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a b s t r a c t 

Optimization problems with improper expression of constraints exist widely in practical engineering. In 

order to achieve a reasonable degree of constraints satisfaction, this paper investigates a single-valued 

neutrosophic optimization method to deal with system uncertainty. Firstly, an equivalent model based 

on single-valued neutrosophic entropy is proposed to transform the original problem into a crisp multi- 

objective optimization problem. The Pareto-front of the optimization problem is then obtained by a multi- 

objective state transition algorithm. Finally, the best solution is determined by a multi-criteria decision 

making method. A practical example of a zinc electrowinning process is used to illustrate the effective- 

ness and advantage of the developed new optimization approach, which provides a more cost-effective 

solution to decrease the electricity utility charge and satisfy the daily output production requirements. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Uncertainties in real-world optimization problems are in- 

evitable due to factors such as the fluctuation of external loads, 

the variation of material properties, and the lack of complete 

knowledge of models [1] . Based on the characteristic of uncer- 

tainties, there are three description methods to represent the 

uncertain information: probability model, bounded model, and 

fuzzy model [2] . To deal with uncertainties in human behavior 

and expert judgment, optimization under fuzzy environment has 

received considerable interest over the last decade [3,4] . 

A practical example of the optimization problem with fuzzy 

uncertainties is the power scheduling problem. As one of the 

most important operations in zinc electrowinning process, power 

scheduling optimization aims to minimize the electricity charge 

under the power time-of-use pricing and satisfy the require- 

ment of daily output [5] . However, with the development of 

intelligent manufacturing, it is necessary for the target of zinc 

daily output to be adjusted within a certain range according to 

the market demand and environmental conditions [6] . Thus, in 

power scheduling optimization process, the constraint of zinc daily 

output is rendered uncertain. 

∗ Corresponding author. 

E-mail address: ychh@csu.edu.cn (C. Yang). 

The nature of the output target fluctuations is fuzziness rather 

than randomness when deciding the best output target. To handle 

ambiguity and imprecise information, the fuzzy set (FS) was 

introduced by Zadeh [7] in 1965. When considering both the truth 

and falsity attributes, the intuitionistic fuzzy set (IFS) presented 

by Atanassov [8] uses membership degree and non-membership 

degree to describe the vague information. In order to mimic 

human decision-making process, Smarandache [9] proposed the 

neutrosophic set to deal with indeterminate and inconsistent 

information. Additionally, Wang et al. [10] introduced the concept 

of single-valued neutrosophic (SVN) set which is more suitable for 

real-world uncertain situations [11] . 

Deterministic power scheduling optimization problem has been 

studied by many researchers. For instance, Yang [5] proposed an 

optimization method based on Hopfield neural network which 

decreases the power consumption significantly. Some intelligent 

optimization algorithms such as two-stage state transition algo- 

rithm [12] , single loop simulated annealing algorithm [13] , and 

particle swarm optimization algorithm [14] have been applied to 

the optimal power scheduling design. These methods are effective 

to find the optimal solution under a given constraint of daily 

output, but they cannot handle the optimization problem with 

imprecise information. 

Current research on neutrosophic optimization is mainly based 

on Werners’s approach [15] and the findings have been applied 

to several real-life problems, such as the welded beam structure 

design [16] , truss design [17] , and electronic products assignment 

https://doi.org/10.1016/j.neucom.2019.11.089 
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Fig. 1. Electrolytic cell of zinc electrowinning process. 

problem [18] . However, the methods based on Werners’s approach 

is complex when calculating the membership of objectives and 

constraints. The aims of this study is to address the power schedul- 

ing optimization problem with uncertainties and derive an opti- 

mization technique for problem with SVN constraints. 

The objectives of this paper are in four areas. (1) the opti- 

mization model with SVN constraint is established to more ac- 

curately capture the actual production condition, and this model 

has stronger ability to represent human preference; (2) an effi- 

cient way to deal with the SVN uncertainties is proposed based 

on the symmetric cross entropy, and the original problem is trans- 

formed to a multi-objective optimization problem; (3) the use of 

the multi-objective state transition algorithm to find the Pareto- 

optimal solutions can obtain more effective results compared with 

other classical multi-objective evolutionary algorithms; and (4) the 

multi-criteria decision making strategy is developed to select the 

final best solution, which achieves the highest evaluation of the 

technical and economic indicators. 

This paper is organized as follows. In Section 2 , the power 

scheduling optimization problem with neutrosophic uncertainty is 

formulated. The neutrosophic optimization method and decision- 

making strategy is introduced in Section 3 . Section 4 analyzes the 

experimental results and Section 5 presents a conclusion of this 

paper. 

2. Modeling and analysis for power scheduling 

In this section, the optimization model of power scheduling 

with fuzzy uncertainties is established. To better reflect the re- 

quirement of intelligent manufacturing, the uncertainty of zinc 

daily output is described as a single-valued neutrosophic set. 

