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Abstract
Linear bi-level programming (LBLP) is a useful tool for modeling decentralized decision-making problems. It has two-level
(upper-level and lower-level) objectives. Many studies have shown that the LBLP problem is NP-hard, meaning it is difficult
to find a global solution in polynomial time. In this paper, we present a novel cognitively inspired computing method based
on the state transition algorithm (STA) to obtain an approximate optimal solution for the LBLP problem in polynomial time.
The proposed method is applied to a supply chain model that fits the definition of an LBLP problem. The experimental
results indicate that the proposed method is more efficient in terms of solution accuracy through a comparison to other
metaheuristic-based methods using four problems from the literature in addition to the supply chain distribution model. In
this study, a cognitively inspired STA-based method was proposed for the LBLP problem. In the future, we expect to extent
the proposed method for linear multi-level programming problems.

Keywords Linear bi-level programming · State transition algorithm · Cognitively inspired computing · Global optimization

Introduction

Bi-level programming is a mathematical programming
model for decentralized decision-making problems that
contain nested optimization problems. In these problems,
the upper level is referred to as the leader and the lower
level represents the objective of the followers. Bi-level
programming has been applied in many different fields,
including transportation engineering, organizational design,
facility location, production planning, and supply chain
management [23, 25]. In the bi-level programming problem,
the lower-level optimization problem can be viewed as
a constraint for the upper-level optimization problem,
meaning only an optimal solution of the lower-level
optimization problem is a feasible candidate solution to the
upper-level optimization problem. Furthermore, an optimal
solution to the upper-level optimization problem may be an
infeasible solution to the lower-level optimization problem.
This hierarchical optimization structure introduces various
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difficulties, including non-convexity and disconnectedness.
For these reasons, bi-level programming problems can be
very difficult to solve. The linear bi-level programming
(LBLP) problem is a special type of bi-level programming
problem. It is well known that the LBLP problem is an
NP-hard problem [8].

Many methods have been proposed to solve the LBLP
problem [4, 10]. These methods can be divided into four
categories: (1) methods based on vertex enumeration, (2)
methods based on Karush–Kuhn–Tucker (KKT) conditions,
(3) fuzzy approaches, and (4) methods based on metaheuris-
tics. Because our work is based on a novel metaheuristic
algorithm, other metaheuristic-based methods will be dis-
cussed in detail in the following sections. In [20], Mathieu et
al. proposed a genetic algorithm-based technique for solv-
ing the LBLP problem. Their algorithm is able to solve
the LBLP problem using only mutations, alleles of decimal
numbers, and a survival strategy. Kuo et al. [15] developed
an efficient method based on the particle swarm optimiza-
tion (PSO) algorithm for solving the LBLP problem. Later,
in [14], Kuo et al. developed an efficient method based on
the hybridization of a genetic algorithm (GA) and PSO for
solving the LBLP problem and applied it to a supply chain
distribution problem. Zheng et al. [27] presented an exact
penalty method based on the classical Kth-best algorithm to
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solve the weak LBLP problem. Safaei et al. [21] proposed
a novel method to find the fuzzy optimal solution of a fully
fuzzy linear bi-level programming (FFLBLP) problem by
representing all parameters with triangular fuzzy numbers.
The given FFLBLP problem was decomposed into three
crisp linear programming (CLP) problems with bounded
constraints. The three CLP problems were solved sepa-
rately and the fuzzy optimal solution to the given FFLBLP
was obtained by combining the results. He et al. [9] proposed a
recurrent neural network (RNN) characterized by differential
inclusion for solving the LBLP problem. This model has a
low number of state variables and simple structure. It can
approximately converge to an optimal solution of the LBLP
problem under certain conditions by using non-smooth anal-
ysis, the theory of differential inclusions, and a Lyapunov-
like method. In [19], Lv et al. proposed a neural network
model containing fewer neurons for LBLP programs.

