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A B S T R A C T

This paper proposes an analytical stochastic spectral dynamic stiffness method (SSDSM) for
free and forced vibration analysis of plate built-up structures subject to uncertain viscoelastic
boundary or connection conditions (BCs or CCs). First, a recently developed spectral dynamic
stiffness (SDS) theory for broadband vibration analysis of plate built-up structure with arbitrary
spatially-varying viscoelastic BCs or CCs is extended to model deterministic viscoelastic BCs or
CCs. Then, uncertain viscoelastic BCs or CCs are described by random fields in stiffness and
damping, which are discretized by Karhunen–Loève expansion. By using the modified Fourier
series as the shape functions for the BCs or CCs, the analytical SSDS matrices of the uncertain
viscoelastic BCs or CCs are developed. Then, those SSDS matrices are superposed directly
to the SDS matrix of the plate built-up structure. For the solution technique, the extended
Wittrick–Williams algorithm is used for stochastic eigenvalue analysis, whereas two different
methods are proposed for stochastic response analysis. Representative examples are chosen
to validate and demonstrate the superiorities of the proposed method. The proposed method
retains all the advantages of the SDS method which is highly efficient and accurate within the
whole frequency range. Meanwhile, the proposed method also provides a feasible technique for
stochastic broadband dynamic analysis of plate-like structures subject to uncertain boundary or
connection conditions.

. Introduction

Plate-like structures with arbitrary spatially-varying viscoelastic supports (Fig. 1(a)) and viscoelastic coupling constraints
Fig. 1(b)) are widely encountered in engineering. Their application scopes include but not limited to bridges, automobiles, airplanes,
hips, buildings, high-speed trains, machines and other structures [1,2]. The design of boundary and connection conditions for plate
uilt-up structures usually involves both mechanical fastening and adhesive bonded fastening types [3]. There are two main reasons
hat the mechanical parameters for boundary and connection conditions can be described by random fields. On the one hand, due to
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Fig. 1. Two general types of spatially-varying boundary and connection conditions covered by the theory of this paper: (a) Viscoelastic supports with non-uniform
translational and rotational stiffnesses and damping with uncertainties (b) Viscoelastic coupling constraints with non-uniform translational and rotational coupling
stiffnesses and damping with uncertainties.

the level of craftsmanship in the assembly and manufacturing process, not all boundary and connection conditions for structures can
meet the design requirements of the fastening standards, and the mechanical properties could be non-uniformed and uncertain. On
the other hand, fatigue due to cyclic loading and material aging can also cause loosening of boundary and connection conditions. For
vibration problems, boundary and connection conditions in engineering can be generally modeled as linear models characterized
by spatially distributed stiffness and damping models. Therefore, the stiffness and damping models can be regarded as random
fields in practical engineering problems. The boundary and connection conditions with uncertainties of the plate structures may
not only decrease the constraint strength and local stiffness but also increase interface abrasion and the probability of structural
fatigue failures. More importantly, the boundary or connection conditions play a significant role in the dynamic behaviors of plate
built-up structures. Therefore, those uncertainties must be considered in the dynamic analysis. The safety factor method is applied
in the analysis and designs to avoid this situation, but it often leads to either uneconomical or unsafe designs. In many high-end
equipment manufacturing industries, it is increasingly necessary to consider the uncertainties of boundary and connection conditions
in modeling to ensure the high fidelity of design [4–9].

It can be found that the vast majority of existing research on the uncertain boundary or connection conditions were modeled
under the framework of the stochastic finite element method (SFEM) [10–18]. However, as the wavelength shrinks over the higher
frequency range, finer mesh size is required to accurately represent the dynamic behavior, which increases the computational effort
significantly. In addition, once the complex combination of multi-unit plates is involved, the low computational efficiency caused
by the fine grid division seems to be a stumbling block for this method. Next, we review related work on plate dynamics subject to
general boundary conditions (BCs) or connection conditions (CCs) with uncertainties.

A wide range of studies on the dynamic characteristics of plates with elastic supports have been reported (see Fig. 1(a)) [19–
27], but there are few publications on elastic supports with uncertainties. Silva et al. [13] used the SFEM to establish the plate
structure model and approximated the uncertainties of the boundaries by the Bayesian approximation error method, then proposed
a damage identification method for plate structure members. Muhanna and Shahi [28] developed the interval finite element method
by modeling all uncertain parameters of viscoelastic supports as intervals, which can be extended to the stochastic analysis of
plate structures. Avalos et al. [29] extracted the stiffness matrix in the finite element model of the curved beam for the stochastic
modeling considering the uncertainties of the boundary conditions. Ritto et al. [30] used the finite element method to discretize
the Timoshenko beam model and studied the uncertainties of the elastic torsional stiffness with the parametric and non-parametric
probability methods. However, most of the current works are only applicable to plates with uniform boundary conditions.

The stochastic dynamic analysis of plate assemblies with viscoelastic coupling constraints (see Fig. 1(b)) is even more challenging,
and has received rather sporadic attention [3,31–35]. Abolfathi et al. [31] studied the influence of the uncertainties of the support
stiffness on the vibration transfer function of the plate built-up structure, but it was limited to low- to mid-frequency ranges.
Ibrahim and Pettit [3] combined fuzzy set theory with the finite element method to investigate the effect of uncertainties and
relaxation of joints in the dynamic behavior of structural systems. Mignolet and Soize [33] used the Craig–Bampton substructure
method to establish an average model with boundary conditions/coupling flexibility and used non-parametric modeling methods to
model the uncertainties lying in the boundary conditions and connection conditions, but these methods seem to be restricted to the
low-frequency range.

In contrast to the SFEM, the analytical method will not be affected by meshing and can provide very accurate dynamic analysis.
The literature [19,20,23–25] gives a series of analytical methods for the free vibration of structures with deterministic boundary
conditions and connection conditions, but they are usually limited to spatially constant. In practical engineering problems, arbitrary
boundary and connection conditions with different spatially-varying mechanical parameters may be encountered. In recent years,
the analytical methods of deterministic spatially non-uniform boundary conditions and connection conditions have also received
a small amount of attention [36–39]. Rayleigh–Ritz method has been commonly used to describe the elastic boundary conditions
in the equation of motion of structures, where different types of allowable functions are chosen, such as modified Fourier series,
2
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Chebyshev polynomials, orthogonal polynomials through Gram–Schmidt process. However, there has been quite sporadic attention
on the analytical methods for the spatially non-uniform boundary conditions and connection conditions with uncertainties [40]. Li
et al. [40] represented the partial bolt loosening phenomenon using the artificial spring–damper technique and Jones-Nelson theory.
However, it is not clear whether the method can be applied to built-up structures, and the computational efficiency also needs to
be proved urgently. It is a difficult task to achieve highly efficient and highly accurate stochastic dynamic analysis of more complex
plate assemblies with spatially non-uniform uncertain boundary conditions and connection conditions using existing methods.

A powerful alternative tool has shown great potential for stochastic dynamic analysis called the stochastic dynamic stiffness
ethod [41,42]. The method is often referred to as an exact method as it is based on the exact general solution of the governing
ifferential equations [43–55]. The method provides the results with higher model accuracy especially within mid-to high-frequency
anges when compared to the stochastic finite element or other approximate methods. The stochastic dynamic stiffness models not
nly have the merits of the dynamic stiffness method that is accurate for the whole frequency ranges by using very few DOFs
ut also incorporate the parameter uncertainties in the model to perform stochastic analysis. Based on these stochastic dynamic
tiffness models, broadband dynamic analyses have been carried out for both beam structures [41,56,57] and membrane built-
p structures [42]. However, when developing two-dimensional (2D) DS elements like plates, the dynamic stiffness method was
estricted to Levy-type rectangular plates with one pair of opposite edges simply supported. Thus, it allowed only sinusoidal
eformation in one direction (e.g., see [58–63]) which leads to two inevitable consequences. On one hand, it is an obstacle in
pplying more general boundary conditions other than the Levy-type boundary conditions. On the other hand, the plate elements
an only be assembled in one-directional and there was no clear possibility of assembling elements in a more general manner.
hese are naturally serious restrictions because engineering structures are modeled as plate and other elemental assemblies in a
uite general manner.

Against the above background, this paper proposes a novel method called the stochastic spectral dynamic stiffness method
SSDSM) for free and forced vibration analysis of plate-like structures subject to arbitrary uncertain viscoelastic boundary or
onnection conditions (BCs or CCs) as illustrated in Fig. 1. First, by considering the effect of boundary or connection damping,
he spectral dynamic stiffness (SDS) matrices for any arbitrarily distributed deterministic viscoelastic supports or viscoelastic
oupling constraints are formulated concisely based on SDS theory [42,64–67]. Then, both the stiffness and damping of viscoelastic
upports or viscoelastic coupling constraints are characterized by a set of random fields and decomposed by Karhunen–Loève (KL)
xpansion [68]. The modified Fourier series is then used as the shape function to derive the analytical stochastic SDS (SSDS)
ormulations for uncertain viscoelastic BCs or CCs. The developed SSDS matrices are superposed directly onto the corresponding
omponents of the SDS matrix of the plate-like structure. Then the final matrix with uncertain viscoelastic BCs or CCs which includes
amping effect can be obtained. For the solution techniques, the stochastic eigenvalue analysis and dynamic response analysis of
late assembly can be performed for a wide frequency range by using the extended Wittrick–Williams (WW) algorithm and matrix
nversion method, respectively. In particular for stochastic dynamic response analysis, an improved technique based on domain
ecomposition is used to facilitate the response analysis subjected to any form of excitations such as uniform loads and non-uniform
oads. The numerical examples demonstrate the computational efficiency and accuracy within the whole frequency of the proposed
ethod. This work presents major contributions to derive analytical SSDS formulations for stochastic dynamic analysis of the plate-

ike structures with uncertain BCs or CCs by combining the merits of both the KL spectral expansion and SDSM mentioned above.
he proposed method also provides a feasible technique for stochastic broadband dynamic analysis of plate-like structures subject
o uncertain BCs or CCs.