2.1. Process analysis 

The zinc electrowinning process contains several series pot- 

room and each potroom has several parallel electrolytic cells. The 

zinc electrowinning process (shown in Fig. 1 ) includes the reac- 

tions taking place between substances in different physical states 

(solids, liquids, and gases), and these reactions are influenced by 

many factors. In general, the throughput of zinc electrowinning 

process is highly depended on the current flow and zinc to acid 

ratio (the ratio of zinc sulphate and sulphuric acid). The current 

density determines whether there are enough electrons for zinc 

ions to deposit on the cathode surface. The zinc to acid ratio will 

influence the extent of zinc dissolution. 

In order to analyze the power scheduling characteristics, the 

modeling of the zinc electrowinning process is built based on the 

following reasonable assumptions [19] : 

Assumption 1. The electrolyte temperature dose not fluctuate sig- 

nificantly (approximately 40 ± 2 ◦C), and it is assumed to be a con- 
stant. 

Assumption 2. The concentration of impurity ions ( Co 2+ , Ni 2+ ) 
contained in the solution is less than 1mg/L, and the influences 

of the impurity ions are ignored. 

Assumption 3. Under the similar manufacturing condition and the 

electricity supply systems, the current density and the zinc to acid 

ratio in each potroom are considered to be the same. 

Then, the cost of electricity in the zinc electrowinning process 

with power scheduling can be computed by 

J = J 0 + 

n ∑ 

i =1 
p i W i (1) 

where J means the total electricity utility charge per day, including 

capacity electricity charges ( J 0 ) and watt-hour electricity charges 

( 
∑ n 

i =1 p i W i ); n is the number of electricity price periods in one day; 

p i and W i are the price and the consumption of the electricity in 

the i th period, respectively. Since the number of plant series is m , 

the electricity consumption of the j th plant in the i th period is re- 

lated to voltage V ij , current L ij , and duration of the i th period t i , 

then 

W i = 

m ∑ 

j=1 
V i j L i j t i . (2) 

Based on the theory of electrochemical reaction mechanism 

[19] , V ij and L ij can be modeled as follows 

V i j = V (d i , C Zn,i , C H,i ) 

= N j (α1 − α2 ln (α3 C 
−1 
H,i 

) − α4 ln (α5 C Zn,i ) + α6 lg d i 

+ α7 d i (α8 + α9 C H,i − α10 C Zn,i ) 
−1 + α11 d i ) (3) 

L i j = L (d i ) = d i O j a (4) 

where d i is the current density in the i th period; C Zn,i and C H,i 
represent the concentration of Zn 2+ and H 

+ in the i th period, 
respectively; α1 , α2 , . . . , α11 are the parameters; N j , O j and a are 

the number of cells in the j th plant, the plates number of a cell in 

the j th plant, and the area of the cathode plate, respectively. 

In the zinc electrowinning process, the daily output of zinc g is 

also an important target which revels the manufacturing capacity 

and product reliability [20] . It can be expressed as 

g(d i , C Zn,i , C H,i ) = 

n ∑ 

i =1 

7 ∑ 

j=1 
qL i j ηi t i (5) 

where q means the electrochemical equivalent of zinc; and ηi is 

the current efficiency modeled by 

ηi = η(d i , C Zn,i , C H,i ) 

= β1 + β2 exp (β3 + β4 lg d i ) C 
1 . 6 
Zn,i C 

−0 . 2 
H,i 

(β5 exp (β6 

+ β7 lg d i ) C Zn,i C 
−0 . 2 
H,i 

+ β8 C 
0 . 6 
Zn,i ) 

−1 d −1 
i 

(6) 

where β1 , β2 , . . . , β8 are the parameters. 
The optimization problem of the power scheduling is formu- 

lated based on (1) –(6) in the following subsections. 
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2.2. Modeling of the objective function 

The purpose of the power scheduling in the zinc electrowinning 

process is to minimize the total electricity charge by adjusting the 

current density and the concentration of Zn 2+ and H 

+ . The objec- 
tive function can be formulated as 

min J(d i , C Zn,i , C H,i ) 

= J 0 + 

n ∑ 

i =1 

m ∑ 

j=1 
V i j L i j t i p i 

where V i j = V (d i , C Zn,i , C H,i ) and 

L i j = L (d i ) . (7) 

In (7) , objective function J includes the transcendental functions 

and it is a non-convex optimization problem with multiple local 

optima. Thus, the optimization method should have good property 

for global search. 

2.3. Modeling of the constraint function 

In order to meet the industrial requirements of the zinc elec- 

trowinning process, the optimal solution is subject to the following 

two certain constraints. 

