-
tion U is studied, which is defined as the ratio between the
predicted value and the prediction variance of Kriging [23], [24]:

U(x) =
|ŷ±α(x)|
σŷ±α(x)

. (7)

Based on the analysis and validation in [23], we consider that
the condition for U(x) ≥ 2 can guarantee great accuracy of
the prediction model. Once a point with U(x) < 2, an accurate
method will be performed to calculate the value of y±α, and the
pair of data (x and y±α) will be used to update the PC-Kriging
metamodel.

With the above two learning strategies, the sample points of
the PC-Kriging metamodel will be close to the failure region,
and the approximation accuracy can be adaptively improved.
The flowchart of the approximate mapping method based on the
adaptive PC-Kriging metamodel is shown in Fig. 1.

IV. OPTIMIZATION METHOD BASED ON STACKELBERG GAME

Considering the hierarchy between optimality (E[·]) and ro-
bustness (H[·]) caused by the preferences of decision makers,
the robust optimization of Problem P1 first needs to satisfy the
higher level objective and then optimize the lower level objec-
tive. Stackelberg game [25], as a hierarchical game, consists of
two groups of players: leaders and followers. Since it is hard
to balance the optimality and robustness in robust optimization
problems, the Stackelberg strategy is adopted to provide higher
priority to the leader players based on the decision makers’

Fig. 1. Flowchart of the approximate mapping method based on the adaptive
PC-Kriging metamodel.

preference. Therefore, the robust optimization method based on
the Stackelberg game is introduced to solve Problem P1 in (4).

A. Stackelberg Game

The mathematical description for the Stackelberg game is as
follows. Let Ju and Jv be the payoff function of the leader and
the follower, respectively. The search space of decision variable
(x ∈ S) consists of the leader’s search space (xu ∈ Su) and the
follower’s search space (xv ∈ Sv). We assume that each player
(Ju and Jv) controls its corresponding variable (xu andxv). The
multiobjective optimization problem based on the Stackelberg
game [26] is defined by

Problem P3
Leader: min

xu∈Su

Ju(xu,xv)

Follower: min
xv∈Sv

Jv(xu,xv). (8)

Let vector x∗ = (x∗u,x
∗
v) be a Stackelberg equilibrium; then

Ju(x
∗
u, x

∗
v) = inf

xu

Ju(xu, x
∗
v(xu))

where xv(xu) is the reaction function coming from the solution
of minxv

Jv(xu,xv):

Jv(x
∗
u, x

∗
v) = inf

xv

Jv(x
∗
u, xv).

Both the leader and the follower can find their own optimal
solutions via solving

DJu
Dxu

∣∣∣∣
(x∗u,x∗v)

=
∂Ju
∂xu

∣∣∣∣
(x∗u,x∗v)

+
∂Ju
∂xv

∂xv

∂xu

∣∣∣∣
(x∗u,x∗v)

= 0 (9)

and

∂Jv
∂xv

∣∣∣∣
(x∗u,x∗v)

= 0. (10)

The information flow diagram of the Stackelberg game is
shown in Fig. 2. The leader provides the information of xu to
the follower and receives the reaction function xv(xu) of the
follower with respect to the leader’s decision [17]. Thus, the
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Fig. 2. Information flow diagram of Stackelberg game.

leader can take advantage of its leadership position to achieve
better performance.

Remark 4: Based on the Stackelberg game strategy, Problem
P1 in (4) can be transformed to Problem P3 in (8) with different
preferences for robustness and optimality.

B. State Transition Algorithm

To further solve the optimization problem for the leader and
the follower, a global evolutionary algorithm named STA [27],
[28] is investigated to generate optimal solutions. The STA has
strong search ability in both global and local spaces, and it has
been applied to many engineering design applications [29]–[32].

Based on the framework of STA, there are four transformation
operators to generate candidate solutions.

