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We consider the in-plane bifurcations experienced by the Lamé solutions corresponding to an elastic

annulus subjected to radial tension on the curved boundaries. Numerical investigations of the relevant

incremental problem reveal two main bifurcation modes: a long-wave local deformation around the

central hole of the domain, or a material wrinkling-type instability along the same boundary. Strictly

speaking, the latter scenario is related to the violation of the Shapiro–Lopatinskij condition in an

appropriate traction boundary-value problem. It is further shown that the main features of this

material instability mode can be found by using a singular-perturbation strategy.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic instabilities of bulky solids and thick-walled structural
elements, such as plates and shells, have received considerable
attention for the past several decades, starting with the works of
Biot on incremental elasticity in the 1930s, which were later
collected in [1]. A more modern treatment, together with many
interesting examples, can be found in the classic text by Ogden [2].

While for most part there is a close parallel between the
bifurcations experienced by thin-walled bodies modelled with the
help of classical plate and shell theories, on the one hand, and
those of three-dimensional elastic bodies, on the other, a number
of complementary issues arise in the latter situation. Largely
speaking, these are related to the possible loss of ellipticity in the
incremental bifurcation equations and the existence of surface
instabilities [3,4]; this last phenomenon is typical of compressed
half-planes or half-spaces and has no counterpart in the classical
theories of buckling. It is precisely these two aspects, and related
phenomena, that we wish to revisit here within the scope of an
approximate set of incremental bifurcation equations described
by Novozhilov in his book [5]; this model can be traced back to
some early incremental equations proposed by Biezeno and
Hencky [6] as well as Biot ([1], pp. 490–491). For convenience
we shall refer to this model as the simplified incremental deforma-

tion theory (SIDT for short). To a certain extent, these incremental
models are superior to the buckling equations used in structural
mechanics, reason for which in recent years they have been the
object of several quantitative studies (e.g., [7–10]). The mathema-
tical structure of these equations in the case of non-homogeneous
ll rights reserved.
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stress fields appears to be little explored and, as seen in what
follows, deserves much more consideration.

In some recent work [11] the first author and M. Destrade have
investigated the asymptotic structure of the instability experi-
enced by an incompressible neo-Hookean rubber block subjected
to pure flexure (see [12] for some experimental considerations on
the same problem). Based on the exact non-linear pre-bifurcation
solution obtained by Rivlin in [13] it was found that if the ratio of
thickness to length was k then for 0oko1 the bent block
displayed an Euler-type instability with a well-defined number of
ripples on the compressed side, but in the limit k-1 this
degenerated into a kinematic surface instability. In a later study
[14] it was shown that the turning points found in the differential
equation associated with the pure bending problem played only a
passive role, in contrast to a deceivingly similar situation that
crops up in relation to the wrinkling of stretched thin films
[15,16]—where turning points did play a crucial role.

The above instability scenario was associated with one of the
traction-free circular surfaces of the bent block (the one that was in
compression); the eversion of a cylindrical thick-walled tube repre-
sents an akin situation amenable to the same type of asymptotic
treatment, as demonstrated by the first author [18]. A question that
still remains is whether the asymptotic strategy developed in these
studies can find any applicability to the case when the bifurcation is
associated with a stressed rather than a free surface.

The problem we have in mind is that of a long hollow cylindrical
body subjected to radial tensions on both boundaries. Invoking the
standard plane-strain simplifications we can confine our attention
to cross-sections situated sufficiently far away from the two ends of
the cylinder. Thus, we are essentially dealing with a two-dimen-
sional problem and a number of further simplifications can be called
upon. For instance, if we assume that the pre-bifurcation state is
sufficiently weak, so that linear elasticity is applicable, then the
expressions of the stress and displacement fields are given by the
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Fig. 1. Long- and short-wavelength local deformations of the annulus.

R1 R2

Fig. 2. A thick cylindrical body under radial tensile loads.
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Lamé solution for a radially loaded annulus (e.g., see [19]). It is a
well-known fact that for tensile loads this solution predicts a typical
stress concentration around the perimeter of the inner hole, so we
expect the possible bifurcations to have a local character. However,
it is not at all obvious a priori whether the inner rim will prefer a
long-wave deformation mode, as seen in the left sketch in Fig. 1, or
whether it will have the tendency to accumulate many ripples (right
sketch, same Figure). Of course, a third possibility is material failure
as heralded by loss of ellipticity prior to any changes in the radially
symmetric pre-bifurcation state. All these questions will be addressed
in the subsequent parts of the paper.

As already hinted above, the SIDT has attracted interest in recent
time, particularly in relation to buckling of thick circular cylindrical
shells under hydrostatic pressure. Kardomateas and his associates
have explored such aspects extensively (e.g., [7,8] and the references
therein). While not entirely as accurate as the incremental equations
found in [1] or [2], they represent a versatile alternative whose
status is perhaps somewhere between classical plate/shell models
and those found in the last two references just cited.