(1) Daily output of zinc ( g ): Taking into account the intelligent 

manufacturing strategy in manufacturing focused countries such 

as China, the daily output target needs to be adjusted based on 

the market demand and production capacity. It is more appropri- 

ate to use a fuzzy set to describe the daily output target instead of 

a set of fixed constants. Single-valued neutrosophic set can provide 

a more convenient tool to handle practical imprecision and ambi- 

guity. The definition of single-valued neutrosophic set is given as 

follows: 

Definition 1. Let X be a universe. A single-valued neutrosophic set ˜ Z over X is characterized by a truth-membership function T ˜ Z , an 
indeterminacy-membership function T ˜ Z , and a falsity-membership 
function F ˜ Z , which can be defined as ˜ Z = {〈 x, T ˜ Z (x ) , I ˜ Z (x ) , F ˜ Z (x ) 〉| x ∈ X } 
where T ˜ Z : X → [0 , 1] , I ˜ Z : X → [0 , 1] , and F ˜ Z : X → [0 , 1] with 0 ≤
T ˜ Z (x ) + I ˜ Z (x ) + F ˜ Z (x ) ≤ 3 for all x ∈ X . 

Using single-valued neutrosophic set to describe the uncer- 

tainty in power scheduling optimization, the truth-membership 

can reflect the acceptance degree of the zinc daily output, and 

the falsity-membership can indicate the rejection degree of the 

zinc daily output. The indeterminacy-membership function can 

describe the uncertainty degree of accepting or rejecting the zinc 

daily output. In practical manufacture process, the decision mark- 

ers have an optimal daily output target within a specific range. 

It is thus natural to use single-valued triangular neutrosophic 

number (SVTrN-number) in some pessimistic way [21] to describe 

the fuzzy information. 

Based on the concept proposed in [22,23] , the SVTrN-number ˜ g , truth-membership T ˜ g , indeterminacy-membership I ˜ g , and falsity- 
membership F ˜ g functions of the daily output target can be respec- 
tively defined as 

˜ g = 〈 (g min , g opt , g max ) ;� , ν, μ〉 

with T ˜ g (g) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

� 

(
g−g min 

g opt −g min 

)
, g min ≤ g ≤ g opt 

� 

(
g max −g 

g max −g opt 

)
, g opt ≤ g ≤ g max 

0 , otherwise 

Fig. 2. Truth-membership, indeterminacy-membership, and falsity-membership 

functions of single-valued triangular neutrosophic number. 

I ˜ g (g) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

ν
(

g−g min 
g opt −ξ−g min 

)
, g min ≤ g ≤ g opt − ξ

ν
(
g opt −g 

ξ

)
, g opt − ξ ≤ g ≤ g opt 

ν
(
g−g opt 

ξ

)
, g opt ≤ g ≤ g opt + ξ

ν
(

g max −g 
g max −g opt −ξ

)
, g opt + ξ ≤ g ≤ g max 

0 , otherwise 

F ˜ g (g) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

μ
(

g opt −ζ−g 

g opt −ζ−g min 

)
, g min ≤ g ≤ g opt − ζ

0 , g opt − ζ ≤ g ≤ g opt + ζ

μ
(

g−g opt −ζ
g max −g opt −ζ

)
, g opt + ζ ≤ g ≤ g max 

μ, otherwise 

where g opt is the optimal daily output; g min and g max represent 

the lower and upper tolerance. The SVTrN-number of the daily 

output is depicted in Fig. 2 . In a typical decision making pro- 

cess for the power scheduling, the preference is to accept the 

daily output attained the optimal value g opt and reject it beyond 

the range of [ g min , g max ]. Moreover, in the interval [ g opt − ζ , g opt + 

ζ ] , the falsity-membership value is the lowest while the truth- 
membership value is not always the highest. It indicates that the 

decision makers are reluctant to reject the values between g opt − ζ
and g opt + ζ , but at the same time, they do not fully accept these 

values. Thus, based on this pessimistic modeling approach, the as- 

sessment of zinc daily output can be regarded as more reasonable. 

Thus the constraint function of daily output can be modeled 

as 

g(d i , C Zn,i , C H,i ) ∼= 

〈 (g min , g opt , g max ) 〉 

where ∼= 

represents equality in neutrosophic sense. 

(2) Decision variables ( x i = [ d i , C Zn,i , C H,i ] ): According to the 

manufacturing requirements and equipment capacity, the thresh- 

old limits of the decision variables in real applications are 

as follows: d i ,min ≤ d i ≤ d i ,max , C Zn,i ,min ≤ C Zn,i ≤ C Zn,i ,max , 

C H,i ,min ≤ C H,i ≤ C H,i ,max . 
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3. Single-valued neutrosophic optimization approach 

In this section, the SVN optimization problem for power 

scheduling is transformed to a bi-objective optimization problem 

with crisp model. Then, the multi-objective state transition al- 

gorithm is used to solve this problem. The best solution is se- 

lected from the Pareto-front by the multi-criteria decision making 

method. 

