
Journal of Physics D: Applied Physics

PAPER

Bandgap and wave propagation of
spring–mass–truss elastic metamaterial with a
scissor-like structure
To cite this article: Yingli Li et al 2022 J. Phys. D: Appl. Phys. 55 055303

 

View the article online for updates and enhancements.

You may also like
Quantum properties of superposition
opposite coherent states using quantum
scissors with conditional measurements
Gang Ren, Hai-Jun Yu, Chun-Zao Zhang
et al.

-

Scalable, MEMS-enabled, vibrational
tactile actuators for high resolution tactile
displays
Xin Xie, Yuri Zaitsev, Luis Fernando
Velásquez-García et al.

-

Investigation on design, analysis and
topological optimization of hydraulic
scissor lift
G Arunkumar, R Kartheeshwaran and Siva
J

-

This content was downloaded from IP address 202.197.47.36 on 13/05/2022 at 04:18

https://doi.org/10.1088/1361-6463/ac2fd7
https://iopscience.iop.org/article/10.1088/1402-4896/ac065d
https://iopscience.iop.org/article/10.1088/1402-4896/ac065d
https://iopscience.iop.org/article/10.1088/1402-4896/ac065d
https://iopscience.iop.org/article/10.1088/0960-1317/24/12/125014
https://iopscience.iop.org/article/10.1088/0960-1317/24/12/125014
https://iopscience.iop.org/article/10.1088/0960-1317/24/12/125014
https://iopscience.iop.org/article/10.1088/1742-6596/2054/1/012081
https://iopscience.iop.org/article/10.1088/1742-6596/2054/1/012081
https://iopscience.iop.org/article/10.1088/1742-6596/2054/1/012081
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstkU6aRbTjMjtKwLyIQxfCaaVKHYcSZH-aKnWWH-KZbCuM12IybQV5bHffSlIIRNJr3lSlzYCjxz9UuoI9SJSFIHWx9uFKUItd8-WQNtYDSlx9K3K1JIudee81033xHM56OdcJNupHmgNRtyhFFd198iL8gao_qyPxCmealKGhmHnSBQ7i8aP1-5HVRoN4V89IWMFpeNkrfMa7a9CMrpB1vOKLdWEIhQq5DxBBOsuv78EC_QtwhqqLtXO0974fW8Zm5tSzrI3uAJY2sT5LiUpqkoEACXCaMCLw&sig=Cg0ArKJSzAXol3mW85sH&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Journal of Physics D: Applied Physics

J. Phys. D: Appl. Phys. 55 (2022) 055303 (16pp) https://doi.org/10.1088/1361-6463/ac2fd7

Bandgap and wave propagation of
spring–mass–truss elastic metamaterial
with a scissor-like structure

Yingli Li1,2,4,∗, Hao Li1,3, Xiang Liu1 and Shiguang Yan1

1 Key Laboratory of Traffic Safety on Track (Central South University), Ministry of Education,
School of Traffic and Transportation Engineering, Central South University, Changsha 410075,
People’s Republic of China
2 Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South
University, Changsha, People’s Republic of China
3 National & Local Joint Engineering Research Center of Safety Technology for Rail Vehicle, Central
South University, Changsha, People’s Republic of China
4 State Key Laboratory of High Performance Complex Manufacturing, Central South University,
Changsha, People’s Republic of China

E-mail: liyingli@csu.edu.cn

Received 18 May 2021, revised 4 October 2021
Accepted for publication 14 October 2021
Published 28 October 2021

Abstract
Inspired by the inertial amplification mechanism and bandgap characteristic of periodic
structures, a type of scissor-like elastic metamaterial is studied for low-frequency vibration
attenuation in this paper. Firstly, the 1DOF (degree of freedom) scissor-like chain consisting of
masses, trusses, and springs is investigated. The formation of inertial amplification is illustrated,
that is, input horizontal movements are converted into larger vertical movements of vertex
masses by a scissor-like structure. The resonance and anti-resonance phenomena in
transmission curves are explained. Especially, the optimal configuration for low-frequency
attenuation is obtained by analytical expressions of the dispersion relation. Then, a 2DOF
spring–mass–truss chain is considered to open a bandgap below the vibration attenuation range
of the 1DOF chain. The relative movement of masses at different frequencies is explored to
understand the bandgap generation. The influence of parameters including the mass ratio,
tensile stiffness ratio, shear stiffness ratio, and angle on bandgap boundaries is discussed.
Finally, the spatial propagation of a wavelet packet is presented to illustrate the efficiency of the
proposed structure in terms of minimizing a broadband excitation transmission. The transmitted
component of a wavelet packet through three units of the proposed structure is only 3.8%,
which is 22.8% of that through the classic 1D local resonance metamaterial.

Keywords: vibration attenuation, scissor-like structure, low-frequency bandgap,
inertial amplification

(Some figures may appear in colour only in the online journal)

1. Introduction

Developing systems to attenuate low-frequency structural
vibrations, i.e. the vibration that can propagate long distances

∗
Author to whom any correspondence should be addressed.

without mitigation, has applications to acoustic and elastic
vibration suppression [1, 2], including railway vehicles
[3, 4]and automobiles [5], among many others. In various
industrial engineering, mechanical vibration is regarded as
a negative issue that degenerates the equipment service life,
working accuracy, and efficiency. In particular, low-frequency
vibration control is a challenge due to its inherent relationship
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with mass and stiffness, which is often achieved at the cost of
increasing the mass or reducing the stiffness of a system.

The scissor-like structure is a kind of classical vibration
isolation structure [6–8]. Jing et al applied a scissor-like vibra-
tion isolation platform to the vehicle seat suspension, which
has better vibration attenuation capacity comparing with the
quasi-zero-stiffness device [6]. In addition, they studied a
novel X-shaped bio-inspired anti-vibration structure [7, 8],
which was applied to an operating hand-held jackhammer.Wei
et al developed a scissor-like energy harvesting system with
equivalent nonlinear damping, which has better loading per-
formance as four linear springs are assembled on two sides of
the scissor-like structure [9]. These studies mainly focus on
the vibration isolation of platforms composed of several lay-
ers of scissor-like structure, which is still limited by the mass
and stiffness of a system.