This paper is organized as follows. Section 2 briefly introduces the general framework of deterministic spectral dynamic stiffness
ormulation for a plate element as well as the spectral dynamic stiffness formulation for spatially-varying viscoelastic supports
nd viscoelastic coupling constraints. Section 3 presents the general theory of the stochastic spectral dynamic stiffness based on KL
xpansion of random fields, then the SSDS matrices of the uncertain viscoelastic supports and the viscoelastic coupling constraints are
eveloped. In Section 4, the eigenvalue analysis and dynamic response analysis method based on the SSDS model for the uncertain
Cs or CCs of the plate structure is proposed respectively. In Section 5, the proposed theory is validated by and compared with
umerical results through Monte-Carlo simulation. Finally, significant conclusions are drawn in Section 6.

. Deterministic spectral dynamic stiffness formulation for plates

The main purpose of this paper is to extend the recently developed SDSM [64–67] to any arbitrary non-uniform distributed BCs
r CCs with uncertainties. Therefore, the basic framework of SDSM is briefly summarized below to provide the necessary background
or the stochastic SDSM for uncertain spatially-varying viscoelastic supports and viscoelastic coupling constraints.

.1. Review of deterministic spectral dynamic stiffness (SDS) formulation for a plate element

A rectangular Kirchhoff plate of dimension 2𝑎 × 2𝑏 undergoing transverse free vibration is shown in Fig. 2. The transverse
amplitude 𝑊 (𝑥, 𝑦) is described by the frequency-dependent governing differential equation (GDE) as

𝜕4𝑊
𝜕𝑥4

+ 2 𝜕4𝑊
𝜕𝑥2𝜕𝑦2

+ 𝜕4𝑊
𝜕𝑦4

− 𝜅𝑊 = 0 (1)

where

𝜅 =
𝜌ℎ𝜔2

, 𝐷 = 𝐸ℎ3
(

2
) (2)
3

𝐷 12 1 − 𝜈
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Fig. 2. Coordinate system and notations for displacement and forces for a thin plate.

and where 𝜔 is the circular frequency, hence 𝜅 is inertia related. 𝐷 is the bending rigidity of the plate, 𝐸 is the Young’s modulus of
material, 𝜈 is the Poisson ratio, ℎ and 𝜌 are respectively the thickness and mass density of the plate. The natural boundary conditions
on the four plate edges can be derived through Hamilton’s principle as follows the sign conventions illustrated in Fig. 2

𝜙𝑥 = − 𝜕𝑊
𝜕𝑥 ; 𝜙𝑦 = − 𝜕𝑊

𝜕𝑦

𝑀𝑥 = −𝐷
(

𝜕2𝑊
𝜕𝑥2

+ 𝜈 𝜕2𝑊
𝜕𝑦2

)

; 𝑀𝑦 = −𝐷
(

𝜕2𝑊
𝜕𝑦2

+ 𝜈 𝜕2𝑊
𝜕𝑥2

)

𝑉𝑥 = −𝐷
(

𝜕3𝑊
𝜕𝑥3

+ 𝛤 ∗ 𝜕3𝑊
𝜕𝑥𝜕𝑦2

)

;𝑉𝑦 = −𝐷
(

𝜕3𝑊
𝜕𝑦3

+ 𝛤 ∗ 𝜕3𝑊
𝜕𝑦𝜕𝑥2

)

(3)

where 𝛤 ∗ = 2 − 𝜈, 𝜙𝑥 and 𝜙𝑦 are the rotation of the transverse normals on the boundary about 𝑦 and 𝑥 axes respectively, 𝑀𝑥, 𝑀𝑦
are bending moments and 𝑉𝑥, 𝑉𝑦 are effective shear forces on the corresponding boundaries.

By using the spectral dynamic stiffness method (SDSM) [66], the general solution of the GDE of Eq. (1) for a plate element
in the frequency domain can be obtained [64] based on the modified Fourier series [69]. Meanwhile, the modified Fourier series
(in Appendix A) can also be used to describe any arbitrary displacement or force boundary conditions along the edges as given in
Eq. (3) (line node r is used to represent 𝑥 or 𝑦 in local coordinates) of the plate. Then the SDS matrix for the plate element can
be analytically formulated by substituting the above general solution into the general boundary conditions (BC) by some algebraic
manipulation. In general, the analytical SDS formulation of a plate element can be developed which can be assembled to model
plate assembly subject to arbitrary BCs or CCs [64,65,67]

𝒇 = 𝑲𝒅 , (4)

where 𝑲 is the SDS matrix of the overall plate assembly, which relates the modified Fourier coefficient vector of the boundary
forces 𝒇 to that of the boundary displacements 𝒅 on all of the boundaries (line nodes) of the plate assembly. 𝒇 represents either 𝑉
(𝑉𝑥 or 𝑉𝑦) or 𝑀 (𝑀𝑥𝑥 or 𝑀𝑦𝑦) of Eq. (3) whereas 𝒅 denotes either 𝑊 or 𝜙 (𝜙𝑥 or 𝜙𝑦) of Eq. (3) on the corresponding boundaries.
By using the SDSM, any arbitrary spatially-varying viscoelastic supports and viscoelastic coupling constraints along any line nodes
(as shown in Fig. 1) can be successfully formulated following a similar framework of the SDSM.

2.2. Deterministic SDS formulation for arbitrarily spatially-varying viscoelastic boundary conditions (BCs) and connection conditions (CCs)

Next, it is necessary to revisit the spectral dynamic stiffness formulation for a plate with spatially-varying boundary conditions
developed by the corresponding author [66]. This paper considers both spatially-varying damping and stiffness of the BCs or CCs
whereas the previous work [66] was only for undamped supports or connections. In particular a SDS theory is developed for arbitrary
spatially-varying viscoelastic supports (BCs) along any of the line nodes (Section 2.2.1) as well as any arbitrary spatially-varying
viscoelastic coupling constraints (CCs) applied between any two line nodes (Section 2.2.2).

2.2.1. Development of the SDS formulation for viscoelastic supports
The SDS theory for viscoelastic supports (Fig. 1(a)) is developed with the Kirchhoff plate theory [66]. There are generally

two types of generalized displacements along each plate line node, namely, the translational displacement 𝑊 (r) and the bending
rotation 𝜙(r); and the corresponding two generalized forces are the effective transverse shear force 𝑉 (r) and bending moment 𝑀(r)
respectively. For notational convenience, r is used in this paper to represent 𝑥 or 𝑦 which appears in Eq. (3). The viscoelastic
supports applied on a certain line node (boundary) of the plate assembly will produce additional dynamic stiffness contributions
during vibration. The additional generalized boundary forces induced by the viscoelastic supports can be written in the following
form

𝑉 𝑎(r) = [𝐾w(r) + i𝐶w(r)]𝑊 (r) , (5a)

𝑀𝑎(r) = [𝐾𝜙(r) + i𝐶𝜙(r)]𝜙(r) , (5b)
4
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Here, 𝐾w(r) and 𝐾𝜙(r) are the translational and rotational stiffnesses of the viscoelastic supports along the line node r ∈ [−𝐿,𝐿]
see Fig. 1(a)), whereas 𝐶w(r) and 𝐶𝜙(r) are the translational and rotational damping of the viscoelastic supports along the line node
see Fig. 1(a)). All functions 𝐾w(r), 𝐾𝜙(r), 𝐶w(r) and 𝐶𝜙(r) can be arbitrarily specified, which can of course, be either uniform or
on-uniform distributed. For notational convenience, the four equations in Eq. (5) can be expressed in a unified form as

𝑓 𝑎
𝑖 (r) = (𝜇𝐾𝐺𝐾 (r) + i𝜇𝐶𝐺𝐶 (r))𝑑𝑖(r) , r ∈ [−𝐿,𝐿] , (6)

here the subscript 𝑖 denotes the 𝑖th line DOF on which the spatially-varying viscoelastic supports is applied. 𝜇𝐾𝐺𝐾 (r) + i𝜇𝐶𝐺𝐶 (r)
represents the four spatially-varying functions in Eq. (5) respectively, namely, 𝐾w(r), 𝐾𝜙(r), 𝐶w(r) and 𝐶𝜙(r) which are applied onto
he 𝑖th line DOF. 𝐺𝐾 (r) and 𝐺𝐶 (r) are stiffness and damping dimensionless spatial functions and 𝜇 is the stiffness or damping constant. Note

that 𝒇 𝑖 and 𝒅𝑖 in Eq. (4) are related by the corresponding component 𝑲 𝑖𝑖 of the SDS matrix 𝑲 given by Eq. (4) without considering
viscoelastic supports or viscoelastic coupling constraints. Therefore, 𝑲 𝑖𝑖 provides a linear mapping among the generalized force
and displacement corresponding to all frequency–wavenumber dependent DOF of the 𝑖th line DOF. Next we need to formulate the
additional SDS matrices 𝑲𝑎

𝑖𝑖 of the viscoelastic supports which eventually will be superposed to 𝑲 𝑖𝑖. 𝑲𝑎
𝑖𝑖 has form as

𝑲𝑎
𝑖𝑖 = 𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 . (7)

based on the modified Fourier series [66], the dimensionless SDS matrices 𝑮𝐾 and 𝑮𝐶 are symmetric and the analytical expressions
for those matrices corresponding to several typical spatial functions are given in [66].