3.1. Equivalent crisp model 

In general, the decision makers’ main target is to find the value 

from the selected set with the highest degree of acceptance, least 

degree of rejection and indeterminacy. To deal with the fuzziness 

in the power scheduling optimization problem, the constraint with 

single-valued neutrosophic number is transformed to three objec- 

tives as follows: 

max T ˜ g (g) 
min I ˜ g (g) 
min F ˜ g (g) 
s . t . 0 ≤ T ˜ g (g) + I ˜ g (g) + F ˜ g (g) ≤ 3 

T ˜ g (g) ≥ F ˜ g (g) 
T ˜ g (g) ≥ I ˜ g (g) 
T ˜ g (g) , I ˜ g (g) , F ˜ g (g) ∈ [0 , 1] , g ≥ 0 . (8) 

Thus, the SVN optimization problem can be modeled as a 

crisp problem with four objectives. To decrease the computational 

complexity of the four-objective optimization problem, the single- 

valued neutrosophic symmetric cross-entropy [24] is adopted to 

combine the three objectives about daily output into one objective. 

First, we give the concept of single-valued neutrosophic cross- 

entropy. 

Definition 2. Assume that P = 〈 T P , I P , F P 〉 , and Q = 〈 T Q , I Q , F Q 〉 are 
two neutrosophic numbers, where T P , I P , F P , T Q , I Q , F Q ∈ [0, 1]. The 

cross-entropy E ( P, Q ) between P and Q includes three elements, 

which is defined as follows: 

E(P, Q ) = E T (P, Q ) + E I (P, Q ) + E F (P, Q ) 

where E T ( P, Q ), E I ( P, Q ), and E F ( P, Q ) are the cross-entropy of 

the truth-membership, the indeterminacy-membership, and the 

falsity-membership between P and Q , respectively. They are ex- 

plained as follows: 

E T (P, Q ) = T P log 2 
T P 
T Q 

+ (1 − T P ) · log 2 
1 − T P 

1 − 0 . 5(T P + T Q ) 

E I (P, Q ) = I P log 2 
I P 
I Q 

+ (1 − I P ) · log 2 
1 − I P 

1 − 0 . 5(I P + I Q ) 

E F (P, Q ) = F P log 2 
F P 
F Q 

+ (1 − F P ) · log 2 
1 − F P 

1 − 0 . 5(F P + F Q ) 
. 

Based on Shannon’s inequality [24] , E ( P, Q ) ≥ 0, and E(P, Q ) = 0 

if and only if T P = T Q , I P = I Q , and F P = F Q . Thus, the value of E ( P, 

Q ) can indicate the discrimination degree of P from Q . Moreover, to 

avoid the priority given to the different order in the cross-entropy, 

a symmetric discrimination information measure H ( P, Q ) is used 

H(P, Q ) = E(P, Q ) + E(Q, P ) . 

Obviously, the smaller the difference between P and Q , the 

smaller H ( P, Q ) is. Hence, we define the ideal daily output g ∗ as 

g ∗ = 〈 � , 0 , 0 〉 , and the three objectives in (8) can be modified as 
min H(g, g ∗) . 

Therefore, let x represent the decision variables, the SVN op- 

timization problem can be transformed to an equivalent crisp 

model as 

min J( x ) 

min H(g( x ) , g ∗) 

s . t . 0 ≤ T ˜ g (g) + I ˜ g (g) + F ˜ g (g) ≤ 3 

T ˜ g (g) ≥ F ˜ g (g) 
T ˜ g (g) ≥ I ˜ g (g) 
T ˜ g (g) , I ˜ g (g) , F ˜ g (g) ∈ [0 , 1] , g ≥ 0 

x = [ d , C Zn , C H ] 

d min ≤ d ≤ d max , C Zn, min ≤ C Zn ≤ C Zn, max 

C H, min ≤ C H ≤ C H, max . (9) 

The problem shown in (9) is a bi-objective nonlinear optimiza- 

tion problem. There are many exist techniques to deal with such 

multi-objective problem [25–27] . In this paper, we use the multi- 

objective state transition algorithm to find all promising solutions. 

3.2. Multi-objective state transition algorithm 

State transition algorithm (STA) [28–30] is a global optimiza- 

tion method which is inspired by the control theory of state tran- 

sition and state space. To guarantee the search ability of state 

transition algorithm, there are three state transition operators to 

generate candidate solutions, via: 

x k +1 = x k + κ1 
1 

n ‖ x k ‖ 2 

R 1 x k (10) 

x k +1 = x k + κ2 R 2 x k (11) 

x k +1 = x k + κ3 R 3 x k (12) 

representing the rotation transformation, expansion transforma- 

tion, and axesion transformation, respectively; x k is the candidate 

solution in the k th generation; κ1 , κ2 , and κ3 are transformation 

factors; R 1 , R 2 , and R 3 mean the matrix with specific elements. The 

rotation transformation is used to search local area and the expan- 

sion transformation has strong global search ability. The axesion 

transformation has a function of single dimensional search. STA 

has been applied successfully in image segmentation, optimal con- 

trol, industrial optimization, and production scheduling problems 

[31–33] . For multi-objective optimization problems, there exists a 

multi-objective state transition algorithm (MO-STA) [34,35] which 

can efficiently obtain Pareto-front with well-distributed candidates. 