The propagation regulation of elastic or acoustic waves
in periodic metamaterial structures has attracted much atten-
tion [10, 11]. Unusual behaviors, such as negative material
constants [12–14] can be obtained by elastic metamaterials.
However, one of the main focus areas is to obtain bandgaps,
which can block wave propagation at certain frequency ranges
[15, 16]. Hence, some scissor-like structures are proposed as
origami-based metamaterials, the geometrical configurations
and mechanical properties of which are beneficial for design-
ing the devices subjected to vibration or impact [17–19]. For
example, Yasuda et al investigated a rigid folding origami
metamaterial chain, which exhibits the intrinsic tunability of
its behavior of vibration attenuation by altering excitation
and geometrical parameters [17]. Xu et al studied the coup-
ling characteristics in origami metamaterials to tune and rich
bandgap regulation [19]. To obtain low bandgaps by metama-
terials including origami metamaterials, one needs large-sized
structures, heavy resonators, or low stiffness, but these condi-
tions are not conducive to practical purposes.

Recently, inertial amplification was introduced to the
elastic metamaterials [20–22]. With the inertial amplification
mechanism [23, 24], large effective inertia can be achieved for
low-frequency bandgaps by a small mass. Yilmaz et al proved
the effect of inertial amplification on possessing low bandgap
via 2D periodic lattice [20, 23]. Frandsen et al attached the
inertial amplification elements to a host structure to obtain
wide low bandgaps with as much as 20 times less mass com-
pared to a classical local resonator bandgap [22]. Meanwhile,
scissor-like structures composed of trusses and springs are also
the basic element of the inertia amplification structure. Ben-
netts et al compared the bandgap of three types of cross-link
structures induced by inertial amplification [24]. Yuksel et al
achieved an ultrawide stop band in 2D elastic metamaterial
with topologically optimized inertial amplification mechan-
isms by the finite element method [21]. Many of these studies
are carried out based on discrete mass models, which allow
analytical derivation and facilitate the analysis of the bandgap
generation [25–27].

Overall, the bandgap of periodicmetamaterials may expand
the vibration attenuation frequency range of the classical

scissor-like vibration isolation platforms, and the inertial amp-
lification mechanism can extend the bandgap to ultra-low-
frequency. Therefore, we attempt to attach additional masses
to the joint of a scissor-like structure and assemble it period-
ically to seek a low-frequency vibration attenuation range.

In this paper, the elastic wave bandgap and vibra-
tion propagation property of a type of scissor-like peri-
odic metamaterial consisting of masses, massless trusses,
and springs are studied. Firstly, the 1DOF spring–mass–
truss (SMT) chain is proposed based on traditional scissor-
like vibration isolation platforms. Then, a 2DOF SMT chain
is obtained by changing adjacent parameters to generate a
bandgap below the vibration attenuation range of the 1DOF
chain. In both models, the analytical expressions of bandgap
boundaries are obtained to tune structural parameters for lower
and wider attenuation range. Considering the practical applic-
ation potential, the vibration transmission is investigated to
verify the bandgap obtained by Bloch’s theorem. Meanwhile,
the displacement amplitudes of masses at different frequencies
are presented to understand the bandgap generation. Finally,
the spatial propagation of a wavelet packet is analyzed to illus-
trate the broadband excitation attenuation performance of the
proposed structure. This work may be of significance for the
design of vibration attenuation in engineering.

2. 1DOF spring–mass–truss (SMT) chain

Scissor-like structures composed of massless rigid trusses and
springs are used as vibration isolation platforms or elastic
metamaterials extensively [20, 24, 28–30]. With regards to the
bandgap of periodic metamaterial, the scissor-like structure is
assembled periodically to seek further vibration attenuation
in the bandgap range. Since both vibration attenuation and
bandgap frequency depend on themass and stiffness of the sys-
tem, masses are attached to the connections of trusses, forming
an inertia amplification element for low-frequency bandgaps.
Therefore, the bandgap and vibration behavior of the periodic
SMT metamaterial with scissor-like and inertia amplification
structure is investigated.

2.1. Analytical model

The infinite periodic SMTmetamaterial considered in figure 1
consists of two monoatomic chains. Each monatomic chain
is composed of masses m and springs with tensile stiffness K
and shear stiffnessG. The adjacent masses of twomonoatomic
chains are attached to intersection massesM by four rigid and
massless truss members that are symmetrically assembled like
a scissor, where the trussesmake an angleαwith the horizontal
direction. The massless rigid trusses and masses are hinged
while the spring is fixed to adjacent vertex masses m. The jth
unit cell is shown in the dashed box in figure 1.

Similar to the scissor-like energy harvesting system [9],
the proposed structure with springs at the bottom and top in
figure 1 is more stable than most existing scissor-like discrete
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Figure 1. Infinite periodic 1DOF SMT chain, involving two monoatomic chains attached to intersection masses M by four rigid and
massless trusses.

mass models with springs in the middle. Set the origin of y
direction at masses M, and only the horizontal displacement
along the x axis ofM is considered. In contrast, vertex masses
m can move along both the x and y axes. The distance of two
adjacent unit cells is denoted as lattice constant L.

From geometrical relations based on the assumption of
small displacements, we have

v1
( j) =

1
2

√
D2 − 2∆UL−∆U2 − D

2

≈− L
2D

∆U− L2 +D2

2D3
∆U2 − . . .

=− L
2D

(
U( j+1)

1 −U( j)
1

)
(1)

where∆U= U( j+1)
1 −U( j)

1 .
Therefore, the linear relationship of displacements between

the masses m and M is
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(
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1

)
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1
2
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(
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where γ = cot(α) = L/D is a tunable geometrical parameter,
and symbols u( j)1 and v( j)1 represent the horizontal and vertical
displacements of mass m in the jth unit cell, respectively.

Based on Lagrange’s Equation and equation (2), the
equations of motion of the jth unit cell can be derived as

M
d2U( j)

1

dt2
+m

(
d2u( j)1

dt2
+

d2u( j−1)
1

dt2

)
+m

(
d2v( j)1

dt2
−

d2v( j−1)
1

dt2

)
γ

+K
(
2u( j)1 − u( j+1)

1 − u( j−1)
1

)
+K

(
2u( j−1)

1 − u( j)1 − u( j−2)
1

)
+G

(
2v( j)1 − v( j+1)

1 − v( j−1)
1

)
γ−G

(
2v( j−1)

1 − v( j)1 − v( j−2)
1

)
γ
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According to Bloch’s theorem, the harmonic wave solution
of the jth unit cell can be assumed as

U( j)
1 = A( j)

1 ei( jqL−ωt). (4)

In equation (4), U( j)
1 is the displacement of mass M in the

jth unit cell, A( j)
1 is the amplitude of displacement U( j)

1 , q rep-
resents the wavenumber, and ω is the angular frequency. By
substituting equation (4) into equation (3), the dispersion rela-
tion between q and ω reads

ω2 =
2K(1+ cos(qL))+ 2G(1− cosqL)γ2

M+m((1+ γ2)+ (1− γ2)cosqL)
(1− cosqL) .