Inspired by the research on natural cognition, many
nature-inspired optimization algorithms have emerged in
the past few decades [12, 13, 16, 17, 22]. Among
them, genetic algorithm and particle swarm optimization
have been broadly studied. Genetic algorithm is a global
optimization algorithm based on the principles of natural
selection and “survival of the fittest.” In nature, the
stronger the adaptability of an individual, the higher
its chances of survival and reproduction. In genetic
algorithm, a set of genes in chromosomes surviving
in the competitive environment will be inherited by
three operating process that are selection, crossover,
and mutation. Particle swarm optimization is another
computational method for optimization that can mimic
the social behavior of a flock of birds and a school of
fish. In PSO, each individual flies in the search space
with a velocity which is dynamically adjusted according
to its own flying experience and its companions’ flying
experience. There are some advantages to solve the linear
bi-level programming problem with the GA and the PSO
method, such as favorable global searching ability and fast
convergence. However, because of the characteristics of
GA and PSO, their solution accuracy is not high enough.
Recently, a novel cognitively inspired metaheuristic, state
transition algorithm (STA) [31], has been proposed as a
powerful tool for global optimization. It aims to imitate
human thinking to solve global optimization problem. As is
known to us, with respect to global optimization, the goal
is to find a global optimal solution as soon as possible. In
view of this, in STA, it has deliberately proposed both global
(like expansion transformation) and local search (rotation
transformation) operators to guarantee the globality and
optimality, as well as heuristic operators to accelerate the
search process. In STA, a solution to an optimization
problem can be treated as a state, and in the meanwhile, an
update of current solution using certain state transformation

operator is considered as a state transition. Additionally, the
strong global search ability and adaptability of the STA have
been demonstrated through comparisons to other global
optimization algorithms in several real-world applications
[5–7, 11, 26, 28–32]. As is known to us, human beings are
good at dealing with high-level social cognition problem
such as LBLP. Hence, it is important to associate human
intelligence with social cognition that brings enormous
benefits to practical applications.

In this paper, we propose a novel cognitively inspired
computing method based on the state transition algorithm
(STA) [31] for solving LBLP problems.We base our method
on the STA because of its excellent performance for global
search. Several benchmark instances taken from existing stud-
ies and an example supply chain model are used to test the per-
formance of the proposed method. The experimental results
indicate that the proposed method outperforms other nature-
inspired methods in terms of solution accuracy and stability.

The main contributions of our research are fourfold: (1)
the STA method is introduced to solve the LBLP problem
for the first time; (2) the state transformation operators
are only used to generate upper-level candidate solutions,
which promotes diversity of solutions while ensuring an
optimal solution for the lower-level optimization problem;
(3) proper bounds are predetermined for the upper-level
variables, which can reduce the search space of the problem;
and (4) the proposed metaheuristic is successfully applied
to benchmark tests and a supply chain problem.

The remainder of this paper is organized as follows.
Section “Background” discusses the basic concepts of the
LBLP problem and provides a brief description of the STA.
The proposed method based on the STA for solving LBLP
problems is presented in Sections “A Novel Cognitively
Inspired STA for the LBLP Problem” and “Computational
Experiments” contains a thorough discussion of the
computational results. Finally, our concluding remarks are
presented in Section “Conclusion”.

Background

This section briefly discusses the background of the LBLP
problem and STA.

Linear Bi-Level Programming (LBLP) Problem

The LBLP problem can be mathematically formulated as
follows:

min
x∈X F(x, y) = c1x + d1y

min
y∈Y f (x, y) = c2x + d2y

s.t. Ax + By ≤ b,

(1)



818 Cogn Comput (2018) 10:816–826

where c1, c2 ∈ R
1×n, d1, d2 ∈ R

1×m, A ∈ R
p×n, B ∈

R
p×m, b ∈ R

p. F(x, y) is the upper-level optimization
problem and f (x, y) is the lower-level optimization
problem. The variables x and y are column vectors of size
n and m, respectively. Their proper compact convex set are
denoted by X and Y.

The LBLP problem is a special type of bi-level
programming problem that is divided into two levels
(upper level and lower level). The goal for the upper-level
optimization problem is to find an optimal solution with
respect to x, with the variables y acting as parameters,
and vice versa for the lower-level optimization problem.
A different x generates a different lower-level optimization
problem whose optimal solution must be computed.