The SDS matrix 𝑲𝑎
𝑖𝑖 developed above for the viscoelastic supports along the 𝑖th line DOF is eventually superposed to the SDS

matrix component 𝑲 𝑖𝑖 to form the 𝑖𝑖 component of the final SDS matrix of the plate assembly 𝑲𝑓𝑖𝑛𝑎𝑙 considering those supports and
attachments to arrive at

𝑲𝑓𝑖𝑛𝑎𝑙
𝑖𝑖 = 𝑲 𝑖𝑖 + 𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 . (8)

2.2.2. Development of the SDS formulation for viscoelastic coupling constraints
In this section, we mainly discuss the 𝑖th and the 𝑗th line DOFs (along either boundaries or inter-element edges) of a plate

assembly which are viscoelastically coupling constraints with non-uniform distributed coupling stiffness and damping 𝐾(r) + i𝐶(r).
𝐾(r) + i𝐶(r) stands for either translational or rotational coupling stiffness and damping, see Fig. 1(b). The coupling equation can be
written in the following matrix form

[

𝑓 𝑎
𝑖 (r)

𝑓 𝑎
𝑗 (r)

]

= [𝐾(r) + i𝐶(r)]
[

1 −1
−1 1

] [

𝑑𝑖(r)
𝑑𝑗 (r)

]

, r ∈ [−𝐿,𝐿] . (9)

where 𝑑𝑖(r) and 𝑑𝑗 (r) are the generalized displacements for the 𝑖th and 𝑗th line DOFs respectively; 𝑓 𝑎
𝑖 (r) and 𝑓 𝑎

𝑗 (r) are the additional
coupling forces acting on the corresponding line DOFs due to the coupling constraint 𝐾(r) + i𝐶(r). Similar to Eq. (7), the above
oupling constraint stiffness function 𝐾(r) and damping function 𝐶(r) can also be written in the form

𝐾(r) = 𝜇𝐾𝐺𝐾 (r) , 𝐶(r) = 𝜇𝐶𝐺𝐶 (r) , (10)

here 𝜇𝐾 and 𝜇𝐶 is the dynamic stiffness constant and damping constant, 𝐺𝐾 (r) and 𝐺𝐶 (r) are again, the corresponding dimensionless
patial function. Therefore, the first few steps of the SDS formulation for a non-uniform coupling constraint follow the same
rocedure for the previous viscoelastic supports. The main difference that will show up afterwards is that the forces of the two
lastically coupled line DOFs are related to the two displacements as illustrated in Eq. (9). Consequently, the SDS matrix of a
on-uniform viscoelastic coupling constraints for the elastically coupled two edges can be written in the form

[

𝒇 𝑎
𝑖

𝒇 𝑎
𝑗

]

=
{

𝜇𝐾

[

𝑮𝐾 −𝑮𝐾
−𝑮𝐾 𝑮𝐾

]

+ i𝜇𝐶

[

𝑮𝐶 −𝑮𝐶
−𝑮𝐶 𝑮𝐶

]}[

𝒅𝑖
𝒅𝑗

]

, (11)

where matrix 𝑮𝐾 and 𝑮𝐶 are the same as that of Eq. (7) but corresponds to the viscoelastic coupling stiffness and damping
spatial function 𝐺𝐾 (r) and 𝐺𝐶 (r). Next, the sub-SDS matrices 𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 in Eq. (11) are superposed directly to the frequency–
wavenumber dependent DOFs (rows and columns) corresponding to the 𝑖th and 𝑗th line DOFs of the SDS matrix for the plate
assembly resulting in

𝑲𝑓𝑖𝑛𝑎𝑙
𝑖𝑖 = 𝑲 𝑖𝑖 + 𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 , 𝑲𝑓𝑖𝑛𝑎𝑙

𝑗𝑗 = 𝑲𝑗𝑗 + 𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 ,
𝑲𝑓𝑖𝑛𝑎𝑙

𝑖𝑗 = 𝑲 𝑖𝑗 − (𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 ) , 𝑲𝑓𝑖𝑛𝑎𝑙
𝑗𝑖 = 𝑲𝑗𝑖 − (𝜇𝐾𝑮𝐾 + i𝜇𝐶𝑮𝐶 ) .

(12)

Repeating the procedure described in Sections 2.2.1 and 2.2.2 and following Eqs. (8) and (12) for each viscoelastic supports and
viscoelastic coupling constraints, the final deterministic SDS matrix of the complete structure is formulated. Once the SDS model of
plate structure with determined boundary or connection conditions is established, the stochastic SDS model with uncertain BCs or
5

CCs can be developed, which will be presented next.
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3. Stochastic spectral dynamic stiffness (SSDS) formulation for spatially-varying viscoelastic boundary conditions (BCs)
and connection conditions (CCs) with uncertainties

3.1. General theory for stochastic spectral dynamic stiffness method for uncertain BCs and CCs by using KL expansion

The uncertainties in specifying boundary condition (BCs) or connection conditions (CCs) of the structure are modeled within the
ramework of random fields. The (𝛩,F, 𝑃 ) can be considered as a probability space with 𝜃 ∈ 𝛩 denoting a sampling point in the

sampling space 𝛩, F is the complete 𝜎-algebra over the subsets of 𝛩 and 𝑃 is the probability measure. Suppose the spatial coordinate
vector r ∈ R𝑑 . Consider 𝐻 ∶

(

R𝑑 × 𝛩
)

→ R is a random field with a covariance function 𝐶𝐻 ∶
(

R𝑑 × R𝑑) → R defined in a space
 ∈ R𝑑 . Since the covariance function is finite, symmetric and positive definite it can be represented by a spectral decomposition. We
refer to the books by Ghanem and Spanos [70] and Papoulis and Pillai [71] for detailed introduction on Karhunen–Loève expansion.
Using this spectral decomposition, the random process 𝐻(r, 𝜃) can be expressed in a generalized Fourier type of series as

𝐻(r, 𝜃) = 𝐻0(r) +
∞
∑

𝑗=1

√

𝜆𝑗𝜉𝑗 (𝜃)𝜑𝑗 (r) (13)

where 𝜉𝑗 (𝜃) are uncorrelated random variables, 𝜆𝑗 and 𝜑𝑗 (r) are eigenvalues and eigenfunctions satisfying the integral equation

∫
𝐶𝐻 (r1, r2)𝜑𝑗 (r1)dr1 = 𝜆𝑗𝜑𝑗 (r2), ∀ 𝑗 = 1, 2,… (14)

These associated eigenvalues and eigenfunctions will be used to obtain the boundary or connection stiffness and damping
matrices. In fact, there are many kinds of correlation function models of random fields, for example, exponential type and squared
exponential type. Gaussian random fields with exponentially decaying autocorrelation function are considered in this paper. For all
practical purposes, The series in Eq. (13) can be ordered in a decreasing series so that it can be truncated using a finite number of
terms with the desired accuracy. The number of terms could be selected based on the ‘amount of information’ to be retained.

Suppose that the boundary displacement 𝒅𝑏(r, 𝜔) and force 𝒇 𝑏(r, 𝜔) is described by boundary shape function N(r) ∈ C𝑛(𝑛 is the
number of the nodal Dofs) and the associated generalized boundary nodal displacements 𝒅𝑏(𝜔) ∈ C𝑛 and force 𝒇 𝑏(𝜔) ∈ C𝑛 as

𝒅𝑏(r, 𝜔) = NT(r)𝒅𝑏(𝜔) (15)

𝒇 𝑏(r, 𝜔) = NT(r)𝒇 𝑏(𝜔) (16)

Extending the weak-form of finite element approach to the complex domain, the 𝑛×𝑛 stochastic spectral stiffness matrix 𝑯𝑏(r, 𝜃)
(𝑯𝑏(r, 𝜃) can stand for stochastic boundary stiffness matrix 𝑲𝑏(r, 𝜃) and stochastic boundary damping matrix 𝑪𝑏(r, 𝜃)) can be obtained
by combining the boundary shape function N(r) as

𝑯𝑏(r, 𝜃) = ∫𝑏

ℎ𝑏(r, 𝜃)N(r)NT(r)dr (17)

where (∙)T denotes matrix transpose, ℎ𝑏(r, 𝜃) ∶
(

R𝑑 × 𝛩
)

→ R is the random distributed parameter. The random field ℎ𝑏(r, 𝜃) is
expanded using the Karhunen–Loève expansion of Eq. (13). Using sufficient number of terms 𝑀𝐻 , the stochastic spectral stiffness
matrix can be expanded in a spectral series as

𝑯𝑏(r, 𝜃) = 𝑯0𝑏(r) +
𝑀H
∑

𝑗=1
𝜉H𝑗

(𝜃)𝑯 𝑗𝑏(r) (18)

Here the deterministic spectral stiffness matrices can be obtained as

𝑯0𝑏(r) = ∫𝑏

ℎ𝑏0 (r)N(r)N
T(r)dr (19)

𝑯 𝑗𝑏(r) =
√

𝜆H𝑗 ∫𝑏

𝜑H𝑗
(r)N(r)NT(r)dr (20)