(5)

In equation (5), the maximum value of frequency inside the
irreducible Brillouin zone (0⩽ qL⩽ π) is defined as the cut-
off frequency, and beyond which no wave could propagate.

The dispersion relation of a standard monoatomic chain
[27] composed of masses m∗ and springs K∗ can be expressed
as ω2 = 2K∗(1− cosqL)/m∗. The denominatorm∗ is the iner-
tial part of a general monoatomic chain, which is equal to
the actual mass of one unit cell. Similarly, the denominator
M+m((1+ γ2)+ (1− γ2)cosqL) in equation (5) is defined
as the effective inertial part of the 1DOF SMT chain. It could
be concluded that the effective inertial part is greater than or
equal to the actual mass M + 2m when γ > 1, i.e. α < π/4.
The inertial amplification factor is defined as

Ia =
M+m

((
1+ γ2

)
+
(
1− γ2

)
cosqL

)
M+ 2m

. (6)

The inertial amplification factor can be made arbitrarily
large by increasing the geometrical parameter γ, i.e. decreas-
ing the angle α. However, a small angle does not mean a
low cut-off frequency since the numerator in equation (5) also
increases with the decrease of angle α if the shear stiffness
G is considered. Similarly, the stiffness amplification factor is
defined as

Sa =
K(1+ cos(qL))+G(1− cosqL)γ2

K
. (7)

The effect of inertial amplification on reducing cut-off fre-
quency is weakened due to the existence of stiffness ampli-
fication factor caused by shear stiffness. Broad low bandgaps
are harder to obtain due to the existence of transverse shear
modes, which is an indispensable material property in solids
[31]. Therefore, it is significant to consider the shear stiffness
and seek the lowest cut-off frequency under its effect.
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Figure 2. Variation of (a) inertial amplification factor with the angle; (b) stiffness amplification factor with the angle.

Figure 3. Schematic of n layer finite periodic structure of 1DOF SMT chain. Both ends are fixed on the plate and U(0)
1 is a time-harmonic

excitation.

The cut-off frequency of the 1DOF SMT chain is strongly
associated with the inertial amplification factor in equation (6)
and stiffness amplification factor in equation (7). The depend-
ence of two amplification factors on parameters is discussed
in figure 2.

Figure 2(a) shows the relations between the inertial amp-
lification factor and angle α with M= 1 Kg and m= 2 Kg.
The inertial amplification factor decreases with the increase
of angle α, which is greater than 1 when α < π/4 for all
wavenumbers in figure 2(a). For example, it increases from
4.86 to 11.34 with the angle decreases from π/8 to π/12 when
qL= π.

Figure 2(b) shows the variation of stiffness amplification
factor with the angle in the case of K = 1× 107 Nm−1

and G = 1× 106 Nm−1. The stiffness amplification factor is
only 2.79 with α= π/12 and qL= π, which is smaller than
the inertial amplification factor 11.34, demonstrating that the
1DOF SMT chain can generate a lower cut-off frequency than
the standard monoatomic chain despite the existence of shear
stiffness.

To verify the dispersion relation of the above infinite 1DOF
SMT chain, response behaviors of the n-period structure sub-
jected to a harmonic excitation are studied. The two ends of

the finite period structure are fixed to the plates, as shown in
figure 3.

Assume a plane time-harmonic displacement U(0)
1 =

A(0)
1 e−iωt is applied to the left base plate as an input excitation.

The motion equations of the finite structure can be written as

(K−ω2M)U= F (8)

whereM= Diag[ M1 M2 . . . Mn ] is the mass matrix,K
is the generalized stiffnessmatrix,U is the displacement vector
of middle intersection masses M, F is the excitation vector as
F= F0e−iωt.

The vibration transmission is defined as

η = 20log10

∣∣∣A(n)
1

/
A(0)
1

∣∣∣ (9)

where A(0)
1 = 1 is the displacement amplitude of input excit-

ation at the left end, and A(n)
1 is the amplitude of output dis-

placement U(n)
1 at the right end.

In the vibration transmission curves, there are some posit-
ive peaks and negative peaks, which are rarely explained and
computed analytically. In fact, it is the resonance and anti-
resonance phenomena of a multi-degree system.

4



J. Phys. D: Appl. Phys. 55 (2022) 055303 Y Li et al

The positive peaks indicate that the output displacement is
larger than the input displacement caused by the resonance of
the finite structure. Resonance refers to the state that a struc-
ture produces the largest possible response to an applied excit-
ation at some specific frequencies, which are the resonance
frequencies of the structure. From the perspective of energy
conservation, the resonance process is a process of accumu-
lating energy. The accumulated energy comes from the input
of external energy before reaching the resonance frequency.

As for the negative peaks in vibration transmission curves,
it is caused by the anti-resonance of the finite structure. Anti-
resonance refers to the phenomenon that the displacement of
a part of the system is significantly small under some specific
frequencies excitation, which is an opposite vibration case to
the resonance [32].

The resonance and anti-resonance frequencies can be
obtained by the motion equations of the finite period structure.
For instance, the displacement amplitude of the jth massM of
the n-period structure in figure 3 can be expressed as

A( j)
1 =∆j(ω)/∆(ω) ( j= 1,2, · · · ,n) (10)

where ∆(ω) is the determinant of the eigenvalue matrix D=
K−ω2M in equation (8). Meanwhile, ∆j(ω)is the determin-
ant of a matrix obtained by replacing the jth column element
of the eigenvalue matrix D with excitation amplitude vector
F0.

It is obvious that the amplitude A( j)
1 tends to be infinite if

the denominator ∆(ω) = 0 in equation (10). Hence, the solu-
tion of∆(ω) = 0 corresponds to resonance frequencies of the
structure. The number of resonance frequencies is equal to the
number of DOF of the finite periodic structure.

In contrast, the monitor ∆j(ω) = 0 indicates that the jth
mass is almost static, the solution of which has n− 1 posit-
ive roots for an n-DOF system and corresponds to the anti-
resonance frequencies of the jth mass. However, it is worth
noting that only the positive real root is the anti-resonance fre-
quency of the structure.