Next, we provide several definitions related to the LBLP
problem [1]:

Definition 1 The relaxed feasible region (or constraint
region) is defined as

� = {(x, y) ∈ R
n ×R

m : x ∈ X, y ∈ Y,Ax+By ≤ b}. (2)

Definition 2 For a given (fixed) vector x̄ ∈ X, the lower-
level feasible set is defined as:

�(x̄) = {y ∈ R
m : By ≤ b − Ax̄}, (3)

while the lower-level reaction set (or rational reaction set) is
defined as

R(x̄) = {y ∈ R
m : y ∈ argmin{f (x̄, ŷ) : ŷ ∈ �(x̄)}}. (4)

Definition 3 The set

IR = {(x, y) ∈ R
n ×R

m : x ∈ X,Ax+By ≤ b, y ∈ R(x)},
(5)

which regroups the feasible points of the LBLP problem,
corresponds to the feasible set of the leader, and is known
as the induced region (or inducible region).

Definition 4 (x∗, y∗) is an optimal solution of the LBLP
problem if

x∗ ∈ X,

Ax∗ + By∗ ≤ b,

y∗ ∈ R(x∗),
F (x∗, y∗) ≤ F(x∗, y) f or all y ∈ R(x∗).

(6)

To solve the LBLP problem, once the leader has chosen
an x, the x of the follower objective function becomes a
constant. Therefore, the objective function of the follower
can be simplified to min

y∈Y f (y) = d2y. However, according

to [23], the solution is different in different situations
when solving the LBLP problem. In other words, based
on Definition 4, when both levels cooperate completely

with each other, the LBLP problem may have an optimal
solution.

Cognitively Inspired State Transition Algorithm
(STA)

The STA is a novel cognitively inspired global optimization
method [5–7, 11, 26, 28–32]. The STA starts with a
random solution and searches for optima by generating
candidates and comparing them. Unlike a GA or PSO,
the STA is an individual-based optimization approach that
generates candidates by using state transformations with
both local and global operators in alternating fashion. It
aims to imitate human thinking to solve global optimization
problem. As a result, it has deliberately proposed expansion
transformation for global search and rotation transformation
for local search to guarantee both the globality and
optimality. Furthermore, the STA has also adopted a
lot of cognitively inspired strategies. For example, when
executing certain transformation operator, a sampling
technique is adaptively accommodated to percept the
geometrical shape of space formed by candidate solutions.
The past experiences are accumulated in the incumbent best
solution which is utilized to produce candidate solutions for
next generation.

Originally, the framework for the STA was designed
by Zhou [31] in 2012 and was inspired by state-space
representation in control theory. In the STA, a state
represents a solution to an optimization problem and a state
transition represents an update to the current solution using
state transformation operators. Generally, in the continuous
STA, the unified form for the generation of a solution can
be defined as follows:

{
sk+1 = Aksk + Bkuk,
yk+1 = F(sk+1),

(7)

where sk ∈ R
n is a state that corresponds to an optimization

problem’s candidate solution. Ak and Bk are state transition
matrices with suitable dimensions, uk is a function of sk,
as well as historical states, and F is considered to be the
evaluation function.

There are four special state transformation operators for
generating candidates for both local and global search.

(1) Rotation transformation

sk+1 = sk + α
1

n‖sk‖2Rrsk, (8)

where α is called the rotation factor and is a positive
constant, Rr ∈ R

n×n is a random matrix whose
elements are restricted to the range [−1, 1], and ‖.‖2 is
the L2 − norm of a vector.
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(2) Translation transformation

sk+1 = sk + βRt
sk − sk−1

‖sk − sk−1‖2 , (9)

where β is called the translation factor and is a positive
constant, and Rt ∈ R is a random variable whose
elements are restricted to the range [0, 1].

(3) Expansion transformation

sk+1 = sk + γResk, (10)

where γ is called the expansion factor and is a positive
constant, and Re ∈ R

n×n is a random diagonal matrix
whose elements follow a Gaussian distribution.

(4) Axesion transformation

sk+1 = sk + δRask, (11)

where δ is called the axesion factor and is a positive
constant, and Ra ∈ R

n×n is a random diagonal matrix
whose elements follow a Gaussian distribution, where
only one random position has a nonzero value.