Rotation transformation:

xk+1=xk+η1
1

‖xk‖2R1xk. (11)

Translation transformation:

xk+1=xk+η2R2
xk−xk−1
‖xk−xk−1‖2 . (12)

Expansion transformation:

xk+1=xk+η3R3xk. (13)

Axesion transformation:

xk+1=xk+η4R4xk. (14)

Here, xk and xk+1 represent the solution at the kth and (k+1)th
generation, respectively; parameters η1, η2, η3, and η4 are pos-
itive constants representing rotation factor, translation factor,
expansion factor, and axesion factor, respectively; elements
in matrices R1, R2, R3, and R4 are designed based on the
function of operators. In order to find the global optima, the
transformation operators in (11)–(14) have the functions of local
search, line search, global search, and single dimensional search,
respectively.

The structure of STA is shown in Algorithm 1.
As for further detailed explanation, Algorithm 2 illustrates the

process of expansion(·).
The process of for rotation(·) and axesion(·) is similar to the

procedure in Algorithm 2. As shown in the above algorithms,
procedure initialization(·) randomly generates SE samples in the
search space and selects the best one as the initial solution. Rota-
tion factor η1 is decreasing periodically from η1,max to η1,min to
change the local search range. SE is the search enforcement index
to indicate the number of candidate solutions generated by each
operator. Procedures op_expand(·) and op_translate(·) represent

Algorithm 1: Pseudocode of STA.
Input:

itermax: maximum number of iterations
SE: search enforcement
S: search space of decision variable

Output:
Best∗: optimal solution

1: State← initialization(SE,S)
2: Best← fitness(funfcn,State)
3: For k = 1 to itermax do
4: if η1 < η1,min then
5: η1 ← η1,max

6: end if
7: Best← expansion(funfcn,Best,SE,η2, η3)
8: Best← rotation(funfcn,Best,SE,η2, η1)
9: Best← axesion(funfcn,Best,SE,η2, η4)

10: η1 ← η1 · fc−1
11: end for
12: Best∗ ← Best

Algorithm 2: Pseudocode of Expansion(·).
Input:

oldBest: the best solution obtained by the last
transformation

Output:
Best: the best solution

1: oldfBest← fevel(funfcn,oldBest)
2: State← op_expand(oldBest,SE,η3)
3: Selecting the best solution based on the “greedy

criterion”.
4: [newBest,newfBest]← fitness(funfcn,State)
5: if newfBest < fBestthen
6: fBest← newfBest
7: Best← newBest
8: State← op_translate(oldBest,newBest,SE,η2)
9: Selecting the best solution based on the “greedy

criterion”.
10: [newBest,newfBest]← fitness(funfcn,State)
11: if newfBest < fBestthen
12: fBest← newfBest
13: Best← newBest
14: end if
15: else
16: Best← oldBest
17: end if

the implementations of searching candidates using the rotation
and the translation operators. Procedure fitness(·) represents the
implementation of selecting the best solution from SE candidates
based on the “greedy criterion,” which means that the optimal
solution will always consider a solution with a better objective
function value [28]. In addition, the translation transformation is
only performed when a solution that is better than the incumbent
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Fig. 3. Optimization method based on Stackelberg game.

best solution can be found by rotation, expansion, or axesion
transformation.

C. Optimization Framework

The complete framework of the optimization method based
on the Stackelberg game is shown in Fig. 3. The follower’s
optimization problem is first solved according to the STA. Then,
the leader’s optimization process is conducted, which takes into
account the reaction function of xv(xu). The optimization pro-
cess is alternatively performed until the termination condition is
met, i.e., the maximum number of iterations is reached.

It is appeared in many studies [17], [33] that the reaction
function xv(xu) can be approximated as

xk+1
v = xk

v +
∂xv

∂xu
(xk+1

u − xk
u)

where

∂xv

∂xu
= lim
�xu→0

�xv

�xu
= lim
�xu→0

xv(xu+�xu)−xv(xu)

�xu
.

Note that if the relationship between xv and xu is complex
with nonlinear and nonconvex properties, the large variation
of the leader’s decision variable may cause large errors in the
anticipation of the follower’s reaction information. In order
to better capture the reaction information and then improve
the convergence performance in the leader’s optimization and
follower’s optimization, the PC-Kriging metamodel with the
learning function U in (7) introduced in Section III is adopted
to approximate the reaction function.