2.2. Numerical results

In this subsection, the band structure of the 1DOF SMT chain
is studied by the dispersion relation in equation (5), and the
vibration transmission of finite periodic system in figure 3with
16 units also is computed by equation (9) to verify the disper-
sion relation.

Figure 4 shows the dispersion curve and transmission curve
of the 1DOFSMT chainwith the parameters in table 1. In addi-
tion, the cut-off frequency of a standard monoatomic chain
is also plotted in figure 4 to evaluate the performance of the
SMT chain on low-frequency vibration attenuation. The mass
of the monoatomic chain m∗ =M+ 2m= 5 Kg is selected as
the total mass of the SMT chain, and the tensile stiffness is
assuming as K∗ = 2K = 2× 107 Nm−1 since two springs at
the bottom and top in figure 1 are connected in parallel.

In figure 4(a), the cut-off frequency of the 1DOF SMT
chain (440.8 Hz) is much lower than that of the standard
monoatomic chain (636.6 Hz) duo to the inertial amplifica-
tion. In figure 4(b), the transmission curve of the SMT chain
is in black solid curve and it is smaller than zero at frequen-
cies above the cut-off frequency, which agrees well with the
dispersion curve predicted by Bloch’s theorem. The purple
dashed lines in figure 4(b) represent 16 resonance frequen-
cies obtained by the denominator ∆(ω) = 0 in equation (10),
which strictly correspond to the resonance peaks in the trans-
mission curve. Specific values of each order resonance fre-
quency are listed in table 2.

As the transmission curve in figure 4(b) describes the dis-
placement amplitude of the last mass in the right end, only
anti-resonance frequencies of A(16)

1 should be computed by the
numerator∆16(ω) = 0 in equation (10). However, the solution
of ∆16(ω) = 0 for anti-resonance only has one positive real
root f= 490.5Hz (red dash-dot line) in figure 4(b), which falls
in the Bragg bandgap, causing the strongest vibration attenu-
ation and reaching −150 dB.

Then, figures 4(c) and (d) demonstrate the effect of shear
stiffness on the band structure and transmittance curve with a
smaller shear stiffnessG = 1× 106 Nm−1 and other material
properties keep the same as table 1. As a result, the cut-off
frequency of the 1DOF SMT chain in figure 4(c) (234.5 Hz)
is much lower than that in figure 4(a) (440.8 Hz), which is
only 36.8% of the monoatomic chain (636.6 Hz), illustrating
advantages of the SMT chain on the low-frequency vibration
attenuation and bandgap regulation. It is noted that the cut-
off frequency in figure 4(c) does not appear at qL= π and the
dispersion curve presents negative group velocity, which will
be discussed in the next subsection.

Figure 4(d) presents 15 negative peaks in the transmittance
curve, which strictly correspond to the 15 anti-resonance fre-
quencies obtained by the solution of ∆16(ω) = 0 (red dash-
dot lines). The values of 15 anti-resonance frequencies are
listed in table 3. The attenuation peak in figure 4(d) reaches
−263 dB, which is 75.3% deeper than that in figure 4(b),
demonstrating that multiple anti-resonance frequencies in
the Bragg bandgap enhance the vibration attenuation of the
system.

Different from figure 4, a special case with G= 0 N m−1

and α= π/4 is concerned, and the dispersion relation and
transmission curve are presented in figure 5. Under this spe-
cific set of parameters, some interesting phenomena are found
in the 1DOF SMT chain.

The dispersion curve in figure 5(a) is symmetric about qL=
π/2 as the dispersion relation in equation (4) can be simpli-
fied as (2m+M)ω2 = K(1− cos(2qL)). Therefore, the group
velocity is negative when qL is located in (π/2, π), which
indicates the energy transmission direction is opposite to the
output direction.

In figure 5(b), it is interesting to note that there are only
eight resonance peaks in the transmission curve of a 16 DOF
finite periodic chain, which is half of the resonance peaks in
figures 4(b) and (d). This difference can be explained by the

5
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Figure 4. Dispersion relation curves of the 1DOF SMT chain with: (a) the parameters in table 1; (c) the same parameters to (a) except
smaller shear stiffness G= 1× 106 N m−1; right-hand panels (b) and (d) are the transmission curves corresponding to (a) and (c). The
dispersion curves for the monatomic chain are in black dashed curves.

Table 1. The parameters used in 1DOF SMT chain.

Mass value (Kg) Stiffness value (N m−1) Angle (rad)

M= 1 m= 2 K = 1 × 107 G = 4× 106 α= π/8

Table 2. Resonance frequency in figure 4(b).

Item Resonance frequency (Hz)

Order f1 f2 f3 f4 f5 f6 f7 f8
Value 32.5 91.9 146.1 193.0 233.1 267.9 298.3 325.3
Order f9 f10 f11 f12 f13 f14 f15 f16
Value 349.2 370.3 388.7 404.5 417.4 427.6 434.9 439.3
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Table 3. Anti-resonance frequency in figure 4(d).

Item Anti-resonance frequency (Hz)

Order f1 f2 f3 f4 f5 f6 f7 f8
Value 222.3 222.3 224.2 224.2 230.1 230.1 233.7 264.0
Order f9 f10 f11 f12 f13 f14 f15 /
Value 290.3 320.8 352.8 383.3 409.8 430.2 443.0 /

Figure 5. (a) Dispersion relation and (b) transmission curve with G= 0 N m−1 and α= π/4.

Figure 6. Displacement amplitude field in space of: (a) intersection masses M under the first three order resonance frequencies
f = 32.1 Hz (black curve), f = 93.3 Hz (red curve) and f = 146.3 Hz (blue curve); (b) massesM (black curve) and m (red and blue curves
represent the amplitude of horizontal and vertical displacement) with f = 445Hz above the cut-off frequency.

degeneration of equation (3) withG= 0 N m−1 and α= π/4,
which can be rewritten as

M
d2U1

( j)

dt2
+ 2m

d2U1
( j)

dt2
+

1
2
K(2u1

( j) − u1
( j+2) − u1

( j−2)) = 0.

(11)

It can be observed from equation (11) that the motion
equation of the jth mass only contains U1

( j−2), U1
( j) and

U1
( j+2). As a consequence, the movements of odd masses and

evenmasses are independent withG= 0 N m−1 andα= π/4.
Hence, there are only eight resonance peaks in the transmis-
sion curve and the evenmasses keep static if only the first mass
is excited.