Therefore, in this paper, MO-STA method is applied to deal with 

the problem in (9) . After using three transition operators, given in 

(10) –(12) , to generate candidate solutions, the selection strategies 

are introduced as follows: 

(1) Constrained nondominated sorting 

When choosing between two candidate solutions, a feasible so- 

lution takes precedence over an infeasible solution. If both solu- 

tions are feasible, we adopt a solution which can Pareto domi- 

nate another one. If both solutions are infeasible, we adopt a so- 

lution with smaller constraint violation. Thus, the candidates can 

be sorted to different fronts. 

(2) Crowding distance sorting 

In order to maintain the diversity of solutions, the crowding 

distance of the candidates x ι can be computed by 

D = 

M ∑ 

i m =1 

f i m (x ι+1 ) − f i m (x ι−1 ) 
f max 
i m 

− f min 
i m 

where ι is the solution number in a front; M means the number 

of objective functions; f max 
i m 

and f min 
i m 

represent the maximum and 

minimum value of f i m . In the same front, a more effective strategy 

is to adopt a solution with a larger crowding distance. 
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Algorithm 1 Pseudo-code for the MO-STA method 

Input: 

iter max : the maximum number of iterations 

SE: search enforcement 

Best: the initial solution 

Output: 

Optimum : a set of optimal solutions 

for k = 1 to iter max do 

if κ1 < κ1 , min then 

κ1 ← κ1 , max 
end if 

State ← state transition operators ( Best, SE, · · · ) 
archi v e ← constrained nondominated sorting ( State ) 

archi v e ← crowding distance sorting ( archi v e ) 
Best ← sample from archi v e 
κ1 ← 

κ1 
fc 

end for 

Optimum ← archi v e 

The structure of the MO-STA method is shown in Algorithm 1 . 

Firstly, we define the parameters and randomly generate the ini- 

tial solution. The parameter SE represents the search enforcement, 

which means SE candidates are generated by every transformation 

operator. To enforce the local search ability, the rotation factor κ1 

is decreased from κ1,max to κ1,min with the base fc . Then, during 

the optimization process, the candidates are selected by using con- 

strained nondominated sorting strategy and the promising candi- 

dates are saved in the variable called archive . The crowding dis- 

tance sorting strategy is used to filter the candidates such that the 

similar solution can be removed. Finally, when the terminal con- 

dition is satisfied, the solutions stored in variable archive will be 

considered as the optimal solution set. 

3.3. Multi-criteria decision making based on TOPSIS 

Multi-objective state transition algorithm can provide a set of 

optimal solutions for the decision makers to choose a final best 

solution. To evaluate the power scheduling solutions in the Pareto- 

front ( X = { x 1 , x 2 , . . . , x h } ), three technical and economic indicators 
are considered, which are current efficiency, cell voltage, and spe- 

cific electric energy consumption. These three indicators can give a 

more reliable measure to analyze the electricity cost ( J ) and zinc 

daily output ( g ). TOPSIS (the technique for order preference by 

similarity to an ideal solution) [36,37] is a classical multi-criteria 

decision making method that aims to select the best alternative 

solution not only close to the ideal solution but also far away 

from the negative ideal solution. TOPSIS has been a technique of 

choice for solving multi criteria optimization industry related pro- 

cess problem, such as electrical discharge machining process [38] , 

economical control chart design [39] , and modern manufacturing 

processes [40] . Thus, the decision making strategy based on TOP- 

SIS technique for power scheduling optimization is developed in 

this paper. 

The criteria of the decision making process are as follows: 

(1) Average current efficiency ( η): As shown in (6) , the current 
efficiency can reflect the ratio of the actual mass of zinc liberated 

from an electrolyte by the passage of current to the theoretical 

mass liberated according to Faraday’s law. The higher the current 

efficiency, the more economical the electrowinning process. Thus, 

the current efficiency is a benefit attribute. 

(2) Average cell voltage ( V ): As shown in (3) , the cell voltage is 

strongly related to the electric energy consumption. The lower the 

cell voltage, the lower the cost. Therefore, the cell voltage is a cost 

attribute. 

(3) Average specific energy consumption ( SEC ): The specific en- 

ergy consumption is applied to describe the energy consumption 

which is used to produce 1 ton of zinc, and it can be defined as 

SEC = 

W 

g 

where W is the total electric energy consumption and g is the zinc 

output. The specific energy consumption also is a cost attribute. 