The paper is laid out as follows. In Section 2 we review the SIDT
by presenting an intrinsic-form derivation of the relevant equations;
a brief glancing at the equivalent traditional-notation calculations
(‘‘á la Timoshenko’’) that appear in [7] indicates clearly the advan-
tages of the route pursued here. We also take this opportunity to
record in Section 2 one of the possible extensions of these equations,
whose detailed analysis will be reported elsewhere. By using the
normal-mode approach, the bifurcation equations are reduced to an
eigenvalue problem for two coupled second-order ordinary differ-
ential equations with variable coefficients. Direct numerical simula-
tions are then employed in Section 3 to investigate the character of
the possible linear bifurcations. This aspect turns out to be sensitive
to the type of traction boundary conditions imposed on the curved
boundaries of the annulus. Two complementary cases are discussed:
(i) dead loads (i.e. the outward unit normal to the boundary remains
unchanged in passing from the stressed configuration to the neu-
trally stable one), and (ii) follower loads (assumed to follow the
direction of the normal to the boundary). As it happens, the outcome
in both cases turns out to be somewhat similar, in the sense that the
predominant instability mode is the short-wavelength deformation
pattern seen on the right-hand side in Fig. 1. Strictly speaking, the
number of ripples along the inner rim is infinite and the ‘‘bifurcation’’
is linked with the failure of the Shapiro–Lopatinskij Condition (SLC) in
the corresponding incremental traction boundary-value problem—

e.g., see [21] (pp. 106–108). The recent paper [22] contains a number
of interesting discussions in the context of non-linear elasticity
problems and abstract bifurcation theory, as well as an extensive
list of references. Motivated by our numerical findings, in Section
4 we indicate how some of the quantitative aspects of this material
instability can be understood by a simple boundary-layer argument
involving the mode number as the main asymptotic parameter.

Before we embark on our analysis, a word about the non-
standard notation that will appear below is in order. With GTðnÞ

standing for the set of all general tensors of order n, we define two
partial transposition operations for elements of GTð3Þ, ð Þt and tð Þ,
according to the following rules: ða� b� cÞt � x� ða� c � bÞ �
x¼ a� cðb�xÞ and tða� b� cÞ � x� ðb� a� cÞ � x¼ b� aðc�xÞ for
all xAGTð1Þ; here ‘‘�’’ denotes the scalar product of two vectors and
‘‘�’’ represents the simple contraction between elements of various
GTðnÞ and GTðmÞ, mþn42. We also use two other different types
of contractions: the double contraction ‘‘:’’ between various tensors
is taken as ða� bÞ : ðc � dÞ � ða�cÞðb�dÞ, ða� bÞ : ðc � d� eÞ �
ða�cÞðb�dÞe, etc, and the triple contraction between third- and
fourth-order tensors, ‘‘^’’ which obeys the rule ða� b� cÞ^ðd� e�
f � gÞ � ða�dÞðb�eÞðc�f Þg (see [20] for more details). Finally, the
norm of a tensor AAGTð2Þ is defined with the help of the former
contracted product according to JAJ� ðA : AÞ1=2.
2. Review of the bifurcation equations

We consider a very long cylindrical body as seen on the right-
hand side in Fig. 2. By invoking the plane-strain approximation
we shall confine our attention to a generic annular cross-section
of inner radius R1 and outer radius R2, situated far away from the
ends of the cylinder. Our main interest in what follows is with the
possible in-plane bifurcations experienced by such a cross-section
when the two curved boundaries are subjected to purely radial
tensile loads.

All pre-bifurcation fields will be indicated by using ‘‘1’’ and
the relevant bifurcation equations are derived from the method
of adjacent equilibrium. For short, in our particular context this
amounts to writing the equilibrium equations on two neighbour-
ing stressed configurations and subtracting them, followed by a
geometrical linearisation of the kinematics; the incremental
displacement field between these two adjacent configurations
will be referred to as u.

In terms of the Piola–Kirchhoff (PK) tensors, the stresses in the
two configurations can be represented as

S
3

¼P
3

� ðIþH
3

TÞ and S
3

þS ¼ ðPþP
3

Þ � ðIþH
3

TþHT
Þ,

where S and P denote the first and, respectively, the second PK
tensors in the neutrally stable configuration, H ¼ u�= is the
displacement gradient in the same configuration, and I is the
second-order identity tensor. By subtraction of these two rela-
tions it is found that

S ¼P
3

�HT
þP � ðIþH

3
TÞ: ð1Þ

Next, we shall assume that the material satisfies a constitutive
law of St. Venant–Kirchhoff type, i.e.

P¼ 2mEþljEjI, ð2Þ

where E¼ ðFT
� F�IÞ=2 is the Lagrangian strain tensor, F ¼ Iþu�=

stands for the deformation gradient, jEj � E : I represents its first
principal invariant, and l, m denote the usual linear elastic constants.
Note that, while geometrical non-linearities are allowed in the
response function, material non-linearities are absent.
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By writing (2) on the aforementioned two neighbouring
configurations and following the same strategy that generated (1),
we find

P¼ m½ðH
3

TþIÞ �HþHT
� ðH

3

þIÞ�þlðjHjþjH
3

T � HjÞI

CmðHþHT
ÞþljHjI: ð3Þ

The expression of S in (1) can be further simplified by invoking a
number of ad-hoc simplifications rehearsed by Novozhilov in [5]. To
this end, we recall the decomposition into a symmetric and an anti-
symmetric part for the displacement gradient, H ¼ eþx, with the
first tensor describing changes in lengths, while the second char-
acterises the rotation of material line elements according to

x¼
1

2
ðu�=�=� uÞ:

In Ref. [5] it is stipulated that

JP � e
3

J, JP
3

� eJ, JP �x
3

J5JP
3

�xJ,

which when used in conjunction with (1) leads to

SCP�P
3

�x: ð4Þ

This can be substituted in the static equilibrium equation = � S ¼ 0
to yield

= �P�ð= �P
3

Þ �x�P
3

: ð=�xÞ ¼ 0:

If the pre-buckling deformation state is obtained within the frame-
work of the classical linear theory of elasticity, the middle term in
the above equation will be zero since P

3

CS
3

Cr
3

, the last tensor in
this sequence of approximations being the Cauchy stress. Further-
more, use of (2) will then allow us to cast the bifurcation equation in
the following invariant form

mr2uþðlþmÞ=ð=�uÞ�r
3

: ð=�xÞ ¼ 0: ð5Þ

The boundary conditions associated with this equation are briefly
reviewed below, but first we record an extension of it that involves
the full expression of P as given on the first line in (3),

ð=� uÞ : Q 1þðu�=Þ : Q 2þ=� ðu�=Þ ^ L1þðu�=Þ �= ^ L2

þ=� ð=� uÞ ^ L3það=�uÞþðr2uÞ � P1þ=ð=�uÞ � P2 ¼ 0, ð6Þ

where aAGTð1Þ, PjAGTð2Þ, Q jAGTð3Þ (j¼1,2), and LjAGTð4Þ

(j¼1,2,3) are defined by

a :¼ lðr2u
3

Þ,

P1 :¼ mðIþu
3

�=Þ � ðIþ=� u
3

Þ,

P2 :¼ ðlþmÞðIþ=� u
3

Þ,

Q 1 :¼ 2mt½ðu
3

�=ÞþI� � ð=� ð=� u
3

ÞÞ

þmtf½ðIþu
3

�=Þ � ðI �r2u
3

Þþ=� ð=� u
3

Þ�tg,

Q 2 :¼ lðu
3

�=Þ � ðr2u
3

Þþlððu
3

�=Þ �=Þ � ðIþ=� u
3

Þ,

L1 :¼ mð=� u
3

Þ � ðIþ=� u
3

Þ,

L2 :¼ mðu
3

�=Þ � ðIþ=� u
3

Þ,

L3 :¼ r
3

� I:

A quantitative comparison between the two Eqs. (5) and (6) has
been carried out and will be reported elsewhere. (Despite the
apparent complexity, in polar coordinates the coefficients of
=� u, =� ðu�=Þ, etc. in (6) take on relatively simple forms.)

Going now back to the derivation of the boundary constraints
announced above, let bn be the outward unit normal to the
cylindrical surface of the original unstressed body, and let n
3

and n
be the normals to the prestressed and, respectively, the neutrally
stable adjacent configurations. Thus, the traction boundary condi-
tions can be written as

S
3

T
� bn ¼ tðu

3

Þ and ðS
3

þSÞT � bn ¼ tðu
3

þuÞ, ð7Þ

where t represents the given traction vector—possibly depending
on the displacement field in the case of follower loads. In this
situation tðuÞ ¼ sjn, with sjAR representing the magnitude of the
applied radial stresses on r¼Rj (j¼1,2): sjo0 for compressive loads,
while sj40 in the tensile case.

Since we are interested in the case of small pre-buckling
deformations, we can introduce the approximation bnCn

3

and then,
with the help of (4), the difference of the two relations in (7) leads to

ðPþx �P
3

Þ � n
3

¼ sjðn�n
3

Þ: ð8Þ

On the other hand, Nanson’s formula with J� det FC1 gives
n da¼ F�T

� n
3

da
3

, which on squaring out both sides produces

ðdaÞ2 ¼ n
3

�F�1
� F�T

� n
3

ðda
3

Þ
2
¼ n

3

�½ðIþHÞ�1
� ðIþHÞ�T

� n
3

�ðda
3

Þ
2

Cð1�2n
3

�ðH � n
3

ÞÞðda
3

Þ
2,

and hence

nCF�T
� n
3

ð1þn
3

�ðH � n
3

ÞÞ:

When used in conjunction with (8) this last equation yields

sjðn�n
3

ÞC�sjH
T
� n
3

Csjx � n
3

,

where in deriving the last result we have assumed that JeJ5JxJ. In
conclusion, the constraints on the two curved boundaries of the
annulus are

ðPþx �P
3

Þ � n
3

¼ sjx � n
3

for r¼ Rj ðj¼ 1,2Þ: ð9Þ

The term on the right-hand side of (9) has its origin in the changes of
the applied forces with the current configuration, so this term will
be absent in the case of dead loading.

Our next task will be to write the invariant-form Eqs. (5) and
(9) in component form in order to make them amenable to
numerical calculations in the next sections. To this end, let
fg1, g2, g3g and fg1, g2, g3g be a pair of reciprocal bases associated
with the problem at hand; expressed in the latter basis, the
contravariant components of the identity tensor are gij ¼ gi�gj.
A simple calculation then reveals that

r
3

: ð=�xÞ ¼
1

2
r
3

: ½=� ðu�=Þ�=� ð=� uÞ�

¼
1

2
s
3 ij
ðrirjuk�rirkujÞg

k,

where rpuq � uq,p�Gr
pqur denotes the covariant derivative of uq

with respect to the gp-coordinate and Gr
pq � gr�gp,q are the well-

known Christoffel symbols. Since in addition to this,

=ð=�uÞ ¼ ðgijrkriujÞg
k and r2u¼ ðgijrirjukÞg

k,

the desired component form of Eq. (5) assumes the expression

mgijþ
1

2
s
3 ij

� �
rirjukþðlþmÞgijrkriuj�

1

2
s
3 ij
rirkuj ¼ 0: ð10Þ

In cylindrical polar coordinates we find two coupled second-order
partial differential equations for the components of the in-plane
displacement field uðr,yÞ ¼ urðr,yÞerþuyðr,yÞey,