Figure 6 shows the displacement amplitudes of masses to
discuss the resonance phenomenon detailly and understand
the inertial amplification mechanism clearly with the same
parameters as figure 4(b). In figure 6(a), the displacement

7
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amplitudes of all intersection masses M under the first three
resonance frequencies are plotted. The vibration of the struc-
ture is extremely violent under the resonance frequencies, and
the amplitude variation along the cell number is similar to the
mode shape of a cantilever beam. Since the right end of the
finite periodic system is free, all of themaximum displacement
amplitudes appear at the last intersection mass in the right end,
which are more than 25 times the input excitation.

Figure 6(b) depicts the displacement amplitudes of masses
M and m with f = 445 Hz, which is above the cut-off fre-
quency in figure 4(a).U( j)

1 denotes the displacement amplitude

of jthmassM of the finite periodic structure in figure 3, u( j)1 and

v( j)1 represent the horizontal and vertical displacement amp-
litudes for m in the jth unit respectively. All displacements
decay to zero as the number of unit cells increases, which
indicates the vibration attenuation along the chain. The ver-
tical vibration of m has the largest amplitude, illustrating that
the horizontal displacement of intersection mass M is mainly
converted into the vertical motion ofm by scissors-like trusses.
It can be found from equation (2) that the smaller the angle, the
larger the vertical displacement ofm, which has the same trend
as the amplification effect of inertia in equation (5). Therefore,
the inertial amplification mechanism can be understood as the
amplification of displacement, i.e. the movement of intersec-
tion masses M is converted into amplified vertical movement
of vertex masses m by a scissor-like structure.

2.3. Effect of parameters on bandgap

To seek a lower frequency attenuation range by optimizing
the structure parameters, the effect of parameters on the cut-
off frequency is investigated in detail in this subsection. Basic
parameters are selected asM= 1 Kg, K= 1× 107 N m−1 and
dimensionless parameters are defined as λ= G/K, µ= m/M.

It has been found in figure 4(c) that the cut-off frequency
fcut of the 1DOF SMT chain does not always appear at qL= π.
The concept of group velocity is introduced here to get the
analytical expression of fcut. In the dispersion ω− q diagram,
the group velocity of a wave group or packet is given by the
slope of dispersion curves, i.e. vg = dω/d(qL).

The solution of group velocity vg = 0 with respect to
wavenumber q can be obtained by the implicit differentiation
of equation (5). One of the roots is a constant qL= π, and the
other variable root is defined as q∗, which can be expressed as
equation (13). If the variable root q∗in equation (13) satisfies
0< q∗L< π, the obtained wave number q∗ corresponds to the
cut-off frequency. Otherwise, the cut-off frequency appears at
qL= π (including λ= 1

/
γ2 in equation (13))

cos(q∗L) =


(
λγ2 − 1

)(
1+µ+µγ2

)
+
√
ψ

µ(γ2 − 1)(λγ2 − 1)
γ2 ̸= 1 &&

1
λ

λ

λ− 1
γ2 = 1

(12)

where ψ = (1+ 2µ)
(
λγ2 − 1

)(
(λ+ 2(λ− 1)µ)γ2 − 1

)
.

The critical stiffness ratio λcr making 0< q∗L< π can be
solved by the expression in equation (12). By substituting
qL= q∗L (λ < λcr) and qL= π (λ⩾ λcr) into equation (5), the
piecewise function fcut can be determined as

fcut =



2
√

2λγ2√
1+ 2µγ2

f0 λ ⩾ λcr

2

√(
1+µ+(µ−λ(1+ 2κ))γ2 −

√
ψ
)

µ2(γ2 − 1)2
f0 λ < λcr√

2
(1−λ)(1+ 2µ)

f0 λ < λcr && γ = 1

(13)

where f0 =
√
K/M
2π and λcr =

1+2µγ2

2γ2(1+µ+µγ2) .
Each curve in figure 7 depicts the variation of cut-off fre-

quency fcut with assembly angle α under different stiffness
ratios λ and mass ratios µ. Firstly, the cut-off frequency shifts
to lower frequencywith the increase ofmass ratio fromµ= 0.5
(in blue dash-dotted curves) to µ = 2 (in red dashed curves)
and then to µ = 4 (in black solid curves) in each subfigure of
figure 7.

Then, the effect of shear stiffness is investigated by assum-
ing λ = 0.05, 0.2 and 0.4 from figures 7(a)–(c) as the
maximum of shear stiffness is constrained by the relation
between three elastic constants of isotropic material. Intuit-
ively, the cut-off frequency fcut increases with the stiffness
ratio λ.

Figure 7 shows the cut-off frequency fcut is sensitive to
angle, indicating that the angle α is a crucial design parameter.
In general, fcut first decreases before inflection points (in red
triangle markers) and then increases with angle α. The inflec-
tion points in figure 7 represent the minimum value of fcut,
whichmeans the lowest vibration attenuation frequency range.
It is interesting to notice that the lowest cut-off frequency is
near to the black circle marker in figure 7, which is the piece-
wise point of the piecewise function fcut at λ= λcr. There-
fore, the piecewise point can be obtained by the expression
of λcr to predict the value and location of the lowest cut-off
frequency.

3. 2DOF spring–mass–truss (SMT) chain

In the previous section, there is only one dispersion curve in
the 1DOF SMT chain and the low cut-off frequency is desired
for low-frequency vibration attenuation. Other than decreas-
ing the cut-off frequency, increasing the number of bandgaps
is another effective method to lower and widen the vibra-
tion attenuation range. One method of increasing bandgap is
to attach some resonators according to the Locally Reson-
ant mechanism. The other is based on the Bragg Scattering
mechanism, i.e. a bandgap can be generated by using different
materials to adjust elastic waves. For the discrete mass models,
a heterogeneous medium for generating Bragg bandgap can be
achieved by changing adjacent mass, connection stiffness, or
geometric parameters.

8
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Figure 7. Variation of the cut-off frequency with angle α under different mass ratios µ when: (a) stiffness ratios λ= 0.05; (b) λ= 0.2;
(c) λ= 0.4. The red triangle marker is the inflection point of cut-off frequency and the black circle marker is the piecewise point of
piecewise function fcut.

Figure 8. Infinite periodic 2DOF SMT chain.