∀𝑗 = 1, 2,… ,𝑀H

here 𝜆H𝑗
and 𝜑H𝑗

(r) are eigenvalues and eigenfunctions. In this manner, the stochastic boundary or connection spectral dynamic
tiffness 𝑮𝐾 (r, 𝜃) and damping 𝑮𝐶 (r, 𝜃) matrix can be obtained. For notational convenience, the 𝑮𝐾 (r, 𝜃) and 𝑮𝐶 (r, 𝜃) can be expressed
n a unified form as

𝑮(r, 𝜃) = 𝑮0(r) +
𝑀H
∑

𝑗=1
𝜉𝑗 (𝜃)𝑮𝑗 (r) (21)

In this equation 𝑮0 and 𝑮𝑗 → C𝑁×𝑁 are stochastic symmetric matrices. 𝑁 is the dynamic degrees of freedom. In the next section,
he derivation of stochastic spectral stiffness matrix using modified Fourier series (MFs) as boundary or connection shape function
(r) will be introduced in detail.
6
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3.2. SSDS formulation for spatially-varying viscoelastic BCs and CCs with uncertainties

Next, the MFs are used to develop the stochastic spectral dynamic stiffness matrix of uncertain boundary or connection spatial
unction 𝐺(r) following the steps in Section 3.1. In this paper, Gaussian random fields with an exponentially decaying autocorrelation

function were considered. The correlation function can be expressed as

𝑅(r1, r2) = 𝑒−|r1−r2|𝑐 (22)

where the 𝑐 is inversely proportional to the correlation length. The stochastic dimensionless spatial function 𝐺(r, 𝜃) can be expressed
as

𝐺(r, 𝜃) = 𝐺0(r) +
∞
∑

𝑖=1

(

√

𝜆𝑖𝜉𝑖(𝜃)𝜑𝑖(r) +
√

𝜆𝑖∗𝜉𝑖∗ (𝜃)𝜑𝑖∗ (r)
)

(23)

here 𝜉𝑖(𝜃) and 𝜉𝑖∗ (𝜃) are uncorrelated random coefficients, 𝜆𝑖, 𝜆𝑖∗ and 𝜑𝑖(r), 𝜑𝑖∗ (r) are eigenvalues and eigenfunctions. Since
parameter is assumed to be a Gaussian random field, without any loss of generality we assumed the mean to be zero, thus the
eigenvalues and eigenfunctions in the K-L expansion for odd 𝑖 are given by

𝜆𝑖 =
2𝑐

𝜔2
𝑖 + 𝑐2

𝜑𝑖(r) =
cos

(

𝜔𝑖r
)

√

𝐿 + sin(2𝜔𝑖𝐿)
2𝜔𝑖

where tan(𝜔𝑖𝐿) =
𝑐
𝜔𝑖

, (24)

and for even 𝑖

𝜆𝑖∗ = 2𝑐
𝜔∗2
𝑖 + 𝑐2

𝜑𝑖∗ (r) =
sin

(

𝜔∗
𝑖 r
)

√

𝐿 −
sin

(

2𝜔∗
𝑖 𝐿

)

2𝜔∗
𝑖

where tan(𝜔∗
𝑖 𝐿) =

𝜔∗
𝑖

−𝑐
. (25)

These eigenvalues and eigenfunctions can be used to obtain the stochastic stiffness and damping matrices. The infinite series in
q. (23) needs to be truncated at a finite number of terms N, which could be determined by the required description accuracy of
he random fields. If more truncate terms are included, the random fields can be described more accurately, and vice versa.

Since in the spectral dynamic stiffness method, considering 𝑛 number of terms in the KL expansion to the 𝐺(r, 𝜃), the global
pectral boundary distribution matrix in Eq. (21) can be expressed as

𝑮(r, 𝜃) = 𝑮0(r) +
𝑛∕2
∑

𝑖=1

(

√

𝜆𝑖𝜉𝑖(𝜃)�̃�
𝑖
(r) +

√

𝜆𝑖∗𝜉𝑖∗ (𝜃)�̃�
𝑖∗
(r)

)

(26)

where

𝑮0𝑡𝑙 =
1

√

𝜁𝑡𝑟𝜁𝑙𝑠𝐿 ∫

𝐿

−𝐿

[

𝐺0(r)𝑙(𝛾𝑙𝑠r)𝑡(𝛾𝑡𝑟r)
]

dr (27)

�̃�
𝑖
𝑡𝑙 =

1
√

𝜁𝑡𝑟𝜁𝑙𝑠𝐿 ∫

𝐿

−𝐿

[

𝜑𝑖(r)𝑙(𝛾𝑙𝑠r)𝑡(𝛾𝑡𝑟r)
]

dr (28)

�̃�
𝑖∗

𝑡𝑙 = 1
√

𝜁𝑡𝑟𝜁𝑙𝑠𝐿 ∫

𝐿

−𝐿

[

𝜑𝑖∗ (r)𝑙(𝛾𝑙𝑠r)𝑡(𝛾𝑡𝑟r)
]

dr (29)

here 𝑙(𝛾𝑙𝑠r) is the corresponding modified Fourier basis function which is described in the Appendix A. The deterministic SDS
atrix 𝑮0𝑡𝑙 has been obtained [66], and stochastic SDS matrix �̃�

𝑖
𝑡𝑙, �̃�

𝑖∗

𝑡𝑙 can be obtained by using the integrals of Eqs. (28)–(29).
For the sake of notational convenience, some notations are introduced. If 𝑆 terms are adopted in the series solution (𝑠 ∈ [0, 𝑆 − 1]),
then diag(⋅)𝑆0 is used to denote a diagonal matrix with the ‘s’ in expression ‘⋅’ taking 𝑠 ∈ [0, 𝑆 − 1], also diag(⋅)𝑆1 with ‘⋅’ taking
𝑠 ∈ [1, 𝑆 − 1]. Similarly, [⋅]0,𝑆1 stands for a row vector with ‘⋅’ taking 𝑟 = 0 and 𝑠 ∈ [1, 𝑆 − 1]; [⋅]𝑆1 ,0 represents a column vector with
‘⋅’ taking 𝑟 ∈ [1, 𝑆 − 1], 𝑠 = 0; [⋅]𝑆1 ,𝑆1 denotes a matrix with ‘⋅’ taking 𝑟 ∈ [1, 𝑆 − 1], 𝑠 ∈ [1, 𝑆 − 1] and so on. By using the expression
of the eigenfunction for the odd values of 𝑖, as in Eq. (24), for �̃�

𝑖
𝑡𝑙, �̃�

𝑖
01 = �̃�

𝑖
10 = 𝟎

[

�̃�
𝑖
00

]

= ϝ5

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ϝ3
ϝ1

[

(−1)𝑠
√

2ϝ1ϝ3
ϝ21−𝜋

2𝑠2

]

1,𝑆−1
[

(−1)𝑟
√

2ϝ1ϝ3
ϝ21−𝜋

2𝑟2

]

𝑆−1,1

[

2(−1)𝑟+𝑠ϝ1
(

ϝ21−𝜋
2(𝑟2+𝑠2

)

)

ϝ3
(ϝ1+𝛴1)(ϝ1−𝛴1)(ϝ1−𝛴2)(ϝ1+𝛴2)

]

𝑆−1,𝑆−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (30)

except for the diagonal terms

�̃�
𝑖
00(𝑟, 𝑠) = ϝ5[

2
(

ϝ21 − 2𝜋2𝑠2
)

ϝ3
𝜔3
𝑖𝐿3 − 4ϝ1𝜋2𝑠2

] (31)

for 𝑟 = 𝑠 ∈ [0, 𝑆 − 1].
[

�̃�
𝑖
11

]

= ϝ5

[
[

(−1)1+𝑟+𝑠ϝ1
(

−2ϝ21+𝜋
2(1+2𝑟(1+𝑟)+2𝑠(1+𝑠))

)

ϝ3
(ϝ1+𝛴1)(ϝ1−𝛴1)(ϝ1−𝛴2−𝜋)(ϝ1+𝜋+𝛴1)

]
]

, (32)
7

𝑆,𝑆
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except for the diagonal terms

�̃�
𝑖
11 = ϝ5

[

−

(

−2ϝ21 + (𝜋 + 2𝜋𝑠)2
)

ϝ3
ϝ1(ϝ1 + 𝜋(1 + 2𝑠))(ϝ1 − 𝜋(1 + 2𝑠))

]

(33)

for 𝑟 = 𝑠 ∈ [0, 𝑆].
In a similar manner, by using the expression of the eigenfunction for the even values of 𝑖, as in Eq. (25), for �̃�

𝑖∗

𝑡𝑙 , �̃�
𝑖∗

00 = �̃�
𝑖∗

11 = 𝟎

�̃�
𝑖∗𝑇
10 = �̃�

𝑖∗

01 = ϝ6

⎡

⎢

⎢

⎢

⎢

⎣

[

4(−1)𝑠
√

2ϝ2ϝ4
(−2ϝ2+𝜋+2𝜋𝑠)(2ϝ2+𝜋+2𝜋𝑠)

]

1,𝑆
[

8(−1)𝑟+𝑠ϝ2
(

−4ϝ22+𝜋
2(4𝑟2+(1+2𝑠)2

)

)

ϝ4
(2ϝ2−𝜋+2𝛴1)(2ϝ2+𝜋−2𝛴1)(2ϝ2+𝜋+2𝛴2)(2ϝ2−𝜋−2𝛴2)