A11
@2ur

@r2
þA12

@2uy

@y@r
þA13

@2ur

@y2
þA14

@ur

@r
þA15

@uy

@y
þA16ur ¼ 0,

ð11aÞ
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A21
@2uy

@r2
þA22

@2ur

@y@r
þA23

@2uy

@y2
þA24

@uy

@r
þA25

@ur

@y
þA26uy ¼ 0, ð11bÞ

where

A11 :¼ lþ2m, A21 :¼ mþ1

2
s
3

rr ,

A12 :¼
1

r
lþm�1

2
s
3

yy

� �
, A22 :¼

1

r
lþm�1

2
s
3

rr

� �
,

A13 :¼
1

r2
mþ 1

2
s
3

yy

� �
, A23 :¼

lþ2m
r2

,

A14 :¼
lþ2m

r
, A24 :¼

1

r
mþ 1

2
s
3

rr

� �
,

A15 :¼ �
1

r2
lþ3mþ 1

2
s
3

yy

� �
, A25 :¼

1

r2
lþ3mþ 1

2
s
3

rr

� �
,

A16 :¼ �
lþ2m

r2
, A26 :¼ �

1

r2
mþ 1

2
s
3

rr

� �
:

Note that due to the plane-strain assumption the other equation
obtained from (10) is automatically satisfied.

These equations are solved subject to the following boundary
conditions at r¼ Rj (j¼1,2),

B11
@ur

@r
þB12

uy

@y
þB13ur ¼ 0, ð12aÞ

B21
@ur

@y
þB22

@uy

@r
þB23uy ¼ 0, ð12bÞ

where the coefficients that appear above are given by

B11 :¼ lþ2m, B21 :¼
1

2r
½2m�ðs

3

rr�sjÞ�,

B12 :¼
l
r

, B22 :¼
1

2
½2mþðs

3

rr�sjÞ�,

B13 :¼
l
r

, B23 :¼
1

2r
½�2mþðs

3

rr�sjÞ�:

The solution of the rather complicated system (11) and (12) is
sought by using functions with separable variables, i.e.

urðr,yÞ ¼U1ðrÞcosny and uyðr,yÞ ¼U2ðrÞsinny, ð13Þ

where the arbitrary integer nZ0 will be determined from the
usual minimisation strategy employed in similar contexts (see, for
instance, [15,16] for details on related problems). The amplitudes
U1 and U2 turn out to satisfy two coupled second-order ordinary
differential equations whose explicit expression we find next.

In the case of an elastic annulus loaded by radial tractions on
both circular boundaries, the pre-buckling stress field has the
well-known expression (e.g., see [19])

s
3

rr ¼ s2 Aþ
B

r2

� �
, s

3

yy ¼ s2 A�
B

r2

� �
,

with

A :¼
Z2�L
Z2�1

, B :¼
Z2ðL�1Þ

Z2�1
,

and

r :¼ r

R1
, Z :¼ R2

R1
, L :¼

s1

s2
:

It can be shown that the hoop stresses will vanish along the
circumference of the circle r¼ r,

r :¼
Z2ðL�1Þ

Z2�L

� �1=2

,

furthermore, by letting

Llow ¼
2Z2

1þZ2
, Lup ¼

1

2
ð1þZ2Þ,

we infer that if LlowoLoLup then the region 1oror experi-
ences azimuthal compression, while the remaining part of the
annulus, roroZ, is in tension. Thus, we expect the possible
bifurcations present in this problem to have a local character and
to be confined near the inner rim of the annulus. In this respect
the situation appears to be entirely analogous to that involving
the plane-stress problems discussed in [15,16] but, as we shall see
shortly, this is where the analogy stops.

After substituting the assumed form of solution (13) into the
original Eqs. (11) and (12), the resulting boundary-value problem
for the Uj’s (j¼1,2) can be non-dimensionalised by introducing

a :¼ s2

E
, bU1 :¼

U1

R2
, bU 2 :¼

U2

R2
:

Dropping the ‘‘hats’’ for notational convenience and denoting by a
dash differentiation with respect to r, we record below the final
form of the bifurcation equations that hold for 1oroZ

A11U001þA12U02þðA13þA16ÞU1þA14U01þA15U2 ¼ 0, ð14aÞ

A21U002þA22U01þðA23þA26ÞU2þA24U02þA25U1 ¼ 0, ð14bÞ

where

A11 :¼ K1, A21 :¼
1

2
K3þa Aþ

B

r2

� �� �
,

A12 :¼
n

2r K2�a A�
B

r2

� �� �
, A22 :¼ �

n

2r K2�a Aþ
B

r2

� �� �
,

A13 :¼ �
n2

2r2
K3þa A�

B

r2

� �� �
, A23 :¼ �

n2K1

r2
,

A14 :¼
K1

r
, A24 :¼

1

2r
K3þa Aþ

B

r2

� �� �
,

A15 :¼ �
n

2r2
K4þa A�

B

r2

� �� �
, A25 :¼ �

n

2r2
K4þa Aþ

B

r2

� �� �
,

A16 :¼ �
K1

r2
, A26 :¼ �

1

2r2
K3þa Aþ

B

r2

� �� �
,

and

K1 ¼
1�n

ð1þnÞð1�2nÞ , K2 ¼
1

ð1þnÞð1�2nÞ ,

K3 ¼
1

1þn
, K4 ¼

3�4n
ð1þnÞð1�2nÞ

, K5 ¼ nK2:

The (relatively small) parameter a that enters in these equations will
be regarded as fixed in the numerical simulations of the next section.