Based on these three criteria, the steps of TOPSIS technique are 

introduced as follows: 

Firstly, we establish the decision matrix ( DM ) with respect to 

the criteria and the alternatives ( X = { x 1 , x 2 , . . . , x h } ): 

DM = 

[ 

e 11 e 12 · · · e 1 h 
e 21 e 22 · · · e 2 h 
e 31 e 32 · · · e 3 h 

] 

= 

[ 

η( x 1 ) η( x 2 ) · · · η( x h ) 
V ( x 1 ) V ( x 2 ) · · · V ( x h ) 
SEC( x 1 ) SEC( x 2 ) · · · SEC( x h ) 

] 

. 

Then, the decision matrix is normalized by the following equa- 

tion: 

r u v = 

e u v √ ∑ h 
v =1 e 

2 
u v 

v = 1 , 2 , . . . , h 

where u is the criterion’s number and v is the alternative’s number. 

Thirdly, the weighted normalized decision matrix is calculated 

by 

z u v = ω u r u v v = 1 , 2 , . . . , h 

where ω u is the weight of the u th criteria. 

Since the current efficiency is a benefit attribute and the cell 

voltage and the specific energy consumption are cost attributes, 

the ideal positive solution and the ideal negative solution of these 

three attributes are determined as follows: 

z + 1 = max z 1 v and z −1 = min z 1 v 

z + 2 = min z 2 v and z −2 = max z 2 v 

z + 3 = min z 3 v and z −3 = max z 3 v . 

According to the weighted normalized decision matrix, the dis- 

tances from each alternative to the ideal positive solution and ideal 

negative solution are as follows: 

q + v = 

√ 

3 ∑ 

u =1 
(z u v − z + u ) 

2 and q −v = 

√ 

3 ∑ 

u =1 
(z u v − z −u ) 2 

v = 1 , 2 , . . . , h. 

Finally, the preference value of each alternative is calculated 

by 

s v = 

q −v 
q −v + q + v 

v = 1 , 2 , . . . , h. 

At the end of the calculation, the larger the value of s v , the bet- 

ter the decision of alternative x v . 

3.4. Optimization framework 

A comprehensive study of neutrosophic theory and optimiza- 

tion techniques has resulted in the framework of the proposed 

SVN optimization method, which is shown in Fig. 3 . Consider- 

ing the fuzziness information in the power scheduling optimiza- 

tion, the single-valued neutrosophic number is used to describe 

the daily output. In order to minimize the falsity-membership and 

indeterminacy-membership and maximize the truth-membership 

of the daily output, the symmetric cross-entropy is adopted and 

then the original neutrosophic optimization problem is trans- 

formed to a bi-objective optimization problem. After using the 
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Fig. 3. Framework of the power scheduling optimization method. 

multi-objective state transition algorithm, a set of Pareto-optimal 

solutions are obtained. The TOPSIS technique is then applied to se- 

lect the best final solution based on the three evaluation criteria in 

the zinc electrowinning process. 

4. Experiments and discussion 

To verify the applicability of the proposed single-valued neutro- 

sophic model and optimization approach for the power schedul- 

ing in the zinc electrowinning process, simulation studies are con- 

ducted and described in this section. All the results are obtained 

using MATLAB R2017b on a desktop computer (3.60 GHz Interl 

Core i7, 8 GB of RAM). 

In this paper, the electrowinning process in Zhuzhou Smeltery, 

which is a major zinc production company in China (see Fig. 4 

[19] ), is investigated as a case study. The parameters of the opti- 

mal power scheduling model in Zhuzhou Smeltery are as follows 

[19] : the number of potroom series m = 7 , the cells number 

in each plant N = [240 , 240 , 246 , 192 , 208 , 208 , 208] , the plate 

number of a cell in each plant O = [34 , 46 , 54 , 56 , 56 , 57 , 57] , 

the area of the plate a = 1 . 13 , and the limitations of de- 

cision variables [ d min , d max , C Zn, min , C Zn, max , C H, min , C H, max ] = 

[100 , 650 , 45 , 60 , 160 , 200] . 

According to the time-of-use pricing policy in Hunan Province 

in 2018, time is divided to on-peak, mid-peak, and off-peak peri- 

ods which reflect the level of demand on the electricity network. 

During off-peak periods electricity prices will be cheaper than at 

Fig. 4. Electrowinning process in a smeltery of the case study. 

Fig. 5. Comparison of the results under fuzzy set, intuitionistic fuzzy set, and SVN 

set. 

Table 1 

Time-of-use pricing in the case study. 