]

𝑆−1,𝑆

⎤

⎥

⎥

⎥

⎥

⎦

, (34)

except for the diagonal terms

�̃�
𝑖∗

10 = �̃�
𝑖∗

01 = ϝ6

[

8ϝ2
(

−4ϝ22 + 𝜋2 (1 + 4𝑠 + 8𝑠2
))

ϝ4
(

−4ϝ22 + 𝜋2
)

(−2ϝ2 + 𝜋 + 4𝜋𝑠)(2ϝ2 + 𝜋 + 4𝜋𝑠)

]

(35)

for 𝑟 = 𝑠 ∈ [0, 𝑆]. where

ϝ1 = 𝜔𝑖𝐿, ϝ2 = 𝜔∗
𝑖 𝐿, ϝ3 = sin(𝜔𝑖𝐿)

ϝ4 = cos(𝜔∗
𝑖 𝐿), ϝ5 =

1
√

𝐿 + sin(2𝜔𝑖𝐿)
2𝜔𝑖

, ϝ6 =
1

√

𝐿 −
sin

(

2𝜔∗
𝑖 𝐿

)

2𝜔∗
𝑖

𝛴1 = 𝜋(𝑟 − 𝑠), 𝛴2 = 𝜋(𝑟 + 𝑠)

After obtaining the deterministic part and stochastic part of the SDS matrices, the SDS matrix 𝑮(r, 𝜃) can be derived by Eq. (26).
Then, by assembling 𝑮(r, 𝜃) in the way of Sections 2.2.1 and 2.2.2, the whole SSDS matrix 𝑲𝑓𝑖𝑛𝑎𝑙 of plate-like structure with uncertain
BCs or CCs can be obtained in a similar form to Eqs. (8) and (12). For viscoelastic supports with uncertainties, we have

𝑲𝑓𝑖𝑛𝑎𝑙
𝑖𝑖 = 𝑲 𝑖𝑖 + 𝜇𝐾𝑮𝐾 (r, 𝜃) + i𝜇𝐶𝑮𝐶 (r, 𝜃) . (36)

For viscoelastic coupling constrains with uncertainties, we have

𝑲𝑓𝑖𝑛𝑎𝑙
𝑖𝑖 = 𝑲 𝑖𝑖 + 𝜇𝐾𝑮𝐾 (r, 𝜃) + i𝜇𝐶𝑮𝐶 (r, 𝜃) ,

𝑲𝑓𝑖𝑛𝑎𝑙
𝑗𝑗 = 𝑲𝑗𝑗 + 𝜇𝐾𝑮𝐾 (r, 𝜃) + i𝜇𝐶𝑮𝐶 (r, 𝜃) ,

𝑲𝑓𝑖𝑛𝑎𝑙
𝑖𝑗 = 𝑲 𝑖𝑗 − [𝜇𝐾𝑮𝐾 (r, 𝜃) + i𝜇𝐶𝑮𝐶 (r, 𝜃)] ,

𝑲𝑓𝑖𝑛𝑎𝑙
𝑗𝑖 = 𝑲𝑗𝑖 − [𝜇𝐾𝑮𝐾 (r, 𝜃) + i𝜇𝐶𝑮𝐶 (r, 𝜃)] .

(37)

Finally, arbitrary uncertain spatially-varying viscoelastic supports and coupling constrains are analytically modeled.

. Stochastic eigenvalue analysis based on the extended Wittrick–Williams algorithm

Then the proposed stochastic spectral dynamic stiffness model can be used for stochastic eigenvalue analysis of plates with
ncertain boundary or connection conditions. The extended Wittrick–Williams (WW) algorithm [64] is applied to the SSDS
ormulation of final structures to obtain any required natural frequencies with any desired accuracy. This algorithm ensures that no
igenvalue is missed by monitoring the Sturm sequence of the ensuring matrix. The extended WW algorithm [64] is an improvement
n the well-known WW [72], according to the WW algorithm, the number of eigenvalues between 0 and a trial frequency 𝜔∗ (mode
ount 𝐽 ) of the final structure is

𝐽 = 𝐽0 + 𝑠
{

𝑲𝑓𝑖𝑛𝑎𝑙} (38)

here 𝑠
{

𝑲𝑓𝑖𝑛𝑎𝑙} is the number of negative elements on the leading diagonal of 𝑲𝛥, and 𝑲𝛥 is the upper triangular matrix obtained
y applying the usual form of Gauss elimination to 𝑲𝑓𝑖𝑛𝑎𝑙, and 𝐽0 is the number of natural frequencies of the structure still lying
etween 𝜔 = 0 and 𝜔 = 𝜔∗ when the displacement components to which 𝑲𝑓𝑖𝑛𝑎𝑙 corresponds are all zeros. By Section 3.2, the 𝑲𝑓𝑖𝑛𝑎𝑙

atrix can be obtained. 𝐽0 can be computed in a concise way by using the extended WW algorithm [64]. Once the final 𝑲𝑓𝑖𝑛𝑎𝑙 of
ifferent random samples are given, their corresponding eigensolutions will be computed. This algorithm can be used for stochastic
igenvalue analysis of plate assembly subject to uncertain elastic BCs or CCs.

. Stochastic dynamic response analysis

For stochastic dynamic response analysis, if the amplitude of a harmonic excitation on the 𝑖th boundary is described by 𝐹 𝑏
𝑖 (r),

hen the spectral representation of this excitation can be derived by substituting 𝐹 𝑏
𝑖 (r) into Eq. (A.5a) leading to the associated
8

odified Fourier series coefficients, which can be written in a vector form 𝒇 𝑖. The analytical expressions for 𝒇 𝑖 corresponding to
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several functions 𝐹 𝑏
𝑖 (r) are given in Appendix B. Once all boundary excitations 𝒇 𝑖 are written in modified Fourier coefficients vector

form, the overall generalized force for the whole built-up structure can be given by 𝒇𝑓𝑖𝑛𝑎𝑙, and we have

𝑲𝑓𝑖𝑛𝑎𝑙𝒅𝑓𝑖𝑛𝑎𝑙 = 𝒇𝑓𝑖𝑛𝑎𝑙 (39)

where 𝑲𝑓𝑖𝑛𝑎𝑙 is the global stochastic spectral dynamic stiffness matrix of plate built-up structure, 𝒅𝑓𝑖𝑛𝑎𝑙 is the response of the overall
generalized boundary displacement vector in the form of the modified Fourier coefficients of along all boundaries of the plate
assembly. In the subsequent sections we present two strategies to compute the response of generalized displacement vector 𝒅𝑓𝑖𝑛𝑎𝑙.
The first approach is the direct matrix inversion method, whereas the second approach is an improved response analysis method
based on domain decomposition method. The two approaches are detailed as below.

5.1. Response analysis based on the stochastic spectral dynamic stiffness matrix by using direct matrix inversion

The response in the form of generalized displacements of 𝒅𝑓𝑖𝑛𝑎𝑙 can be obtained by directly inversing 𝑲𝑓𝑖𝑛𝑎𝑙 matrix and multiplied
to the excitation in the form of 𝒇𝑓𝑖𝑛𝑎𝑙 based on Eq. (39). By matrix operations, we have

[𝒅𝑓𝑖𝑛𝑎𝑙] = [𝑲𝑓𝑖𝑛𝑎𝑙]−1[𝒇𝑓𝑖𝑛𝑎𝑙] (40)

where 𝒅𝑓𝑖𝑛𝑎𝑙 includes both deterministic part and stochastic part. For this method, there is no need to perform additional operations
on 𝑲𝑓𝑖𝑛𝑎𝑙 in the process of matrix inversion, and the inverse of 𝑲𝑓𝑖𝑛𝑎𝑙 is directly performed by Eq. (40) to obtain 𝒅𝑓𝑖𝑛𝑎𝑙. But the
global stochastic spectral stiffness matrix 𝑲𝑓𝑖𝑛𝑎𝑙 needs to be calculated repeatedly with the change of random samples, which means
that each case in the uncertain boundary or connection conditions corresponds to a kind of 𝑲𝑓𝑖𝑛𝑎𝑙 and 𝒅𝑓𝑖𝑛𝑎𝑙, and 𝒇𝑓𝑖𝑛𝑎𝑙 remains
unchanged.

5.2. Improved response analysis based on the stochastic spectral dynamic stiffness matrix by using domain decomposition

Although the direct matrix inverse operation is simple, the computational cost increases as the size of 𝑲𝑓𝑖𝑛𝑎𝑙 matrix increases.
Moreover, every random sample needs to carry out an overall matrix inverse, which has negative impacts on the computational
cost and accuracy. In this paper, a matrix operation method is designed to improve the computational efficiency. Eq. (39) can be
written as follows:

[

𝒇𝐷
𝒇𝑆

]

=
[

𝑲𝐷𝐷 𝑲𝐷𝑆
𝑲𝑆𝐷 𝑲𝑆𝑆

] [

𝒅𝐷
𝒅𝑆

]

(41)

where 𝒇𝐷 (𝒅𝐷) and 𝒇𝑆 (𝒅𝑆 ) represent the modified Fourier coefficients of forces (displacements) corresponding to deterministic
boundaries and stochastic boundaries of the plate assemblies, respectively. The final spectral dynamic stiffness matrix 𝑲𝑓𝑖𝑛𝑎𝑙 is
divided into four blocks, where 𝑲𝑆𝑆 represents the spectral dynamic stiffness matrix of the boundaries subject to uncertain BCs or
CCs in the plate assemblies and the other three blocks (𝑲𝐷𝐷, 𝑲𝐷𝑆 , 𝑲𝑆𝐷) are the deterministic SDS matrices. In particular, 𝑲𝑆𝑆 can
be expressed in the summation of deterministic part 𝑲𝑆𝑆𝐷 and stochastic part 𝛥𝑲 .