Fig. 1 Flow chart of the
proposed method
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Table 1 Description of the test problems

Problem 1 Problem 2

min
x1

f1 = 2x1 − 11x2 min
x1

f1 = −x2

min
x2

f2 = x1 + 3x2 min
x2

f2 = x2

s.t . x1 − 2x2 ≤ 4 s.t . − x1 − 2x2 ≤ 10

2x1 − x2 ≤ 24 x1 − 2x2 ≤ 6

3x1 + 4x2 ≤ 96 2x1 − x2 ≤ 21

x1 + 7x2 ≤ 126 x1 + 2x2 ≤ 38

−4x1 + 5x2 ≤ 65 −x1 + 2x2 ≤ 18

x1 + 4x2 ≥ 8 x1, x2 ≥ 0

x1, x2 ≥ 0

Problem 3 Problem 4

min
x1

f1 = −x1 − 3x2 min
x1,x2

f1 = −8x1 − 4x2 + 4y1 − 40y2 − 4y3

min
x2

f2 = x2 min
y1,y2,y3

f2 = x1 + 2x2 + y1 + y2 + 2y3

s.t . − x1 + x2 ≤ 3 s.t . y1 − y2 − y3 ≥ −1

x1 + 2x2 ≤ 12 −2x1 + y1 − 2y2 + 0.5y3 ≥ −1

4x1 − x2 ≤ 12 −2x2 − 2y1 + y2 + 0.5y3 ≥ −1

x1, x2 ≥ 0 x1, x2, y1, y2, y3 ≥ 0

The detailed geometrical properties of these state
transformation operators can be found in [31]. The STA
has both local and global search operators. For example,
rotation transformation can be regarded as local search and
expansion transformation can be regarded as global search.
A multiplication operation called search enforcement (SE)
is performed on each state transformation operator. As a
result, a set of SE candidate states are generated, and the
state with the best fitness value between the incumbent state
and candidate set is selected for the next iteration.

ANovel Cognitively Inspired STA
for the LBLP Problem

In the STA, the incumbent state is treated as the best solution
achieved so far for an optimization problem in a given
problem space. Additionally, the strong global search ability

Table 2 Parameter setup

Method STA GA PSO

Parameter Iterations: 10 Population: 20 Population: 20

SE: 10 Crossover rate: 0.8 Vmax: 10

αmin:10−4 , αmax :1 Mutation rate: 0.1 Inertial weight:
1.2–0.2

α:αmax , γ :1 , δ:1 Generations: 200 Iterations: 200

Table 3 The best solutions for Problem 1

STA GA PSO Lingo

x1 17.4545 17.4528 17.4535 17.4545

x2 10.9090 10.9055 10.9070 10.90909

f1 − 85.0909 − 85.0551 − 85.0700 − 85.0909

f1 error rate 0% 0.04% 0.02% N/A

f2 50.1818 50.16937 50.17450 50.18182

f2 error rate 0% 0.038% 0.015% N/A

and adaptability of the STA have been demonstrated through
comparisons to other global optimization algorithms in
several real-world applications [5–7, 11, 26, 28–32]. For
these advantages, the STA is used to solve the LBLP
problem in our proposed method. A flowchart of the
proposed method is presented in Fig. 1. The proposed
method based on STA for solving the LBLP problem is
described in detail below.

Step 1 (Parameter setting) Specify parameters, including
search enforcement SE, rotation factor α, translation factor
β, expansion factor γ , axesion factor δ, and the maximum
number of iterations.

Step 2 (Set Bounds) Generate an upper bound (and lower
bound) for each xi ∈ x by solving the following problem for
i = 1, . . . , n:

max
x,y

(min) xi

s.t. Ax + By ≤ b
(12)

We use the subroutine set bounds(X) for this process in
the pseudocode.

Step 3 (Generate Initial Solution) Generate an initial
solution z = (x, y) by randomly generating x and using it
to solve the lower-level optimization problem. The detailed
process is as follows:

Table 4 Averages and standard deviations for Problem 1

STA GA PSO

x1 17.4545 17.43289 17.4417

x2 10.9090 10.86578 10.8788

f1 −85.0909 −84.657812 −84.85119

f1 error rate 0% 0.51% 0.28%

f2 50.1818 50.03023 50.0781

f2 error rate 0% 0.30% 0.21%

f1 standard deviation 0 0.38650 0.189965
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Fig. 2 Iterative curves of the
objective function values
obtained by the STA for
Problem 1

(3.1) Randomly generate an x. This xmust fall within a spec-
ified field between an upper and lower boundary.