Period Time of day Price Duration (hour) 

On-peak 07:00-11:00 15:00-22:00 1.6 φ 11 

Mid-peak 11:00-15:00 22:00-23:00 1.0 φ 5 

Off-peak 23:00-07:00 0.7 φ 8 

other times. Shown in Table 1 is a typical pricing arrangement, in 

which φ means the basic electricity price. 

4.1. Feasibility verification of the SVN set 

In the case study of electrowinning process, the optimal daily 

output is set to g opt = 960 tons with allowable tolerance of 20 

tons. To verify the feasibility of SVN set, we compare the per- 

formance of zinc daily output under different uncertain environ- 

ments. Under intuitionistic fuzzy environment, we consider the 

truth-membership degree and falsity-membership degree. Under 

fuzzy environment, we only use the truth-membership degree to 

describe the uncertainty. Fig. 5 shows that the zinc daily output 

using SVN set is closer to the optimal target value. To be more 

specific, Table 2 shows the upper and lower bounds of zinc daily 
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Table 2 

Zinc daily output under different uncertain environments. 

Target value Fuzzy set 

Intuitionistic 

fuzzy set SVN set 

960 with allowable 

tolerance of 20 

[940.69,960.03] [949.49,960.01] [953.38,960.00] 

Fig. 6. Pareto-fronts obtained by MO-STA, NSGAII, PESAII, and MOPSO. 

Table 3 

Comparison results of the spacing metric ( S ) and hypervolume metric ( HV ). 

Methods S HV 

Mean Std.Dev Mean Std.Dev 

PESAII 247.7053 40.7827 9.7819e + 03 102.3456 

MOPSO 246.7150 163.7829 1.0012e + 04 2.9304e + 03 

NSGAII 201.5489 38.3193 1.0960e + 04 55.1543 

MO-STA 80.8478 37.3417 1.1098e + 04 76.7677 

output under different environments. It can be observed that dis- 

tribution range under SVN description is smaller than that un- 

der fuzzy and intuitionistic fuzzy description. Thus, SVN set has 

stronger ability to describe the uncertainty and represent the hu- 

man preference. 

4.2. Performance analysis of the MO-STA method 

The parameters in MO-STA method are: κ1 , max = 1 , κ1 , min = 

1 e − 4 , κ2 = 1 , κ3 = 1 , SE = 40 , iter max = 10 0 0 . In order to analyze 

the performance of the MO-STA method, the nondominated sort- 

ing genetic algorithm II (NSGAII) [41] , the Pareto envelope-based 

selection algorithm II (PESAII) [42] , and the multiple objective par- 

ticle swarm optimization (MOPSO) [43] are applied to optimize 

the same problem for comparison. According to previous stud- 

ies, all of these three methods (NSGAII, PESAII, and MOPSO) are 

classical multi-objective optimization methods and they have been 

used successfully in many numerical and engineering problems. 

We adopt the parameter settings of NSGAII, PESAII, and MOPSO 

used in [41–43] in this performance evaluation study. 

The Pareto-fronts obtained by MO-STA, NSGAII, PESAII, and 

MOPSO are shown in Fig. 6 . It shows that the optimal solutions 

obtained by MO-STA is similar to that of NSGAII and MOPSO, and 

the solutions of PESAII are mostly dominated by that of MO-STA. 

It indicated that the MO-STA has competitive ability to deal with 

multi-objective optimization problems. Table 3 shows the quanti- 

tative analysis of these Pareto-fronts based on two performance 

metrics: spacing ( S ) [35] and hypervolume ( HV ) [44] . For Pareto- 

front X = { x 1 , x 2 , . . . , x h } , the diversity and convergence perfor- 
mance can be analyzed as follows: 

• Spacing metric (S): The spacing metric is used to evaluate the 
diversity among solutions, which can be calculated by 

S(X ) = 

√ 

1 

h − 1 

h ∑ 

v =1 
(S a v erage − S v ) 2 , 

where S v = min 
v  = v ′ 

{ 

M ∑ 

i m =1 
| f i m (x v ) − f i m (x v ′ ) | 

} 

S a v erage = 

1 

h − 1 

h ∑ 

v =1 
S v . 

The smaller the values of S , the better the distribution of solu- 

tions. 

• Hypervolume metric (HV): The hypervolume metric can reflect 
the accuracy, diversity, and cardinality of solutions. Given a ref- 

erence point f ∗ = ( f ∗
1 
, f ∗

2 
, . . . , f ∗

M 

) whose value is worse than 

every objective function values of X , the hypervolume metric 

can be calculated by 

HV (X, f ∗) = V OL 

( ⋃ 

x ∈ X 
[ f 1 (x ) , f 

∗
1 ] × · · · × [ f M 

(x ) , f ∗M 

] 

) 

, 

where VOL ( ·) means Lebesgue measure. The larger the value of 
HV , the better the convergence and diversity performance of 

the methods. 