The rescaled boundary conditions can be written in condensed
form as

B
ðjÞ

11U01þB
ðjÞ

12U2þB
ðjÞ

13U1 ¼ 0, ð15aÞ

B
ðjÞ

21U02þB
ðjÞ

22U2þB
ðjÞ

23U1 ¼ 0, ðj¼ 1,2Þ, ð15bÞ

where the case j¼1 corresponds to the inner rim ðr¼ 1Þ, and j¼2
applies to the outer boundary ðr¼ ZÞ. The expressions of the
above coefficients take on different forms in the case of dead and
follower loads, but can be written compactly as

Bð1Þ11 ¼ K1, Bð1Þ21 ¼
1

2
½K3þaðAþBÞ�a �,
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Bð1Þ12 ¼ nK5, Bð1Þ22 ¼
1

2
½�K3þaðAþBÞ�a �,

Bð1Þ13 ¼ K5, Bð1Þ23 ¼�
n

2
½K3�aðAþBÞþa �,

and

Bð2Þ11 ¼ K1, Bð2Þ21 ¼
1

2
K3þa Aþ

B

Z2

� �
�al

� �
,

Bð2Þ12 ¼
nK5

Z , Bð2Þ22 ¼
1

2Z �K3þa Aþ
B

Z2

� �
�al

� �
,

Bð2Þ13 ¼
K5

Z , Bð2Þ23 ¼�
n

2Z K3�a Aþ
B

Z2

� �
þal

� �
,

with the caveat that the underlined terms do not appear in the
case of dead loading, whereas for follower loads all the a�terms
in the square brackets must be omitted (see also the remarks
made after Eq. (9)). We mention in passing that the equations set
up in this section are equivalent to the ones in [7]—cf. (27) and
(28) featuring in that reference.
3. Numerical results

Direct numerical simulations of the boundary-value problem
(14) and (15) were carried out in the usual fashion by first rewriting
the equations as a first-order four-by-four linear system, which was
then tackled with the help of the compound matrix method [15,16].
In using the separable variable solutions (13) it was tacitly assumed
that the Eqs. (11) were elliptic. However, owing to the presence of
variable coefficients, this statement need not be true everywhere in
the annulus and, in fact, the equations do lose ellipticity for
sufficiently large values of L. Also, since we are essentially con-
cerned with a traction boundary-value problem, another subtle
point is the verification of the Shapiro–Lopatinskij condition (SLC).
In order to understand the range of validity for the numerical
integration of the ordinary differential equations, we first examine
briefly under what conditions the loss of ellipticity becomes
possible, and later we comment on the SLC.

To this end let us observe that (11) can be arranged in the form

Lrr ½ur �þLry½uy� ¼ 0, ð16aÞ

Lyr½ur �þLyy½uy� ¼ 0, ð16bÞ

where the differential operators that appear above have the
following definitions,

Lrr � A11
@2

@r2
þA13

@2

@y2
þA14

@

@r
þA16,

Lry � A12
@2

@r@y
þA15

@

@y
,

Lyr � A22
@2

@r@y
þA25

@

@y
,

Lyy � A21
@2

@r2
þA23

@2

@y2
þA24

@

@r
þA26:

The principal part of the symbol associated with the system (16)
is defined by (see [21], for example)

Lp
ðx,inÞ :¼ �

A11ðxÞx
2
1þA13ðxÞx

2
2 A12ðxÞx1x2

A22ðxÞx1x2 A21ðxÞx
2
1þA23ðxÞx

2
2

24 35, ði¼
ffiffiffiffiffiffiffi
�1
p
Þ,

ð17Þ

where n� ðx1,x2ÞAR2 and we have indicated explicitly the
dependence of the coefficients Aij on the independent variable
x� ðr,yÞ. The type of the partial differential system (16) is
classified according to the behaviour of Lp, regarded as a quadratic
form in x1 and x2. In particular, ellipticity requires that

det Lp
ðx,inÞa0, ð8ÞnAR2,

which after setting t :¼ x2=x1, ðx1a0Þ, can be reduced to the
study of the signs of the roots for the bi-quadratic

Z3þZ2t2þZ1t4 ¼ 0, ð18Þ

where

Z1 :¼ A11A21,

Z2 :¼ A11A23þA13A21�A22A12,

Z3 :¼ A13A23:

This can be further transformed into a quadratic by making the
obvious substitution s¼ t2; if the equation in s has either negative
or complex conjugate roots, then the problem is elliptic. Loss of
ellipticity will occur when one of the roots passes through zero. Note
also that due to the axial symmetry of the coefficients Aij in (11), the
boundary curve separating the elliptic regions of the material from
the non-elliptic ones will have to be some circle r¼ const.