(3.2) Use the x to solve the following optimization
problem:

min d2y
s.t. By ≤ b − Ax

(13)

This optimization problem is a linear program-
ming problem. Many tools are available to solve lin-
ear programming problems. In this study, the interior
point algorithm was applied to solve this problem.
We use the subrountine lower optimization(X) for
this process in the pseudocode.

(3.3) If y is an infeasible solution, proceed to Step 3.1.
Otherwise, skip to Step 4.

Step 4 (STA phase) In this stage, we begin the STA
phase that can be divided into two steps. The first is state
transformation and the second is state updating.

(4.1) State transformation
This step generates new states from the incumbent

state using state transformation operators. For
example, the x in the initial solution z = (x, y)
is treated as the incumbent state. Then, each state

Table 5 The best solutions for Problem 2

STA GA PSO Lingo

x1 16 15.9984 15.9999 16

x2 11 10.9968 10.9998 11

f1 − 11 − 10.9968 − 10.9998 − 11

f1 error rate 0% 0.03% 0.002% N/A

f2 11 10.9968 10.9998 11

f2 error rate 0% 0.03% 0.002% N/A

transformation operator (rotation, expansion, etc.)
is used to generate SE candidate states X. It should
be noted that X is a SE × |x| matrix. Next,
the subroutine lower optimization(X) is used to
generate lower-optimal solutions Y. However, the
generated x must be regenerated if y is infeasible.
Finally, the next solution set Z = (X,Y) is
generated.

(4.2) State updating
We use the subroutine f itness(f unf cn,Z) to

find an optimal solution according to the upper-level
objective. The best solution thus far is preserved.

The process for the STA phase is outlined in Algorithm 1.
For the sake of detailed explanation, Algorithm 2

illustrates the process of the expansion function in
Algorithm 1.

SE is search enforcement value that represents the size
of the candidate solution set. A new best solution is chosen
by using a greedy criterion. Additionally, there are three
other important parameters that must be set appropriately:
rotation factor α, expansion factor γ , and axesion factor δ.
Funfcn, Best, and State represent the upper-level objective
function, current best solution, and candidate solution set,
respectively. The specified termination condition is the
maximum number of iterations (Maxiter) in this study.

Table 6 Averages and standard deviations for Problem 2

STA GA PSO

x1 16 15.9041 15.99806

x2 11 10.8082 10.9961

f1 − 11 − 10.8082 − 10.9961

f1 error rate 0% 1.74% 0.04%

f2 11 10.8082 10.9961

f2 error rate 0% 1.74% 0.04%

f1 standard deviation 0 0.168034 0.004014
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Algorithm 1 Pseudocode for the STA phase

Input:

maxiter: the maximum number of iterations

SE: search enforcement

Best: the initial solution

Output:

: the optimal solution

1: repeat

2: if then

3:

4: end if

5:

6:

7:

8:

9: until the specified termination criterion is met

10:

Computational Experiments

Benchmark Tests

We utilized the four benchmark instances listed in Table 1 to
assess the proposed method. These instances were selected
to illustrate the feasibility and capability of the proposed
method, which is able to solve a variety of LBLP problems.
Additionally, the performance of the proposed method is
compared to that of the GA and PSO methods in [15].

For our representative problems, four benchmark
instances were selected from different sources. Thirty inde-
pendent runs were executed for each problem. All experi-
ments were implemented on a personal computer with an
Intel Core i5 Duo 2.6 GHz CPU and 8 GB of RAM using
MATLAB.