𝑲𝑆𝑆 = 𝑲𝑆𝑆𝐷 + 𝛥𝑲 (42)

In the final spectral dynamic stiffness matrix, only the stochastic part 𝛥𝑲 needs to be evaluated cyclically within random samples in
the stochastic dynamic response analysis. The other three deterministic blocks 𝑲𝑓𝑖𝑛𝑎𝑙, 𝑲𝐷𝐷, 𝑲𝐷𝑆 , 𝑲𝑆𝐷 only need to be computed
once for all. This not only reduces the size of the matrix to be calculated, but also reduces the risk of numerical instability in the
matrix operation. Therefore, this improvement on response analysis is more computational efficient and reliable than the direct
matrix inversion method of Eq. (40). The detailed derivation is given as follows. According to Eq. (41), we have

𝒅𝐷 = 𝑲−1
𝐷𝐷

(

𝒇𝐷 −𝑲𝐷𝑆𝒅𝑆
)

(43)

Similarly, the equation related to 𝒇𝑆 combined with Eq. (43) can be expressed as

𝒇𝑆 = 𝑲𝑆𝐷𝒅𝐷 +𝑲𝑆𝑆𝒅𝑆

= 𝑲𝑆𝐷𝑲−1
𝐷𝐷

(

𝒇𝐷 −𝑲𝐷𝑆𝒅𝑆
)

+𝑲𝑆𝑆𝒅𝑆

= 𝑲𝑆𝐷𝑲−1
𝐷𝐷𝒇𝐷 −𝑲𝑆𝐷𝑲−1

𝐷𝐷𝑲𝐷𝑆𝒅𝑆 +𝑲𝑆𝑆𝒅𝑆

(44)

Next, according to Eq. (44), 𝒅𝑆 can be expressed as

𝒅𝑆 =
(

𝑲𝑆𝐷𝑲−1
𝐷𝐷𝒇𝐷 − 𝒇𝑆

) (

𝑲𝑆𝐷𝑲−1
𝐷𝐷𝑲𝐷𝑆 −𝑲𝑆𝑆

)−1

=
(

�̂�𝒇𝐷 − 𝒇𝑆
) (

�̂�𝑲𝐷𝑆 −𝑲𝑆𝑆𝐷 − 𝛥𝑲
)−1 (45)

where

�̂� = 𝑲𝑆𝐷𝑲−1
𝐷𝐷 (46)

Finally, combining with Eqs. (43) to (45), the response of generalized displacement vector 𝒅𝑓𝑖𝑛𝑎𝑙 can be expressed as

𝒅𝑓𝑖𝑛𝑎𝑙 =
[

𝒅𝐷
]

(47)
9
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For the calculation of Eq. (47), only 𝒅𝑆 will be calculated in a cyclic manner within random samples, while 𝒅𝐷 will not be
repeatedly calculated within random samples, which again reduces the computational cost.

Next, it is possible to recover the stochastic dynamic response of the whole plate assembly along the plate nodal boundaries as
well as all domain points. By substituting the generalized displacements 𝒅𝑓𝑖𝑛𝑎𝑙 on the nodal boundaries into Eq. (48) and taking
inverse modified Fourier transformation, the dynamic response 𝑈 𝑏(r) at any point along the nodal boundaries can be obtained as
follows.

𝑈 𝑏(r) =
∑

𝑠∈N
𝑙∈{0,1}

𝒅𝑓𝑖𝑛𝑎𝑙 𝑙(𝛾𝑙𝑠r)
√

𝜁𝑙𝑠𝐿
(48)

Further, once we obtain the generalized displacements 𝒅𝑓𝑖𝑛𝑎𝑙, the nodal displacement vector for all domain points can be easily
eveloped. The general solutions of Eq. (1) now can be partitioned into a sum of four component solutions [64,67] in each of which
he function 𝑊 𝑘𝑗 (𝑥, 𝑦) is either even or odd. We have

𝑊 (𝑥, 𝑦) =
∑

𝑘,𝑗∈{0,1}
𝑊 𝑘𝑗 (𝑥, 𝑦) = 𝑊 00 +𝑊 01 +𝑊 10 +𝑊 11 (49)

𝑊 𝑘𝑗 (𝑥, 𝑦) =
∑

𝑚∈N

[

𝐴1𝑘𝑚𝑗
(

𝑝1𝑘𝑚𝑦
)

+ 𝐴2𝑘𝑚𝑗
(

𝑝2𝑘𝑚𝑦
)]

𝑘
(

𝛼𝑘𝑚𝑥
)

+
∑

𝑛∈N

[

𝐵1𝑗𝑛𝑘
(

𝑞1𝑗𝑛𝑥
)

+ 𝐵2𝑗𝑛𝑘
(

𝑞2𝑗𝑛𝑥
)]

𝑗
(

𝛽𝑗𝑛𝑦
)

(50)

here the indices 𝑘 (related to 𝑥 direction) and 𝑗 (related to 𝑦 direction), taking in turn with values either ‘0’ or ‘1’, represent
ither symmetric or antisymmetric functions in the related directions.  stands for trigonometric functions defined in Eq. (A.3)
nd  represents hyperbolic functions [64,67]. 𝐴1𝑘𝑚, 𝐴2𝑘𝑚, 𝐵1𝑗𝑛, 𝐵2𝑗𝑛 are the coefficients associated with 𝒅𝑓𝑖𝑛𝑎𝑙 [64,67]. According
o Eq. (50), we can obtain the response of each plate element at some arbitrary location (𝑥0, 𝑦0). Finally, the stochastic dynamic
esponses of the whole plate assembly can be obtained.

. Results and discussions

After illustrating the theoretical framework of the proposed methodology, the above solution technique have been implemented
n a Matlab code. It is now applied to compute eigenvalues and dynamic responses of single plates and plate assemblies under
ncertain boundary conditions and connection conditions. In Section 6.1, we consider the elastic constraints stiffness as Gaussian
andom fields and discuss the statistics of the eigenvalues of undamped free vibration of single plate through the direct Monte Carlo
imulation. In Section 6.2, the stochastic dynamic response of a single plate under stochastic spring stiffness and damping, and
late assemblies under stochastic viscoelastic coupling stiffness and damping are obtained using the developed stochastic spectral
ynamic stiffness formulas (36)–(37) respectively.

.1. Stochastic eigenvalue analysis with uncertain elastic support

This section takes a single plate structure as an example. The mean material properties of plate are considered density 𝜌0 =
700 kg/m3, and modulus of elasticity 𝐸0 = 69 GPa. Poisson’s ratio 𝜇 = 0.3. The thickness ℎ = 0.001 m. The length and width of
he plate are 0.5 m and 1 m respectively. The boundary condition of the plate is four sides are simply supported and torsion of
hree sides are stochastic elastic supported. We consider the elastic constraints stiffness as Gaussian random fields and the mean of
lastic constraint stiffness 𝑘𝜙 = 𝑘𝜙0𝐺(𝑟), 𝑘𝜙0 = 6.3𝐷∕(2𝑎), 𝐷 is the bending rigidity of the plate, 𝐺(𝑟) = [1 − (𝑟∕𝐿)2]∕4. The ‘strength
arameters’ 𝜖 is assumed to be 0.2. The correlation length of the random fields describing 𝑘𝜙 are assumed to be 𝐿∕2.

The accuracy and efficiency of the spectral dynamic stiffness method for solving the dynamic characteristics of plate structures
ith deterministic boundary conditions have been proved in previous studies [66], so the stochastic dynamic characteristics of
late structures are straightforwardly analyzed in this paper. The natural frequencies of plates with stochastic elastic support are
omputed directly by the enhanced Wittrick–Williams algorithm [66]. Through Monte Carlo simulation, a total of 1000 samples are
omputed to obtain the statistics and the probability density functions of the eigenvalues.

The statistical scatter of the first six eigenvalues by using SSDSM are shown in Fig. 3. Solid lines represent the eigenvalues for the
orresponding deterministic plate model with average parameters, whose values are 𝜆1 = 13.878 Hz, 𝜆2 = 20.476 Hz, 𝜆3 = 32.232 Hz
𝜆4 = 41.119 Hz, 𝜆5 = 48.923 Hz, 𝜆6 = 49.773 Hz. While each random scatter denotes the eigenvalue of the corresponding random
arameters with the given sample. It can be seen that the first two eigenvalues are well separated and little statistical overlap exists
etween them. In addition, the scattering degree of the fourth eigenvalue is larger than that of the other eigenvalues, which indicates
hat the uncertainty of elastic support constraints influences the fourth eigenvalue most. The scattering degrees of other eigenvalues
re similar.

The probability density distribution curves from the MSC results for the first six eigenvalues calculated by extended WW algorithm
re shown in Fig. 4. At the same time, the curves drawn using three probability distribution methods [42] (Kernel density estimation
istribution, 𝜒2 distribution, Truncated Gaussian distribution) are also shown in the figure. It can be seen that those methods agree
ell with the Monte Carlo simulation results. And there is no overlap between the modes, which is in good agreement with the
bservation in Fig. 3. The proposed SSDSM method can be used to analyze stochastic eigenvalues of plates subject to arbitrary
patially-varying elastic boundary conditions with uncertainties.
10
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Fig. 3. Statistical scatter of the first six eigenvalues of the single plate with uncertain elastic support by using SSDSM. The six vertical continuous lines represent
the deterministic eigenvalues for the first six eigenmodes.