3.1. Dispersion relation analysis

In this section, the 2DOF SMT chain is proposed in figure 8 to
generate a lower bandgap. It is modified from the 1DOF SMT
chain by varying the masses and springs of two adjacent basic
units alternatively, resulting in the lattice constant becoming
2L. One unit cell in figure 8 consists of two main masses M1

and M2in the middle intersection, two diatomic chains in the
upper and lower chain separately, as shown in the dashed box.
Each diatomic chain is composed ofmassesm1 andm2, springs
K1 (with shear stiffness G1) and K2 (with shear stiffness G2).

The equations of motion can be given by

M1
d2U( j)

1

dt2
+m1

d2u( j)1

dt2
+m1

d2v( j)1

dt2
γ+m2

d2u( j−1)
2

dt2

−m2
d2v( j−1)

2

dt2
γ+K1

(
u( j)1 − u( j)2

)
+K1

(
u( j−1)
2 − u( j−1)

1

)
+G1(v

( j)
1 − v( j)2 )γ+ 2G2

(
v( j)1 − v( j−1)

2

)
γ

−G1

(
v( j−1)
2 − v( j−1)

1

)
γ = 0

M2
d2U2

( j)

dt2
+m2

d2u( j)2

dt2
+m2

d2v( j)2

dt2
γ+m1

d2u( j)1

dt2

−m1
d2v( j)1

dt2
γ+K2

(
u( j)2 − u( j+1)

1

)
+K2

(
u( j)1 − u( j−1)

2

)
+G2

(
v( j)2 − v( j+1)

1

)
γ+ 2G1

(
v( j)2 − v( j)1

)
γ

−G2

(
v( j)1 − v( j−1)

2

)
γ = 0. (14)

By using ansatz U( j)
1,2 = A1,2ei(2jqL−ωt) and small displace-

ments assumption, the equations of motion can be written in
the following matrix form

(
B11 B12

B21 B22

)(
A1

A2

)
=

(
0
0

)
(15)

9
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Figure 9. Dispersion relation of 2DOF SMT chain with: (a) µ1,2 = 0.5, λ1,2 = 1; (b) µ1 = 0.25; (c) µ2 = 0.25; (d) is the transmission curve
corresponding to (c). The black dot curves are the dispersion relation of the 1DOF SMT chain.

where



B11 = 2K1 + 2(2G2 +G1)γ
2 −
(
2M1 +(m1 +m2)(1+ γ2)

)
ω2

− 2
(
K1 −G1γ

2
)
cos(2qL)

B21 =−m1ω
2 −
(
2(G1 +G2)−m1ω

2
)
γ2

− e−2iqL
(
2(G1 +G2)γ

2 −m2

(
γ2 − 1

)
ω2
)

B21 =−m1ω
2 −
(
2(G1 +G2)−m1ω

2
)
γ2

− e2iqL
(
2(G1 +G2)γ

2 −m2

(
γ2 − 1

)
ω2
)

B22 = 2K2 + 2(2G1 +G2)γ
2 −
(
2M2 +(m1 +m2)(1+ γ2)

)
ω2

− 2
(
K2 −G2γ

2
)
cos(2qL)

.

(16)

The dispersion relation can be obtained by setting the determ-
inant of the coefficient matrix to zero.

The dimensionless parameters are defined as µ1 =
M2/(M1 +M2), µ2 = m2/(m1 +m2) and λ1 = K2/K1, λ2 =
G2/G1. In the numerical analysis, the total mass is fixed as
M1 +M2 = 2 Kg and m1 +m2 = 4 Kg to seek the better mass
configuration without an additional increase of the system
mass. Basic parameters are selected as:K1 = 1× 107 N m−1,
G1 = 4× 106 N m−1 and α= π/8.

Figure 9 shows the dispersion curves of the 2DOF SMT
chain with different mass ratios µ1 and µ2. Meanwhile, the
black dotted curves are the dispersion curves of the 1DOF
SMT chain. In figure 9(a), adjacent parameters of the 2DOF
SMT chain are the same as table 1 (µ1,2 = 0.5, λ1,2 = 1), res-
ulting in the structure in figure 8 being reduced to the 1DOF
SMT chain. However, a supercell is formed due to the lattice
constant shifts from L to 2L, and the Irreducible Brillouin zone
becomes (0, π/2L). Therefore, the dispersion curves of the
2DOF SMT chain have two branches, which can be obtained
by folding the dispersion curve of the 1DOF chain about π/2
at 339.3 Hz.

In figure 9(b), only two adjacent intersection masses M1,2

are changed as µ1 = 0.25, i.e.M1 = 1 Kg andM2 = 3 Kg. The
wave propagation speed is low in heavy or soft mediums but
high in light or hard mediums, resulting in the separation of
two branches and the generation of a bandgap at 333.7 Hz–
345.3 Hz. The mass distribution of m1 and m2 has less effect
on opening the bandgap. In the following analysis, keepM1 =
M2 = 1 Kg unless otherwise stated.

Similar to figure 9(b), we solely change adjacent ver-
tex masses m1,2 as µ2 = 0.25 in figure 9(c). It is shown
that changing different adjacent parameters has different per-
formance on opening bandgap. The bandgap width with the
same parameter ratio in figure 9(c) (µ2 = 0.25) is 120.1 Hz,
while the width of the bandgap in figure 9(b) (µ1 = 0.25)
is 11.6 Hz. Moreover, both bandgaps in figures 9(b) and (c)
are below the cut-off frequency of the 1DOF chain, illus-
trating that it is a practical method to generate an aimed
bandgap.

The corresponding transmission curve to figure 9(c) is plot-
ted in figure 9(d). In the simulations, the finite periodic system
is composed of 40 unit cells and the vibration attenuation range
is in great agreement with the bandgap in figure 9(c).

In figure 9, there is a bandgap between the lower and
upper branches, which does not exist in the 1DOF SMT
chain. Figure 1 illustrates the displacement amplitude in spa-
cial fields of intersection masses M with the excitation fre-
quencies f= 100Hz and f= 440.7Hz, which are at the first
and second branches in figure 9(c) respectively. The red and
blue markers represent the odd and even number intersec-
tion masses M. It is evident that two neighboring intersection
masses move in phase at the lower dispersion curve (acous-
tic branch) in figure 10(a) and out of phase at the upper curve
(optical branch) in figure 10(b), respectively.

The generation of bandgap in figure 9 is mainly benefited
from the separation of acoustic and optical branches at qL=
π/2, in which the values are defined as fbou1 and fbou2. Never-
theless, the width of the bandgap also depends on the starting
value of the optical branch at qL= 0, which is defined as fbou3.