Obviously, the solution obtained by the method in Fig. 3
satisfies the property of Stackelberg equilibrium in (9) and (10).
At a Stackelberg equilibrium, the leader’s objective reaches

Fig. 4. Closed-loop control system.

optimal point in consideration of the follower’s reaction, and
the follower’s objective reaches the optimal point according to
the leader’s decision.

With the above optimization method shown in Fig. 3, if we
consider the expected value as a leader and the entropy value as
a follower, Problem P1 in (4) can be solved by prioritizing to
optimality, and vice versa.

V. EXAMPLES AND RESULTS

In this section, the feasibility and effectiveness of the robust-
fuzzy-optimization-method-based Stackelberg game are veri-
fied via two applications: 1) proportional-integral-derivative
(PID) controller and 2) blending process.

We use the optimization framework shown in Fig. 3. For
the optimization of each player using the STA method, its
parameter settings are the same as the previous paper [27]–
[29], which all successfully solve the optimization problems
such as benchmarks, image segmentation, and clustering prob-
lem: η1,max = 1, η1,min = 10−4, η2 = 1, η3 = 1, η4 = 1, fc =
2, SE = 30. The maximum number of iterations itermax de-
pends on the complexity of the problem. In this article, ten
generations may be sufficient for each player to ensure the
convergence performance of the STA method. For the Stack-
elberg game strategy, the maximum number of iterations is
set to 10, and the assignment of the decision variables for the
leader objective and the follower objective is designed based on
their space distance [34]. For the approximate mapping method
used for computing the objective function values, the parameter
settings of the adaptive PC-Kriging metamodel are the same as
those in UQLab [35]. The initial number of sample points to
construct the PC-Kriging metamodels is set to 50q, where q is
the total number of decision variables. All results are obtained
by MATLAB R2017b software.

A. Case 1: Optimization for PID Controller

PID control is the most common control technique used in
practical applications. To deal with the parametric uncertainties
in the PID control process, the controller should make a tradeoff
between the robustness of the response to uncertainty and the
response speed. Therefore, we study the optimization problem
for the PID controller with parametric uncertainties to illustrate
the effectiveness of the proposed Stackelberg-based robust op-
timization framework.

Consider the closed-loop control system in Fig. 4, where
module C represents the controller and moduleG is the process
subject to parameter uncertainty caused by fuzzy disturbance.
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Fig. 5. Membership function of fuzzy variables. (a) Parameter variables
a1, a2, and a3. (b) Function f(a1, a2, a3).

Signals yin, yout, and e are the input, output, and tracking error
of the system, respectively. The controller C and the process G
take the forms [36]

C(s)=Kp+
Ki

s
+Kds, G(s)=

5.2(s+2)
s(s3+a2s2+a1s+a3)

where Kp, Ki, and Kd represent the proportional, integral, and
differential gains, respectively; parameters a1, a2, and a3 are
triangular fuzzy variables

a1=(3.5, 4.15, 4.8), a2=(12, 13.5, 15), a3=(9.5, 10.5, 11.5).

Based on the integral time absolute error criteria, the biobjec-
tive optimization problem for the PID controller is represented
as

min
Kp,Ki,Kd

E[f(Kp,Ki,Kd, a1, a2, a3)]

min
Kp,Ki,Kd

H[f(Kp,Ki,Kd, a1, a2, a3)]

where

f(Kp,Ki,Kd, a1, a2, a3) =

∫ ∞

0

t|e(t)|dt.

To demonstrate the effectiveness of the approximate mapping
method, we compare the approximation results of the adaptive
PC-Kriging metamodel with that of other three methods (in-
cluding MATLAB optimization tool fmincon, the surrogate
model based on the Kriging metamodel, and the PC-Kriging
metamodel). The initial sample numbers for establishing meta-
models are all set to 150.

Fig. 5 shows the membership functions of a1, a2, a3, and f
(withKp = 1.9011,Ki = 0, and Kd = 1.0938). To capture the
character of the membership function off , we select 11 cut levels

TABLE I
COMPARISON OF APPROXIMATION ACCURACY

Fig. 6. (a) and (b) Convergent trajectories of the robust optimization procedure
based on the Stackelberg game.