Fig. 4. Probability density functions of the first six eigenvalues of the single plate with uncertain elastic support by using SSDSM.

6.2. Stochastic dynamic response analysis of plates with uncertain boundary or connection conditions

In this subsection, the dynamic response analysis of a plate with uncertain viscoelastic supports and coupling constraint is
considered. Section 6.2.1 uses the proposed method to compute the response curve and displacement response field of the plate
with uncertain elastic supports, and the high accuracy and efficiency of this method is demonstrated. Section 6.2.2 computes the
response curve and displacement response field of the plate with uncertain coupling connection and analyzes the influence of the
uncertainty boundary or connection on the dynamic response.
11
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Fig. 5. A rectangular plate with uncertain spatially-varying viscoelastic supports subject to a sine-shape harmonic excitation.

Fig. 6. The absolute value amplitudes of stochastic dynamic responses at point A (left plot) and point B (right plot) shown in Fig. 5 exerted by sine-shaped
harmonic excitation. (The gray area represent the responses of the 1000 samples).

6.2.1. Stochastic dynamic response analysis of single plate with uncertain viscoelastic supports
The boundary conditions and excitation of the plate are shown in Fig. 5. In this figure, the right side of the plate is clamped and

the left side is free. The front side is subject to stochastic spatially-varying translational viscoelastic supports which the mean of
the stiffness and damping of the three positions supported presents a sin function distribution, with 𝑘0 = 1.5(𝐷∕(2𝑎)3) sin( 𝜋𝑥𝑠2𝐿𝑠

), 𝐿𝑠 ∈
{0, 0.02} and 𝑐0 = 0.015(𝐷∕(2𝑎)3) sin( 𝜋𝑥𝑠2𝐿𝑠

). We consider sin-excitation with 𝐹0 = 100 sin( 𝜋𝑥
2𝐿𝑎

) N/m as the boundary excitation in the
back side.

The material properties are density 𝜌 = 2700 kg/m3, Young’s modulus 𝐸 = 69 GPa and Poisson’s ratio 𝜈 = 0.3. The length, width,
and height of the plate are 𝑎 = 2 m, 𝑏 = 0.5 m and ℎ = 0.008 m respectively. The standard deviations of the random fields for stiffness
𝑘 and damping 𝑐 are assumed to be 10% of the mean values of the random fields, so the ‘strength parameters’ are considered as
𝜖𝑘= 0.1 and 𝜖𝑐 = 0.1. The correlation lengths of the random fields for 𝑘 and 𝑐 are assumed to be 𝑎∕2.

Following the formulations in Sections Section 5, the response can be readily computed subject to the aforementioned harmonic
excitations. The response is computed up from 0 Hz to 50 Hz covering the first fifteen natural modes of the plate. For the dynamic
response analysis by SSDSM, the truncation number 𝑚, 𝑛 for the series in Eq. (50) is taken to be 30 after convergence check.

The deterministic response, the mean, and the standard deviation of the absolute value of the stochastic response at point A
and point B (shown in Fig. 5) subject to sine-shaped harmonic excitation are shown in Fig. 6. The response curve in the figure
includes the determination value of FEM results and SDSM results, the mean of stochastic SDSM results combined with the direct
matrix inversion method and the domain decomposition method. To obtain these results, we use a Monte Carlo simulation by
generating 1000 samples. In the KL expansion, 18 terms are used for the uncertain viscoelastic supports. The element matrices
12
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Table 1
Displacement and stochastic response field at five frequencies subject to sine-shaped harmonic excitation shown in Fig. 5.

Deterministic model (1 sample) Stochastic model (SSDSM) (1000 samples)

FEM SDSM Direct matrix inversion Domain decomposition

10 Hz

20 Hz

30 Hz

40 Hz

50 Hz

Fig. 7. Standard deviation of displacement response field at five frequencies subject to sine-shaped harmonic excitation shown in Fig. 5 based on the stochastic
SDS model.

based on 18 terms are obtained by the formulations derived in Section 3. Some meaningful observations can be made based
on Fig. 6. First, the deterministic response obtained by SDSM agrees very well with the finite element results (the mesh size is
400 × 200), while the SDSM results are obtained by using an individual SDS element. For the stochastic response analysis, based
on the stochastic SDS model, the mean curve and the standard deviation curve obtained by the direct matrix inversion method and
the domain decomposition method are completely coincident, which verifies the accuracy of the latter method. However, there are
some discrepancies between the means of responses and the deterministic responses at lower frequencies but almost coincident at
high frequencies.

This is expected, since in the lower frequency range, the vibration behavior of plate is more sensitive to the boundary conditions,
and therefore large variation occurs when the plate is subject to uncertain BCs. As for the standard deviations of the responses, they
are biased by the means and some peaks are reached around the natural frequencies. Similarly, the stochastic dynamic analysis can
also be performed for plate assemblies with uncertain boundary or connection conditions.

In order to investigate the displacement response field of the whole structural domain, Table 1 and Fig. 7 show the deterministic,
mean and standard deviation (std) of the displacement response field subject to the aforementioned excitation at five different
frequencies. Particularly, Table 1 compares the displacement response fields computed by four different methods. It can be found
that the mean of the stochastic displacement response field matches well with the deterministic displacement response field obtained
by FEM and SDSM. Fig. 7 is the standard deviation of the displacement response field obtained by the stochastic SDS model. As the
frequency increases, the standard deviation of displacement response field becomes more complex, as expected.

6.2.2. Stochastic dynamic response analysis of plate systems with uncertain viscoelastic coupling constraints
Next, another problem is investigated by the proposed SSDSM to consider plates with uncertain viscoelastic coupling constraints.

Here two isotropic rectangular plates (denoted by plates 1 and 2) are connected by viscoelastic coupling constraints as shown in
Fig. 8. The material properties for both plates are: Young’s modulus 𝐸 = 69 GPa, Poisson’s ratio 𝜈 = 0.3 and density 𝜌 = 2700 kg/m3.
The two plates have thickness ℎ1 = ℎ2 = 0.008 m, length 𝐿𝑎 = 𝐿𝑏 = 0.8 m. Except for the edges of the two viscoelastic coupling
constraints, one side of each plate is clamped and the rest is free. Both of the translational and rotational coupling stiffnesses are
uniformly distributed with the coupling stiffness constants 𝐶𝑤 and 𝐶𝜙 taking same values: 𝐶𝑤 = 455𝐷∕(2𝑎)3 and 𝐶𝜙 = 16𝐷∕(2𝑎). In
the SDSM implementation, two elements are used for this case. The SDS matrix for the viscoelastic coupling constraints is formulated
following the procedure described in Section 2.2.2, which is superposed directly onto that of the two-plate system.

In general, we consider two types of boundary excitations including uniform and sine-shaped with amplitudes of 1N/m and
sin( 𝜋𝑥

2𝐿𝑎 ) N/m respectively, as shown in Fig. 8(a) and 8(b). The deterministic response, the mean and the standard deviation of the
absolute value of the response at point A on the free edge as shown in Fig. 8 subject to two types of excitations are shown in Fig. 9.
The response curve in the figure includes the determination value of SDSM results and the mean of stochastic SDSM results. To
13



Mechanical Systems and Signal Processing 177 (2022) 109121X. Liu et al.
Fig. 8. Two cantilevered plates connected by uncertain viscoelastic coupling constraints subject to two different types of excitation.

Fig. 9. The amplitudes of dynamic responses at the one point of the free edge shown in Fig. 5 subject to uniform (left) and sine-shaped harmonic (right)
excitations. (The gray area represent the responses of the 1000 samples.).

obtain these results, we use a Monte Carlo simulation by generating 1000 samples. We also use direct matrix inversion and domain
decomposition method to compute dynamic response and compare the computational time under the same calculation configuration.
For the uniform excitations, the direct matrix inversion takes 9748.62 s, and the domain decomposition method takes 6438.26 s. For
the case of sine-shaped harmonic excitations, the direct matrix inversion takes 9835.18 s, and the domain decomposition method
takes 6511.53 s. It can be seen that the domain decomposition method has obvious computational advantages which is determined
by the size of matrix 𝑲𝑆𝑆 in Eq. (42). The larger the matrices or samples are (The more complex the structure is), the higher obvious
the computational efficiency when using the domain decomposition method.

In both cases, the mean of random responses throughout the frequency domain coincides with the deterministic response.
Similarly, as for the standard deviations of the responses in the two cases, they are biased by the means and some peaks are
reached around the natural frequencies. On the other hand, the dynamic response characteristics of plates with uncertain connection
conditions subject to different excitations are also different. In the case of uniform excitation, it can be seen that the frequency
domain response will produce scattering near the peak of the curve which is more obvious in the range of 60–75 Hz compared to
other ranges. It shows that the stochastic vibration response analysis within 60–75 Hz is worthy of attention subject to uniform
excitation. In the case of sine-shaped harmonic excitations, the response will cause scattering only near the peaks of the curve.
Comparing with two figures, it can be seen that once the vibration frequency is far away from that corresponding to the peak of
the curve, the stochastic response will be close to the deterministic response.