Table 7 The best solutions for Problem 3 for different methods

STA GA PSO Lingo

x1 4 3.9994 4 4

x2 4 3.9974 4 4

f1 − 16 − 15.9917 − 16 − 16

f1 error rate 0% 0.05% 0 N/A

f2 4 3.94636 4 4

f2 error rate 0% 1.34% 0 N/A

Algorithm 2 Pseudocode for the expansion transformation

in Algorithm 1

Input:

Best: the best solution from the last transfomation

Output:

: the best solution

1: X

2: if x is out of range then

3:

4: end if

5: Y

6: Z X Y

7:

For fair comparison, the solution obtained from Lingo
was treated as the best solution. Because each problem was
30 times, an error rate could be calculated as follows:

error rate = |f ∗ − f ∗
M |

f ∗ × 100% (14)

where f ∗ is the optimal solution based on Lingo, and f ∗
M is

the optimal solution obtained from theM method.
Table 2 lists the parameter settings for the three test

algorithms: STA, PSO, and GA.

Fig. 3 Iterative curves of the
objective function values
obtained by the STA for
Problem 2
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Table 8 Averages and standard deviations for Problem 3

STA GA PSO

x1 4 3.986583 3.99908

x2 4 3.946363 3.996343

f1 − 16 − 15.82567 − 15.98811

f1 error rate 0% 1.09% 0.07%

f2 4 3.946363 3.996343

f2 error rate 0% 1.34% 0.09%

f1 standard deviation 0 0.192652 0.009664

(1) Problem 1
Problem 1 is an example taken from Wen and Hsu

[24] and is a standard linear BLP problem. As shown
in Tables 3 and 4, we found that the STA provides
better results than GA and PSO both for upper-level
and lower-level objectives, f1 and f2. The GA and
PSO do have small error rates on f1 and f2, but the
STA has no error. Figure 2 presents the iterative curves
of the objective function values obtained by the STA
for problem 1.

(2) Problem 2
Problem 2 is an example taken from [3]. In problem

2, a major characteristic is that the upper-level and
lower-level optimization problems are conflicting.
Tables 5 and 6 show that the solutions of STA are better
than that of GA and PSO, and without error. Figure 3
presents the iterative curves of the objective function
values obtained by the STA for problem 2.

(3) Problem 3
Problem 3 is an example taken from [18]. In

problem 3, the lower level does not contain the upper-
level decision variables. The accuracy of the STA was
significantly higher than that of the GA and PSO.

Table 9 Results for Problem 4

STA GA PSO Lingo

x1 0 0.000 0.0004 0

x2 0.9 0.898 0.8996 0.9

y1 0 0.000 0 0

y2 0.6 0.599 0.5995 0.6

y3 0.4 0.399 0.3993 0.4

f1 − 29.2 − 29.1480 − 29.1788 − 29.2

f1 error rate 0% 0.18% 0.07% N/A

f2 3.2 3.1930 3.1977 3.2

f2 error rate 0% 0.22% 0.07% N/A

Detailed results are presented in Tables 7 and 8. One
can see that the STA is more stable than the GA
and PSO. Figure 4 presents the iterative curves of
the objective function values obtained by the STA for
problem 3.

(4) Problem 4
Problem 4 is an example taken from [2]. In problem

4, the number of variables in the upper level and lower
level is different. The experimental results are listed
in Tables 9 and 10. Again, the STA achieved better
performance than the GA and PSO. Figure 5 presents
the iterative curves of the objective function values
obtained by the STA for problem 4.

Application to a Supply Chain Problem

For further testing, a supply chain problem was considered
to verify the practicability of the proposed method.
The problem involves two distribution centers and one
manufacturer [14]. The distribution center aims to maximize
overall profits and the manufacturer aims to minimize

Fig. 4 Iterative curves of the
objective function values
obtained by the STA for
Problem 3
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Table 10 Averages and standard deviations for Problem 4

STA GA PSO

x1 0 0.15705 0.02192

x2 0.9 0.86495 0.86693

y1 0 0 0

y2 0.6 0.47192 0.56335

y3 0.4 0.51592 0.34108

f1 − 29.2 − 21.52948 − 24.81256

f1 error rate 0% 17.19% 4.57%

f2 3.2 3.39072 3.1977

f2 error rate 0% 5.96% 6.21%

f1 standard deviation 0 3.14432 1.55374

total costs. Based on the notation in Table 11, the supply
chain problem can be mathematically formulated using the
following constraints:

The distribution center is subject to the following
constraints:

(a) The capacity of the ith distribution center is subject
to Ci .