(α = 0, 0.1, 0.2, . . . , 1). Since the optimization tool fmincon
can find the minimum of nonlinear multivariable function, the re-
sults obtained by fmincon are as the real membership function
value, and the Kriging metamodel, the PC-Kriging metamodel,
and the adaptive Kriging metamodel are used to approximate
the real value.

It can be seen that the results of the adaptive PC-Kriging
metamodel are closer to the real value obtained by fmin-
con. The detailed approximation accuracies of the 21 points
based on the adaptive PC-Kriging metamodel, the PC-Kriging
metamodel, and the Kriging metamodel are listed in Table I.
In Table I, mean squared error and R-squared score are two
typical evaluation indices [37]. The smaller the mean square
error and the larger the R-square score, the better the fitting
performance. Thus, the approximate mapping method based on
the adaptive PC-Kriging metamodel is more effective to compute
the membership function of f .

The convergent trajectories of the robust optimization pro-
cedure based on the Stackelberg game are shown in Fig. 6.
After ten generations of the Stackelberg-based optimization,
the expected value (represented the average performance) and
the entropy value (represented the stability performance) can
converge to an equilibrium point. The final optimal solution
shown in Fig. 6(b) has better entropy value than that in Fig. 6(a),
because the leader objective in Fig. 6(b) is the entropy value.
Based on the Stackelberg game strategy, the leader can achieve
higher satisfaction than the follower. Thus, the results shown in
Fig. 6 can provide alternatives to decision makers according to
their preference for optimality or robustness.

To verify the effectiveness of the proposed robust optimization
method, we compare the performance of the PID controller
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Fig. 7. (a)–(c) Twenty-one possible responses of the uncertain system.

Fig. 8. Mean performance of three PID controllers.

optimized by the Stackelberg-based robust method and the de-
terministic method. Fig. 7 shows the 21 possible responses by
three different PID controllers, which include the PID controller
with a preference for expected value (a), the PID controller with
a preference for entropy value (b), and the PID controller without
consideration of uncertainty (c). The 21 possible responses
correspond to the upper and lower bounds of 11 membership
degrees (α = 0, 0.1, 0.2, . . . , 1). It is worth noting that the upper
and lower bounds of the response with a membership of 1 are
the same. The colors in Fig. 7(a)– (c) represent the membership
value. It can be observed that the outputs with high membership
values have better performance than that with low membership
values, which indicates that the system without uncertainty can
achieve the optimal performance. With the fuzzy possibility
increases, the output performance will deteriorate.

The mean performance of these three controllers (shown in
Fig. 7) is displayed in Fig. 8. For the leader objective with fuzzy
expectation, the closed-loop response is faster; whereas for the
leader objective with fuzzy entropy, the closed-loop response is
more robust.

The detailed analysis of the PID response performance is
given in Table II. Compared with the controller without con-
sidering the uncertainty, the PID controllers based on robust
optimization have more stable performance, whose maximum
settling time are shorter, maximum overshoots are smaller, and

TABLE II
COMPARISON BETWEEN THE PROPOSED ROBUST OPTIMIZATION METHOD AND

THE DETERMINISTIC OPTIMIZATION METHOD

Fig. 9. Blending process of alumina production.

maximum steady-state errors are smaller. The PID performance
of the controller without considering the uncertainty has a
shorter rise time, because it only focuses on the performance of
the deterministic system. When uncertainty occurs, the stability
of the system cannot be guaranteed. As for the PID controllers
based on robust optimization, if the leader objective is fuzzy
expectation, the PID outputs have shorter rise time and smaller
overshoots; if the leader objective is the fuzzy entropy, the PID
outputs have shorter settling time and smaller steady-state error.
Therefore, based on the proposed optimization method, the sys-
tem can achieve robust performance under different preferences.