The discriminant of the quadratic in s is always positive as it
turns out to be equal to

1

2r2
ðlþ2mÞðs

3

rr�s
3

yyÞ

� �2

,

and the sum of the roots of the quadratic is proportional to
s
3

rrþs
3

yy�4m. Since 2=3oK3o1 and a is a relatively small para-
meter, it transpires that the sum of the roots is always negative.
Thus, the condition for the loss of ellipticity will be given by
Z3 ¼ 0 (since Z140, after some routine calculations), with the
result that

L¼
r2½Z2þðK3=aÞðZ2�1Þ�þZ2

r2þZ2
: ð19Þ

Regarded as a function of r, while all the other parameters are
being kept fixed, L¼LðrÞ is an increasing function—as can be
checked immediately by computing the derivative L0ðrÞ. This
means that loss of ellipticity will first occur for r¼ 1, i.e. at the
inner rim. In conclusion, the curve that gives the loss of ellipticity
in the L�Z plane, say C, has a simple analytical expression,

ðCÞ : Lep ¼
2Z2

Z2þ1
þ

K3

a
Z2�1

Z2þ1

� �
: ð20Þ

If 0oLoLep then the system (16) is elliptic and this is precisely
the regime of interest here; note that the first term on the right-
hand side of (20) is just Llow defined in the previous section.

It can be seen that the principal part of the symbol associated
with the more complicated Eq. (6) does not coincide with (17)
because the inhomogeneous character of the pre-bifurcation state
of stress. This makes the analysis of that new equation even more
relevant to understanding the nature of the simplifications that
led to (5) and the potential loss of ellipticity. While for a
homogeneous basic state both (5) and (6) are justly expected to
produce very similar outcomes, it does not appear sensible to
maintain these expectations in the case dealt with here.

The first set of numerical results appears recorded in Fig. 3 and
applies to the case of follower loads. We show the neutral stability
curves corresponding to (14) and (15) for an increasing sequence of
mode numbers ranging between 2 and 1000, when a¼ 0:05 and
n¼ 0:33. Changing these parameters does alter the quantitative

features of the results, but the overall qualitative picture remains
the same. Superimposed on these plots, the curve C is shown as the
thick dashed line. It can be seen that the mode number n¼2 leads to
the lowest eigenvalue for annular widths of up to ZC5:0. Beyond
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that critical value, as n increases, the neutral stability curves move
progressively into the elliptic region and seem to converge towards
a limiting curve, which hereafter will be identified as C1. While not
entirely obvious at this stage, the critical values of L associated with
this curve involve a form of material rather than kinematic instabil-
ity. In the next section we are going to show how an analytical
approximation of C1 can be obtained by invoking some basic
singular-perturbation arguments. In conclusion, when follower
loads are considered the critical mode numbers are either n¼2 or
1; the latter is essentially a material instability and is associated
with the failure of the SLC—hence, the curve C1 provides the
boundary in the L�Z plane across which this condition is violated.

When dead (or rigid) loading is considered we have included a
typical scenario in Fig. 4, which is laid out in the same fashion as
the previous Figure. Note that the loss-of-ellipticity boundary C
appears now as the envelope of the neutral stability curves as
n-1. For smallish values of Z (up to approximately 2.0), all
response curves are inside the elliptic region and the lowest
eigenvalue is rendered by n¼2, just as before. However, increas-
ing the width of the annular domain, these curves are then found
above the curve C, which this time is attained in the limit of
(infinitely) large mode numbers (i.e. CCC1, at least for largish
Z’s). We recall here the well-known fact that the loss of ellipticity
is a property of the differential equations themselves and it is
independent of the type of boundary conditions employed. So in
both Figs. 3 and 4 the dashed line is the same, what changes is the
position and the topology of the neutral stability curves. From this
perspective the results obtained are to be expected, although the
sharp transition between the two instability modes in Fig. 3
cannot be anticipated right from the outset.

For the sake of completeness in Fig. 5 we illustrate the
eigenmodes for n-1 in the case of follower loads. It is imme-
diately clear that as n grows, i.e. the spatial oscillations in the
azimuthal direction increase, the amplitude functions U1 and U2

defined in (13) get closer and closer to the inner rim of the
annular domain. We mention in passing that these functions also
display localisation if n is kept fixed and Z-1.
4. The limit nb1

While in principle it would be possible to carry out an asympto-
tic analysis of (14) subject to either follower or dead loads, it is only
the former case that is of some theoretical interest, and which,
therefore, deserves a closer scrutiny. For the sake of completeness,
we shall also make a few remarks regarding the asymptotic
structure of the problem for dead loads. As it will become clear
from our asymptotic calculations, the leading-order analysis pre-
sented here is in fact directly relevant to establishing the limits of
validity for the SLC—although in keeping with the informal style of
the paper we shall not stress the technical side of that aspect.
Section 5 of Ref. [22] contains some pertinent comments about
similar situations and the ramifications to non-linear bifurcation
problems.

To begin, in the limit nb1 we introduce the stretched varia-
ble X ¼Oð1Þ such that r¼ 1þXn�1, and look for solutions of (14)
with

U ¼U0ðXÞþU1ðXÞ
1

n
þ � � � , ð21aÞ

L¼L0þ
L1

n
þ � � � , ð21bÞ

where

U :¼
U1

U2

" #
, U jðXÞ :¼

U1jðXÞ

U2jðXÞ

" #
ðj¼ 0,1, . . .Þ:

The quantities that appear on the right-hand sides of (21) can be
found systematically, although for our immediate purposes a
leading-order analysis will suffice.