10
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Figure 10. Displacement amplitude of intersection masses M in space with 40 unit cells at: (a) the acoustic branch f= 100Hz; (b) the
optical branch f= 440.7Hz in figure 9(c).

Three decisive values for the existence and width of bandgap
can be expressed as

fbou1 = facoustic|qL = π/ 2 =
1
2π

√
φ1 −

√
φ1

2 − 4φ2φ3

2φ2

fbou2 = foptical|qL = π/ 2 =
1
2π

√
φ1 +

√
φ1

2 − 4φ2φ3

2φ2

fbou3 = foptical|qL = 0 =
γ

2π

√
5G1 (1+λ2)(

1+µ1 −µ2
1

)
+ γ2

(17)

where

φ1 = K1
(
1+µ1 + γ2

)
+K1

(
2−µ1 + γ2

)
λ1

+G1γ
2
(
2+µ1 (λ2 − 1)+λ2 + γ2 (1+λ2)

)
φ2 = 1− (µ1 − 1)µ1 + 5γ2 − 4(µ2 − 1)µ2

(
γ2 − 1

)2
φ3 =

(
K1λ1 +G1γ

2
)(
K1 +G1γ

2λ2
)
. (18)

According to equation (17), it turns out that the starting value
of the optical branch fbou3 is closely related to the shear stiff-
ness G1 (1+λ2). The width of the 2DOF SMT chain bandgap
will be severely affected if fbou3 in figure 9(a) is too small or
even lower than fbou1. Specifically, fbou3 = 0 when G1 = G2 =
0, and there is no bandgap no matter what other parameters
are selected. It is suggested to generate a bandgap by changing
adjacent parameters when fbou3 > fbou1. The critical shear stiff-
ness Gcr for the condition of bandgap existence fbou3 = fbou1
can be obtained from equation (17), as shown in equation (20)

Gcr =

(
M+ 2mγ2

)
K

γ2 (3M+ 4m+ 2mγ2)
. (19)

3.2. Effect of parameters on bandgap

To optimize the structure parameters for better performance
on low-frequency vibration attenuation, the influence of para-
meters including the mass ratio, tensile stiffness ratio, shear
stiffness ratio, and angle is analyzed in this subsection.

As shown in figure 11, the blue dashed, black dash-dot and
red solid lines represent three decisive values fbou1, fbou2 and
fbou3 in equation (17), respectively. Meanwhile, the shaded
area is the actual bandgap range.

Figure 11(a) demonstrates the dependence of bandgap
boundary frequencies on the mass ratio µ2, and other adjacent
parameters are the same as table 1. Furthermore, the case of
M1,2 = 0 is also considered to discuss the effect of intersection
masses M, which is presented by the curves with circle mark-
ers. The difference of bandgap boundary is very small between
M1,2 = 0 and M1,2 = 1 Kg (in curves without circle markers),
thus the presence of intersection masses M is meaningless for
the bandgap generation.

In figure 11(a), there is no bandgap with µ2 = 0.5 because
the acoustic and optical branches intersect at 339.3 Hz, as
shown in the dispersion curves in figure 9(a). With the mass
ratio µ2 away from µ2 = 0.5, the acoustic branch goes down
from 339.3 Hz at qL= π/2 as one ofm1 andm2 becomes heav-
ier, which is reflected in the decrease of fbou1. Meanwhile, the
optical branch goes up from 339.3 Hz as the other of m1 and
m2 becomes lighter, which is reflected in the increase of fbou2.
The variation trend of the bandgap is that the greater the dif-
ference between m1 and m2, the lower and wider the bandgap,
until fbou2 reaches fbou3.

The variation of bandgap boundary frequencies with dif-
ferent tensile stiffness ratios λ1 and shear stiffness ratios λ2

11
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Figure 11. Variation of bandgap boundary frequencies with different: (a) mass ratios µ2; (b) tensile stiffness ratios λ1; (c) shear stiffness
ratios λ2; (d) angle α when µ2 = 0.25.

are then characterized in figures 11(b) and (c). Similar to
figure 11(a), there is no bandgap with λ1 = 1 or λ2 = 1, as
the acoustic and optical branches intersect at 339.3 Hz, i.e.
fbou1,2 = 339.3Hz. However, this intersection frequency f=
339.3Hz is unchanged with λ1 and λ2 in figures 11(b) and
(c), illustrating that one of the acoustic and optical branches
remains constant at qL= π/2.

In figures 11(b) and (c), the expressions of fbou1 and fbou2
can be rewritten as equation (21)

fbou1 =


1
2π

√
(1.5+ γ2)2(G1γ2 +K1λi)

1.25+ 5γ2 +(γ2 − 1)2
, λi ⩽ 1

339.3Hz , λi > 1

fbou2 =


339.3Hz , λi ⩽ 1

1
2π

√
(1.5+ γ2)2(G1γ2 +K1λi)

1.25+ 5γ2 +(γ2 − 1)2
, λi > 1

(20)

where i= 1 in figure 11(b) and i= 2 in figure 11(c).
It can be found fbou1 = 339.3Hz with λ1 > 1 or λ2 > 1 and

fbou2 = 339.3Hz with λ1 ⩽ 1 or λ2 ⩽ 1 in equation (20). Com-
pared with the parameters in table 1, spring K2 is softer when
λ1 ⩽ 1 or λ2 ⩽ 1. Therefore, the acoustic branch goes down
with a softer medium and the optical branch remains con-
stant as the coefficient of spring K1 is fixed. Conversely, the
optical branch goes up and the acoustic branch remains con-
stant with a harder medium when λ1 > 1 or λ2 > 1. The width
of the bandgap increases with shear stiffness ratios λ1,2 away
from λ1,2 = 1 until λ1 > 3.29 in figure 11(b) and λ2 < 0.19 in
figure 11(c).

Figure 11(d) discusses the effect of assembly angleα on the
bandgap with µ2 = 0.25, µ1 = 0.5 and λ1,2 = 1. The smaller
the angle α, the lower and wider the bandgap when α < π/4.
Therefore, it is easier to generate a bandgap when the SMT
chain has inertial amplification, as the inertial amplification
factor in figure 2(a) is greater than 1 only when α < π/4.
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Figure 12. Dispersion relation curves at points A, B, C, and D in figure 11(d) with: (a) α= π/7; (b) α= π/4; (c) α= 2π/7;
(d) α= 3π/8.