B. Case 2: Optimization for Blending Process

The blending process is the first step of nonferrous metal-
lurgical process, which aims to blend and grind different raw
materials and meet the production requirement [38], [39]. The
ingredients of the raw materials usually change as the environ-
ment or the operations change. We investigate the optimization
of the blending process to verify the feasibility of the proposed
Stackelberg-based robust optimization method in complex in-
dustrial processes.

Take the alumina production (shown in Fig. 9) as an example.
The raw materials (including bauxite with different grades,
limestone, alkali powder, etc.) are fed into raw mills and ground
wetly to form the raw slurry. After the blending process, the raw
slurry is pumped into tanks for further processing. The silicon
slag and the lye produced by desilication and carbonization are
recycled as raw materials, respectively.

The quality of raw slurry depends on the composition of CaO,
Na2O, SiO2, Fe2O3, and Al2O3. There are three indices related
to the proportions of these oxides, which can be expressed as
follows.
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Alkali standard:

I1 =
1.645× w(Na2O)

w(Al2O3) + 0.6375× w(Fe2O3)
. (15)

Calcium standard:

I2 =
1.071× w(CaO)

w(SiO2)
. (16)

Aluminum standard:

I3 =
w(Al2O3)

w(SiO2)
. (17)

Here, w(·) represents the mass of oxides, I1 is the index for the
mole ratio of Na2O to Al2O3 and Fe2O3, I2 is for the mole ratio
of CaO to SiO2, and I3 denotes the mass ratio of Al2O3 to SiO2.

Supposing the number of the raw materials is M , the mass
equations of CaO, Na2O, SiO2, Fe2O3, and Al2O3 can be
described based on the theory of mass balance

w(CaO) = ρ1pC,1x1 +

M∑
i=2

pC,ixi

w(Na2O) = ρ1pN,1x1 +

M∑
i=2

pN,ixi

w(SiO2) = ρ1pS,1x1 +

M∑
i=2

pS,ixi

w(Fe2O3) = ρ1pF ,1x1 +

M∑
i=2

pF ,ixi

w(Al2O3) = ρ1pA,1x1 +

M∑
i=2

pA,ixi

where pC,i, pN,i, pS,i, pF ,i, and pA,i represent the proportions of
CaO, Na2O, SiO2, Fe2O3, and Al2O3 in the ith raw material,
respectively; the variable xi denotes the feed rate of the ith raw
material, and x1 and x2 are the feed rates of silicon slag and lye,
respectively; and the parameter ρ1 means the density of silicon
slag.

To satisfy the production requirements of further processing,
the quality indices of raw slurry need to within certain ranges.
In fact, the targets of quality indices are more suitable to be
described as fuzzy variables rather than bounded variables. Ac-
cording to the operators’ experience, the indices should prefer-
ably reach the optimal value, while it is also acceptable if the
indices are within certain ranges. Moreover, the proportions of
the oxides in raw materials (p = [pC , pN , pS, pF , pA]) are also
uncertain variables due to the diversification of mine sources.
Since it is difficult to complete the real-time measurement of the
information of p, the predictive model is used to estimate the
ranges of the proportions. Thus, the parameter p is considered
as a fuzzy variable based on expert’s prediction. Therefore, the
robust optimization model is formulated as

min
x

E[f(x,p)]

min
x

H[f(x,p)]

TABLE III
PREDICTED NOMINAL PROPORTIONS OF THE OXIDES IN RAW MATERIALS

1) “–” means that the content of the oxide is relatively low without the need for testing and
analysis. 2) The composition analysis results of lye are the concentrations of Na2+ and
Al3+, so the detection results are converted into the concentration of corresponding oxides
(Na2O and Al2O3) by chemical analysis.

where the performance function is the sum of squared errors of
the three indices and their target values. Considering that these
three indices are equally important for the quality of the raw
slurry in the practical alumina production process, the function
f(·) is defined as

f(x,p) = (I1 − Î1)2 + (I2 − Î2)2 + (I3 − Î3)2

the target values of quality indices Î1, Î2, Î3 and the proportion
of oxides in raw materials p are fuzzy variables.