Routine algebraic manipulations indicate that if Z¼Oð1Þ the
boundary-layer behaviour is described by a hierarchy of equa-
tions governed by the differential operator

LBL �Mð2Þ
d2

dX2
þMð1Þ

d

dX
þMð0Þ, ð22Þ
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Fig. 5. Normalised eigenmodes of (14a) for follower loading when a¼ 0:05, n¼ 0:33, and Z¼ 5:0. Both U1 and U2 undergo localisation as the mode number n is

progressively increased; here, n¼50, 100, 150, 200. The independent variable 1:0rrr5:0 has been suitably adjusted to a smaller range in order to enhance the clarity of

the localisation process.

C.D. Coman, X. Liu / International Journal of Non-Linear Mechanics 47 (2012) 135–143 141
where the matrices MðjÞAM2�2ðRÞ have the components recorded
below

Mð2Þ11 :¼ K1, Mð1Þ11 :¼ 0,

Mð2Þ12 :¼ 0, Mð1Þ12 :¼
a

2ðZ2�1Þ
½L0ðZ2þ1Þ�2Z2�þ

K2

2
,

Mð2Þ21 :¼ 0, Mð1Þ21 :¼ �
1

2
ðK2�aL0Þ,

Mð2Þ22 :¼
1

2
ðK3þaL0Þ, Mð1Þ22 :¼ 0,

Mð0Þ11 :¼
a

2ðZ2�1Þ
½L0ðZ2þ1Þ�2Z2��

K3

2
,

Mð0Þ12 :¼ 0,

Mð0Þ21 :¼ 0,

Mð0Þ22 :¼ �K1:

The leading-order terms in (21) satisfy

LBL½U0� ¼ 0; ð23Þ

when dead loads are considered, this equation must be solved
subject to the homogeneous boundary conditions

Hð1Þ
dU0

dX
þHð0ÞU0 ¼ 0 at X ¼ 0, ð24Þ

where

Hð1Þ :¼
K1 0

0 aL0þK3

" #
and Hð0Þ :¼

0 K5

aL0�K3 0

" #
:

These constraints apply to follower loads as well, with the only
modification that the parameter a in Hð0Þ and Hð1Þ must be set
equal to zero. In both cases a second set of constraints must be
enforced, as motivated by the numerical experiments of Section 3,

djU0

dXj
-0 as X-1, ðj¼ 0,1Þ: ð25Þ

Looking for a solution of (23) in the form U0ðXÞ ¼ vexpðzXÞ, for
some zAC and a column vector vAR2, it is found that the former
must satisfy the characteristic equation

det½z2Mð2Þ þzMð1Þ þMð0Þ� ¼ 0,
with the roots

z1,2 ¼ 71 and z3,4 ¼ 7bðL0,ZÞ, ð26Þ

where

bðL0,ZÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K3�2G

K3þaL0

s
, G :¼

a
2ðZ2�1Þ

½L0ðZ2þ1Þ�2Z2�: ð27Þ

Guided by the fact that the requirement (25) must hold in the
far-field, the boundary-layer solution must be a linear combina-
tion of two exponentials involving the negative values from (26).
Substituting this function in the two boundary conditions (24)
results in the determinantal equation that supplies L0. In the case
of follower loads it is found that

H3L3
0þH2L2

0þH1L0þH0 ¼ 0, ð28Þ

where

H0 ¼�
H04Z4þH02Z2þH00

ðZ2�1Þ2ðnþ1Þ3
, H1 ¼�

aðH14Z4þH12Z2þH10Þ

ðZ2�1Þ2ðnþ1Þ2
,

H2 ¼
a2ðH24Z4þH22Z2þH20Þ

ðZ2�1Þ2ðnþ1Þ
, H3 ¼�

a3ðH34Z4þH32Z2þH30Þ

ðZ2�1Þ2
,

and

H04 :¼ 4a2ð1�n2Þ
2
�2að1þnÞ�1, H02 :¼ 2½aðnþ1Þþ1�,

H14 :¼ 4a2ð1�n2Þ
2
�4aðn3þ1Þþ1�2n,

H12 :¼ 4½að�n3þ2n2þ2n�1Þþn�,

H24 :¼ 4að1�nÞ�2an2ð1�3nÞ�1,

H22 :¼ 2½an2ðn�3Þþ2nð1�nÞþ2að1�nÞ�1�,

H34 :¼ 2n2�2nþ1, H32 :¼ 2ðn�1Þ2,

H00 :¼ �1, H10 :¼ �ð1þ2nÞ, H20 :¼ 4n�1, H30 :¼ 1�2n:

The results predicted by (28) are compared in Fig. 6 with the direct
numerical simulations of (14) and (15) for n¼1000 (which could
serve as a good approximation for C1Þ. For the sake of brevity we
show only a representative sample of calculations corresponding to
n¼ 0:33 and a¼ 0:05=0:005, because no qualitative differences are
observed when changing these parameters. It is evident that the
agreement is excellent and the leading-order ansatz (21) does
capture all the features of the numerical solution.

If we try to approach the dead-loading problem with the same
type of ansatz, then it quickly transpires that such a strategy
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would eventually be doomed for according to (27) as ðL0,ZÞ gets
close to the curve C defined in (20), bðL0,ZÞ-0. Hence there is
now only one solution of (23) that falls off exponentially for
X-1. In this case the determinantal equation loses its relevance
since it was obtained under the assumption that bðL0,ZÞ ¼Oð1Þ.