In addition, the mean of the displacement response field is also shown in Fig. 10. Section 6.2.1 has proved the accuracy and
efficiency of this method. By combining Figs. 8 and 9, it can be seen that this method is also applicable to uniform and non-uniform
boundary conditions and connection conditions.

7. Conclusions

An analytical stochastic spectral dynamic stiffness method (SSDSM) is developed for the dynamic analysis of the plate assembly
subject to uncertain viscoelastic boundary or connection conditions (BCs or CCs). In the proposed method, arbitrary spatially-
varying deterministic viscoelastic BCs or CCs which includes damping effect are modeled by the spectral dynamic stiffness (SDS)
formulations; whereas uncertain viscoelastic BCs or CCs is described by the stochastic SDS formulations. The main novelties of the
proposed method include:

• The recently proposed SDS theory has been extended to model plate assembly with arbitrary spatially-varying deterministic
viscoelastic BCs or CCs for the broadband vibration analysis.
14



Mechanical Systems and Signal Processing 177 (2022) 109121X. Liu et al.
Fig. 10. Mean of displacement response field at three frequencies subject to uniform and sine-shaped harmonic excitations shown in Fig. 8 by using the domain
decomposition method.

• An analytical framework for stochastic SDS (SSDS) formulation of the uncertain viscoelastic BCs or CCs (with uncertain stiffness
and damping) has been proposed by incorporating the Karhunen–Loève expansion and the extended SDS theory.

• The SSDS matrices are superposed directly to the SDS matrix of plate assembly. The procedure is in a strong form and no extra
DOFs are introduced in the final SSDS matrices and therefore, no extra computational effort is required.

• The Wittrick–Williams algorithm and a proposed improved response analysis method are used to compute the stochastic
eigenvalues and dynamic responses, which minimizes the computational cost for each random sample, and gives accurate
solutions with high computational efficiency.

• The proposed method retains all significant advantages of the SDSM, the accurate and efficient stochastic dynamic analysis
can be performed within the whole frequency domain.

Numerical examples are given to illustrate the computational efficiency and accuracy of the proposed method within the whole
frequency range. By considering the uncertain stiffness and damping effect of boundary or connection conditions, this method is
applicable for stochastic broadband vibration analysis of plate built-up structures subject to mechanical fastening and adhesive bond
fastening in the engineering structure design. Furthermore, as a feasible technique for stochastic broadband dynamic analysis, the
current research can serve as an efficient, accurate and versatile tool for the uncertainty qualification, model updating [73,74] of
uncertain viscoelastic BCs or CCs to the dynamics of complex plate built-up structures.
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Appendix A. Modified fourier basis function

The SDSM [64,65,67] combines the spectral (S) method and the classical dynamic stiffness method (DSM). One of the key points
in the SDSM lies in adopting a modified Fourier series [69]. The adopted modified Fourier series for any arbitrary displacement or
force boundary condition (denoted by ℎ(r)) along a plate edge (line node r ∈ [−𝐿,𝐿] in local coordinates of plate) is given by

ℎ(r) =
∑

𝑠∈N
𝐻𝑙𝑠

𝑙(𝛾𝑙𝑠r)
√

𝜁𝑙𝑠𝐿
, 𝐻𝑙𝑠 = ∫

𝐿

−𝐿
ℎ(r)

𝑙(𝛾𝑙𝑠r)
√

𝜁𝑙𝑠𝐿
dr , (A.1)
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(
a

A

a

where N = {0, 1, 2,…} is the non-negative integer set, and the subscript ‘𝑙’, taking value of either ‘0’ or ‘1’, denotes the corresponding
symmetric or antisymmetric functions (and coefficients). Here, 𝜁𝑙𝑠 is given as

𝜁𝑙𝑠 =

{

2 𝑙 = 0 and 𝑠 = 0
1 𝑙 = 1 or 𝑠 ≥ 1

. (A.2)

The corresponding modified Fourier basis function 𝑙(𝛾𝑙𝑠r) in Eq. (A.1) is defined as

𝑙(𝛾𝑙𝑠r) =
⎧

⎪

⎨

⎪

⎩

cos( 𝑠𝜋𝐿 r) 𝑙 = 0

sin
(

(𝑠 + 1
2 )

𝜋
𝐿 r

)

𝑙 = 1
, r ∈ [−𝐿,𝐿] , 𝑠 ∈ N , (A.3)

which provides a complete and orthogonal set to described any one-dimensional function ℎ(r) of Eq. (A.1) with any arbitrary
boundary conditions. It should be emphasized that the above modified Fourier series has strong orthogonality which is one of
the most important factors that makes the SDSM numerically stable, therefore any higher order of modified Fourier series can be
adopted in the computation to compute results within any desired accuracy. The

√

𝜁𝑙𝑠𝐿 appearing in Eq. (A.1) provides the symmetry
of the forward and inverse Fourier transformation. By using the above modified Fourier series, each force 𝒇 𝑖 and displacement 𝒅𝑖
sub-vectors take the following form

𝒇 𝑖 =
[

𝐹𝑖00, 𝐹𝑖01, 𝐹𝑖02,… , 𝐹𝑖10, 𝐹𝑖11, 𝐹𝑖12,…
]T , (A.4a)

𝒅𝑖 =
[

𝐷𝑖00, 𝐷𝑖01, 𝐷𝑖02,… , 𝐷𝑖10, 𝐷𝑖11, 𝐷𝑖12,…
]T , (A.4b)

where 𝐹𝑖𝑙𝑠 and 𝐷𝑖𝑙𝑠 (𝑙 ∈ {0, 1}, 𝑠 ∈ N) are respectively the modified Fourier coefficients of the corresponding force 𝑓𝑖(r) and
displacement 𝑑𝑖(r) BCs (or CCs) applied on the 𝑖th line DOF of the plate assembly, which are obtained by applying Eq. (A.1) onto
𝑓𝑖(r) and 𝑑𝑖(r) respectively to give

𝐹𝑖𝑙𝑠 = ∫

𝐿

−𝐿
𝑓𝑖(r)

𝑙(𝛾𝑙𝑠r)
√

𝜁𝑙𝑠𝐿
dr , (A.5a)

𝐷𝑖𝑙𝑠 = ∫

𝐿

−𝐿
𝑑𝑖(r)

𝑙(𝛾𝑙𝑠r)
√

𝜁𝑙𝑠𝐿
dr . (A.5b)

Therefore, each term of either 𝐹𝑖𝑙𝑠 or 𝐷𝑖𝑙𝑠 in Eq. (A.5) represents a frequency–wavenumber dependent DOF of the 𝑖th line DOF.
Following the definitions given in Eqs. (A.1) to (A.3), the subscript ‘𝑙’ in Eq. (A.5), being ‘0’ or ‘1’, stands respectively for the modified
Fourier cosine (for symmetric component) or sine (for antisymmetric component) coefficients of the 𝑖th line DOF. Therefore, the BCs
or CCs) can be arbitrarily prescribed along any line DOFs, which are directly transformed through Eq. (A.5) into vector form (i.e., 𝒇 𝑖
nd 𝒅𝑖) of Eq. (A.4) and eventually into 𝒇 and 𝒅 in Eq. (4).

ppendix B. The modified fourier form of excitation

This appendix includes the analytical expressions of the 𝑭 vector only for some typical spatially functions 𝐹 𝑏(r). For the sake of
notational convenience, some notations are introduced. [.]𝑆−1 stands for a row vector with ‘.’ taking 𝑠 ∈ [0, 𝑆 − 1]. And 𝑭 0 and 𝑭 1
re two parts of 𝑭 vector, whose combined form is 𝑭 = [𝑭 0;𝑭 1].

(1) For constant function 𝐹 𝑏(r) = 1, 𝑭 0 = [
√

2𝐿, [0]𝑆−1], 𝑭 1 = [[0]𝑆 ]
(2) For parabolic function 𝐹 𝑏(r) = ( r

𝐿 )
2, 𝑭 0 = [

√

2𝐿
3 , [ 4(−1)

𝑠
√

𝐿
𝜋2𝑠2

]𝑆−1], 𝑭 1 = [[0]𝑆 ]

(3) For cosine function 𝐹 𝑏(r) = cos
[

𝜋r
2𝐿

]

, 𝑭 0 = [ 2
√

2𝐿
𝜋 , [ 4(−1)

𝑠
√

𝐿
𝜋−4𝜋𝑠2 ]𝑆−1], 𝑭 1 = [[0]𝑆 ]

(4) For sine function 𝐹 𝑏(r) = sin
[

𝜋r
2𝐿

]

, 𝑭 0 = [0, [0]𝑆−1], 𝑭 1 = [[0]𝑆 ]

(5) For linear function 𝐹 𝑏(r) = 𝐿+r
𝐿 , 𝑭 0 = [

√

2𝐿, [0]𝑆−1], 𝑭 1 = [[ 8(−1)
𝑠
√

𝐿
(𝜋+2𝜋𝑠)2 ]𝑆 ]

𝐹 𝑏(r) = 𝐿−r
𝐿 , 𝑭 0 = [

√

2𝐿, [0]𝑆−1], 𝑭 1 = [[− 8(−1)𝑠
√

𝐿
(𝜋+2𝜋𝑠)2 ]𝑆 ]

𝐹 𝑏(r) = 3𝐿+r
𝐿 , 𝑭 0 = [3

√

2𝐿, [0]𝑆−1], 𝑭 1 = [[− 8(−1)𝑠
√

𝐿
(𝜋+2𝜋𝑠)2 ]𝑆 ]
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