In this article, an alumina smeltery in China is investigated
as a case study. There are nine kinds of raw materials used to
produce the raw slurry, which include four kinds of bauxite
(high grade, normal grade, low grade, and iron bauxite), two
kinds of returned raw materials (silicon slag and lye), and other
three auxiliary raw materials (limestone, alkali, and anthracite).
Thus, the robust optimization problem for blending process has
nine decision variables and 48 fuzzy uncertain parameters (45
component parameters and three indicator parameters).

An example of the predicted nominal proportions of the oxides
in several raw materials is listed in Table III. The ideal quality
indices are [Î1, Î2, Î3] = [1.05, 1.95, 4.75]. All these uncertain
parameters are considered as triangular fuzzy variables.

Based on the proposed robust optimization method, the
quality indices of 41 samples are shown in Figs. 11 and 12.
The 41 possible responses correspond to the upper and lower
bounds of 21 membership degrees (α = 0, 0.05, 0.1, . . . , 1). In
addition, Fig. 10 shows the quality indices under the optimal op-
eration without considering uncertainty. The colors in Figs. 10–
12 represent the membership value of fuzzy parameters. The
acceptable ranges of quality indices are I1 = [1.03, 1.07], I2 =
[1.88, 2.02], and I3 = [4.65, 4.85].

From Figs. 10–12, we can observe that the red points are
around the ideal values, while the blue points are near the bound-
ary of the acceptable ranges, or even beyond the acceptable
range. This is because with the increase of parameter fuzziness,
it is more and more difficult to guarantee the quality index.
Moreover, the possibility of violating the requirement for index
I1 is less than that for indices I2 and I3, and this result is
related to the mechanism model of the quality indices. From
(15), I1 represents the alkali standard, and its value relates to the
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Fig. 10. Quality indices without considering uncertainty.

Fig. 11. Quality indices for the leader with the expected value.

Fig. 12. Quality indices for the leader with the entropy value.

TABLE IV
COMPARISON BETWEEN THE PROPOSED METHOD AND THE

OPTIMAL OPERATION

The qualified rate is the percentage of quality indices within the acceptable ranges.

mass of Na2O, Al2O3, and Fe2O3. According to Table III, the
main components in the lye are Na2O and Al2O3, and the main
component in the alkali is Na2O. Thus, the fluctuation of index
I1 is mainly affected by the uncertainties in the lye and alkali.
From (16) and (17), indices I2 and I3 represent calcium standard
and aluminum standard, respectively. Their values relate to the
mass of CaO and SiO2. According to Table III, most of the raw
materials contain these two oxides. Thus, when the proportions
of the oxides in raw materials become uncertain, the value of
indices I2 and I3 will easily be affected.

Compared with the optimal operation without considering
uncertainty, the proposed robust optimization method has bet-
ter optimization results in terms of average performance and
variability performance. For the leader with expected value, the
red points (with high possibility of occurrence) are closer to the
ideal value, while for the leader with entropy value, the blue
points (with low possibility of occurrence) slightly violate the
acceptable range.

In order to further analyze the results in the above three
figures, Table IV provides the detail comparison results between
the proposed method and the deterministic method. It can be
observed that the Stackelberg game strategy can provide results
with the preference for optimality or robustness. Compared
with the optimal operation without considering uncertainty, the
results under the proposed method have smaller variations and
higher qualified rates (more than 65%).

VI. CONCLUSION

This article presented a new framework to solve the fuzzy
robust optimization problems. The framework novelty was as
follows. First, the approximate mapping method (based on the
adaptive PC-Kriging metamodel) could effectively approximate
the performance function of fuzzy variables. Second, the Stack-
elberg game strategy could successfully balance the robustness
and optimality based on the decision makers’ preferences. The
STA searched promising candidates and selected the global opti-
mal solution for Stackelberg equilibrium. The Stackelberg-based
robust optimization framework was used to study the optimiza-
tion of the PID controller and the optimization of the blending
process. Simulation results show that the proposed robust opti-
mization method could provide solutions with different objective
preferences.
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In the future, we plan to study the robust optimization methods
for constrained fuzzy design problems. The selection strategy
will be developed to balance more attributes of optimization
performance, and the optimization algorithm will be further
analyzed to improve the search ability of the STA method.
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