Fig. 4 shows clearly that the neutral stability curves tend to
accumulate on C (the dashed curve) in the limit nb1. Interest-
ingly enough, this feature is anticipated by the old expansion (21)
although, as we have just remarked above, this leads to some
spurious results as well. Following the same strategy that led to
(28), its counterpart in the dead loading case is

ðK3�2GÞðE2L2
0þE1L0þE0Þ ¼ 0, ð29Þ

with

E2 :¼
4a2ð1�nÞ2

Z2�1
þa2ðZ2þ1Þ,

E1 :¼ �2aðaZ2�K3Þ�
8a2Z2ð1�nÞ2

Z2�1
,

E0 :¼
4a2Z4ð1�nÞ2

Z2�1
�K2

3 ðZ
2�1Þ�2K3aZ2:

Setting to zero the first bracket we get precisely the equation for
the curve that marks the loss of ellipticity boundary in the L�Z
plane. Alternatively, one can solve the quadratic in the second
bracket that turns out to have a unique root L040 slightly below
that predicted by the previous equation. This apparent contra-
diction is a consequence of using the determinantal Eq. (29)
beyond its intended range of validity. We have checked numeri-
cally for mode numbers up to n¼ 5� 104 that confirmed the
accuracy of the scenario recorded in Fig. 4 (that is, the response
curves approach the dashed curve from above).

To unravel the reason of the discrepancy generated by (29) we
need to go back to the differential Eq. (14). When K3�2G¼ 0 it is
easily checked that A13ðr¼ 1Þ ¼ 0 and (14) admits an Oðn�2=3Þ

boundary layer governed by a rescaled Airy function, with the
eigenvalue expanding now in powers of n�2=3. The Oðn�1Þ-layer
still survives and it is possible to carry out a relatively standard
analysis involving the interaction of the two layers, very much in
the spirit of [15,16]. Since the non-elliptic regime is outwith the
range of physical interest the details of that analysis are left out.
The boundary-value problem (14) and (15) contains a couple of
additional parameters besides the mode number. Several asymptotic
regimes can be investigated in this respect, for instance 0oa51 or
Zb1 or assuming that the relative order of magnitude of these
parameters are related to each other. However, none of these appears
to be relevant to our immediate purposes, so we do not pursue
matters further here.
5. Concluding remarks

We have considered the in-plane bifurcations of the classical
plane-strain Lamé solutions for a St. Venant–Kirchhoff elastic solid.
One of the main aims of this work has been to explore the
applicability of the asymptotic strategy proposed in [11,14] to the
case when the bifurcations are associated with a stressed rather
than a free surface. Within the context of the simplified incremental
deformation theory adopted here—SIDT (e.g., [1,5,6]), it was shown
that this is indeed possible, but the outcome is somewhat different
from that of the earlier investigations. In the scenario for the pure
bending of a neo-Hookean rubber block discussed in [11] the
transition between small and large mode numbers was gradual
and depended intimately on the ratio of thickness to length. More
exactly, the larger the width of the block, the greater the number of
ripples on the compressed side. In the limit of an infinitely large
block the critical principal stretch became equal to that found in the
compression of a half-plane [3]. The problem was strongly elliptic
and the instabilities found had a kinematic character. Here, perhaps
because of the fact that both boundaries of the annulus are stressed,
the neutrally stable configuration has less freedom in accommodat-
ing the full spectrum of mode numbers. Our results indicated that in
the case of follower loads, for a small range of annulus widths,
ZC122 when a¼ 0:05 and n¼ 0:33 ðZ� R2=R1Þ, the predominant
long-wave deformation mode corresponds to the inner rim becom-
ing an ellipse. For larger widths a short-wavelength (material)
instability is observed whereby the central hole of the cylinder
experiences fine warping; this wrinkling-type instability is directly
linked to the failure of the Shapiro–Lopatinskij condition. In the case
of dead loading loss of ellipticity dominates the global picture,
although there is still a narrow window of annular widths for which
the long-wave mode (n¼2) persists. (These findings were robust
when changing the Poisson’s ratio 0ono0:5 and the non-dimen-
sional parameter a� s2=EÞ.
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While from a practical point of view the immediate relevance
of the specific type of loading adopted in this study is somewhat
limited, the results reported here contribute towards a further
rational understanding of the bifurcation phenomena experienced
by elastic solids subjected to tensile loads. Our work also shows
that one must tread with caution when dealing with incremental
bifurcation equations involving non-homogeneous basic states
because loss of ellipticity can severely restrict the scope of
mathematical investigations. Last but not least, the work reported
here reinforces the relevance of singular perturbation methods
not only to thin-walled configurations, but also to incrementally
linear elastic solids.

An immediate extension of this work vis-á-vis the develop-
ments of Section 3 could be directed towards the role of the
boundary loading imposed on the annulus. For instance, the stress
concentration phenomenon persists if the domain undergoes
azimuthal shearing along the inner boundary, with tensile trac-
tions still being imposed on the outer perimeter. By analogy with
the plane-stress calculations carried out in [16] we expect the
asymptotic structure of the problem to be different due to the
obvious rotational symmetry inherent in that problem.

Finally, it is also of interest to understand whether the phenom-
ena observed in this paper are an immediate consequence of the
approximate nature of the SIDT; in this respect a comparison of the
present analysis with a more rigorous one based on Ogden’s
incremental elasticity formulation would be desirable. We hope to
return to this interesting issue in a forthcoming publication.
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