In Table 3 , each algorithm is executed independently for 20 

trails. For the diversity metric ( S ), the performance of MO-STA is 

more stable and better than that of NSGAII, PESAII, and MOPSO. As 

for convergence metric ( HV ), the mean value of MO-STA is larger 

than that of NSGAII, PESAII, and MOPSO. The quantitative analysis 

shows that the MO-STA method can provide a more accurate and 

more diverse Pareto-front for a multi-objective optimization prob- 

lem. 

In terms of the computational complexity of the optimization 

algorithm, we base on the computational complexity analysis in 

[45] . Let the number of objectives be M , the size of the popula- 

tion be SE , and the size of the archive be S A . Then the computa- 

tional complexity of MO-STA, NSGAII, SPEAII, and MOPSO within 

one generation is O ( M · SE 2 ), O ( M · SE 2 ), O (M · (SE + S A ) 
2 ) , and 

O ( M · SE 2 ), respectively. Thus, the MO-STA method is more efficient 

to optimize the power scheduling problem, and it is also a compet- 

itive method to solve multi-objective optimization problems. 

4.3. Analysis of the decision making results 

Based on the Pareto-optimal solutions obtained by the MO-STA 

method, Fig. 7 shows the electricity cost ( J ) and zinc daily output 

( g ) of these solutions, and the evaluation results based on TOP- 

SIS technique are represented by the color of each point. The solu- 

tion with the largest evaluation value is selected as the final best 

solution. To give more explicit analysis of evaluation strategy, we 

take 10 samples (including the final best solution) from the Pareto- 

optimal solutions, and their normalized decision value of three cri- 

teria are shown in Fig. 8 . 

In Fig. 8 , Sample 1 is the final best solution. We observe that 

the current efficiency of Sample 1 is much higher than that of 

others and its specific energy consumption is small. Considering 

the practical manufacture experience, the weights of the criteria 

in TOPSIS technique are set as ω = [0 . 5 , 0 . 2 , 0 . 3] . Thus, Sample 1 

offers better performance than others. 
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Fig. 7. Evaluation results using TOPSIS technique. 

Fig. 8. Normalized decision value of three criteria. 

Table 4 

Comparison between deterministic optimization and SVN optimization. 

Method Deterministic SVN 

Optimization Optimization 

Decision variable d (A/m 

2 ) [261,317,650] [100,573,650] 

C Zn (g/L) [60,45,60] [60,61,60] 

C H (g/L) [200,200,200] [160,161,162] 

J (Chinese Yuan) 1.5922e + 6 1.4199e + 6 

g (ton) 960.0017 956.5412 

Time(second) 1.98 3.50 

4.4. Comparison of the results using the proposed SVN optimization 

and deterministic optimization 

To demonstrate the practical significance of the proposed SVN 

optimization for zinc electrowinning process, the deterministic op- 

timization result based on two-stage state transition algorithm 

[12] is used for comparison. Since the deterministic problem pays 

more attention to finding the solution satisfied the equality con- 

straint of daily output, the objective function value about electric- 

ity cost needs to be traded off. In this paper, the constraint of daily 

output is considered as a single-valued neutrosophic number, and 

it gives more opportunity to search for the solution with lower 

electricity cost. From Table 4 , it shows that using SVN optimiza- 

tion method, the zinc daily output is 956.5412 tons which is less 

than that of deterministic method by 0.36%. However, compared 

with deterministic optimization, the electricity cost under the pro- 

posed method in this paper decreases by 10.8%. The execution time 

to solve SVN optimization problem (3.50s) is longer than that of 

deterministic problem (1.98s), but it is still well within the range 

acceptable by most in industrial processes. 

5. Conclusion 

In this paper, the SVN uncertainty of zinc daily output has been 

considered during the optimization of the power scheduling in 

the zinc electrowinning process. We have proposed a transforma- 

tion method based on SVN symmetric cross entropy to handle the 

fuzzy constraint of the zinc daily output. Then the equivalent crisp 

multi-objective optimization model was established. The Pareto- 

front of this problem was searched by MO-STA. To select the fi- 

nal best solution, the multi-criteria decision making strategy based 

on TOPSIS technique was adopted. The experimental simulation re- 

sults firstly verified that the SVN description method has better 

ability to capture the characteristic of fuzzy uncertainty. Then the 

optimization performance of MO-STA was compared with other 

three multi-objective optimization algorithms. The feasibility of the 

multi-criteria decision-making strategy was confirmed by solving 

the power scheduling problem. Furthermore, the results of SVN op- 

timization was compared with that of the deterministic optimiza- 

tion. The power scheduling optimization case study has shown that 

the proposed method can decrease the electricity consumption by 

over 10% and the zinc daily output can still satisfy the fuzzy re- 

quirement. Our future work will further study the SVN optimiza- 

tion methods to solve problems with uncertain parameters existed 

in both objectives and constraints. 
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