Y1 ≤ C1

Y2 ≤ C2
(15)

(b) The total amount of products from all distribution
centers should not be lower than that required by the
manufacturer.

Y1 + Y2 ≥ N1 (16)

The objective of the distribution center is typically
formulated as follows:

max
Y1,Y2

f1 = P(X11) × X11 + P(X21) × X21 − U(Y1)

×Y1 − U(Y2) × Y2 (17)

Table 11 Notation for the supply chain problem

Variable Description

i The number of distribution centers

j The number of manufacturers

Xij The demand of the jth manufacturer from the ith
distribution center

P(Xij ) The product price of product Xij

Yi The total amount of products that the ith distribution center
has

U(Yi) The unit cost of product Yi

Ci The capacity constraint for the ith distribution center

Nj The total amount of products that the jth manufacturer needs

O(Xij ) The costs of other products that the manufacturer must
purchase Xij

The manufacturer is subject to the following constraints:

(a) The demand of the jth manufacturer from the ith
distribution center should not be lower than the amount
of products that the ith distribution center has.

X11 ≤ Y1
X21 ≤ Y2

(18)

The objective of the manufacturer is typically formulated
as follows:

min
X11,X21

f2 = (P (X11) + O(X11)) × X11

+(P (X21) + O(X21)) × X21 (19)

The related parameters are set as C1 = 1000, C2 =
500, N1 = 750, U(Y1) = 40, U(Y2) = 50, P(X11) =

Fig. 5 Iterative curves of the
objective function values
obtained by the STA for
Problem 4
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Table 12 Results of the supply chain model

STA GA PSO Lingo

X11 1000 997.3735 997.7685 1000

X21 500 496.5783 497.1162 500

Y1 1000 999.5942 999.3908 1000

Y2 500 498.0463 498.2986 500

f1 105000 104414.4 104517.9 105000

f1error rate 0% 0.5577% 0.4591% N/A

f2 202500 201662.4 201791.7 202500

f2error rate 0% 0.4136% 0.3498% N/A

110, P(X21) = 120, O(X11) = 20, and O(X21) =
25. Therefore, the supply chain problem is formulated as
follows:

max
Y1,Y2

f1 = 110X11 + 120X21 − 40Y1 − 50Y2

min
X11,X21

f2 = 130X11 + 145X21

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X11 ≤ Y1
X21 ≤ Y2
Y1 ≤ 1000
Y2 ≤ 500
Y1 + Y2 ≥ 750
Xij ≥ 0
Yi ≥ 0
i = 1, 2
j = 1

(20)

This problem is a typical supply chain problem. In
this problem, the lower level does not contain upper-level
decision variables. This leads to solutions becoming easily

trapped in local optima. Therefore, the global solution is
difficult to obtain.

In this problem, the proposed method was compared to
the GA and PSO. The corresponding solutions are listed
in Table 12. The results reveal that using both the GA and
PSO is worse than using the proposed method. Among the
three methods, the STA has the smallest f1 and f2 error
rates. Additionally, its standard deviation is also the smallest
among all methods. The corresponding converging curve is
illustrated in Fig. 6. Using only six iterations can find an
optimal solution. The STA can also provide more feasible
solutions compared to the other two methods.

Conclusion

In this study, a cognitively inspired STA-based method
was proposed for solving LBLP problems. Experimental
results demonstrated that the performance of the proposed
method is superior to other nature-inspired techniques, such
as the GA and PSO, for most problems. This indicates
that the STA has better stability than its competitors.
Additionally, this study has demonstrated that a supply
chain model can be formulated using the LBLP and that
the proposed method is suitable for practical applications,
particularly supply chains. However, it should be noted
that the proposed method has not been applied to large or
multi-level instances. In the future, we expect to extend
the proposed method for large-scale and linear multi-level
programming problems. Additionally, the virtues of the
STA will be enhanced to improve learning efficiency so
the proposed method can be employed in a variety of
applications, such as resource allocation, production plan,
and pricing and lot-sizing decisions.

Fig. 6 Iterative curves obtained
by the STA for the supply chain
model
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