Figure 13. Finite chain structure containing: (a) six unit cells of classic local resonance system; (b) three unit cells of the 2DOF SMT chain.
Both ends are finite monatomic chains of length 150.

In figure 11, the upper boundary of the bandgap is lower
than the cut-off frequency of the 1DOF chain fcut = 440.8Hz
except for the right part of figure 11(c) with large shear stiff-
ness ratios λ2. The desired broad low bandgap can indeed be
obtained by tuning the structure parameters.

The shape of the dispersion curves varies with the structure
parameters, which are mainly reflected in the order of three
frequencies fbou1, fbou2 and fbou3. Figure 12 shows the wave dis-
persion curves of the 2DOF SMT chain with different angles
at points A, B, C, and D in figure 11(d). In figure 12(a), fbou2
determines the upper boundary of the bandgap, and the optical
branch is concave. Particularly, no bandgap in figure 12(b) due
to fbou1 = fbou2 with α= π/4. As fbou3 drops with the increase
of angle, the widths of bandgaps in figures 12(c) and (d) are

severely affected despite the separation of the acoustic and
optical branches.

3.3. Transient analysis under the action of wavelet packet

Based on the parameter analysis in section 3.2, the wide
bandgap below the cut-off frequency can be obtained by the
2DOF SMT chain. The vibration in engineering is mostly
caused by broadband excitation, and the wave packet is often
used to verify the attenuation of structures to broadband waves
[24, 33, 34].

In the next, the effectiveness of the proposed structure
on broadband wave attenuation is investigated. As shown in
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Figure 14. Dispersion relation curves of: (a) the classic local resonance system in figure 13(a); (b) the 2DOF SMT chain in figure 13(a).
The Fourier transform of the force F(t) is in the black dashed curve.

figure 13, a long and finite monatomic chain involving the pro-
posed 2DOF SMT system and classic local resonance system
in the middle is considered to monitor the wave space-time
domain evolution and attenuation of the input signal. The clas-
sic local resonance system in figure 13(a) is set as a reference
to evaluate the superiority of the proposed structure in broad-
band wave attenuation. It has been found that the intersection
masses are meaningless for the bandgap generation, so there
are no intersection masses in figure 13(b).

The left and right sides of the long finite chain in figure 13
are two monatomic chains of length 150, with masses m1 =
2 Kg and springs K1 = 1× 107 Nm−1. The middle of the
long finite chain is a vibration absorption or attenuation device.
Six unit cells of 1D periodic local resonant metamaterial
are connected in the middle in figure 13(a) with m2 = 2 Kg
and K2 = 1× 107 Nm−1. The middle vibration attenuation
device is replaced by three unit cells of the 2DOF SMT chain
in figure 13(b), and the total mass of the chain is fixed as
that in figure 13(a) by assumingm11 = 1 Kg,m12 = 3 Kg with
G1 = 4× 106 Nm−1, K1,2 = 1× 107 Nm−1 and α= π/8.

An incident wavelet packet propagates to the right along
the chain, which is generated by applying the force F(t) to the
leftmost mass, where

F(t) =


K1

2

(
1− cos

(
2πfctt
Ncy

))
cos(2πfctt) for t<

Ncy

fct
0 otherwise

(21)

in whichNcy is the number of packet cycles and fct is the central
wave frequency.

Figure 14 shows the dispersion curves for the two vibration
attenuation systems and the Fourier transform of the force F(t)

with Ncy = 5 and fct =
√
K2/m2/(2π) = 356Hz. The central

wave frequency fct is the frequency with the largest amplitude
in wave packet spectrum analysis, which is selected as the nat-
ural frequency of the resonator m2. For the classical local res-
onance system, vibration transmittance reaches the minimum
at the natural frequency of the resonator [35]. As shown in
figure 14(a), the bandgap of the classical local resonance sys-
tem is roughly centered around the central wave frequency fct
to make the wave packet transmission is as little as possible.
In figure 14(b), the bandgap of the 2DOF SMT chain is also
roughly centered around fct.

Figure 15 illustrates the spatial evolution of the incid-
ent wave packet along the chains in figure 13. As shown
in figures 15(a) and (c), the propagation of the incident
packet coincides exactly in the monatomic chain before it
spread to the classic local resonance system and SMT sys-
tem at t= 0.05 s (yellow marked area). Meanwhile, the incid-
ent packet has interacted with the middle vibration attenu-
ation device and been divided into a reflected component
and a transmitted component at t= 0.125 s, as presented in
figures 15(b) and (d). The shaded areas are the displacement
ranges.

In figure 15(b), the majority energy of the incident packet
is reflected by the classic local resonance system, and the
maximum amplitude of the transmitted component (0.14) at
t= 0.125 s in figure 15(b) is 16.7% of the incident wave packet
(0.84) at t= 0.05 s in figure 15(a). The result in figure 15(d)
is significant that only 3.8% of the wave packet transmits
the chain containing the 2DOF SMT system (0.032), which
is 22.8% of that through the classic local resonance sys-
tem (0.14). Hence, the results are sufficient to demonstrate
the superiority of the proposed structure in broadband wave
attenuation.
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Figure 15. Spatial profile of the evolution of the incident wave packet along the chains containing: (a), (b) six unit cells classic local
resonance system; (c), (d) three unit cells 2DOF SMT chain at t= 0.05 s (the left-hand panels) and t= 0.125 s (the right-hand panels). The
location of the vibration attenuation structure is shaded in yellow.

4. Conclusion

In this paper, the bandgap characteristic and wave propagation
behavior of a scissor-like elastic metamaterial are proposed
for low-frequency vibration attenuation. Firstly, the 1DOF
scissor-like SMT chain is studied, where the resonance and
anti-resonance frequencies strictly correspond to the positive
and negative peaks in transmission curves. The parameter con-
dition for the lowest cut-off frequency is obtained based on the
analytical expressions of dispersion curves.

Then, the 2DOF SMT chain is considered to generate an
additional wide bandgap below the cut-off frequency of the
1DOF chain. The bandgap will be closed if the shear stiff-
ness is too small, and the critical shear stiffness is sugges-
ted for bandgap generation based on the analytical expressions
of bandgap boundaries. The dependence of bandgap on struc-
ture parameters can be summed up as that bigger difference
between adjacent parameters or smaller angles are beneficial
to widen and lower the bandgap. Meanwhile, the presence of
intersectionmasses is meaningless for the bandgap generation.

Finally, the wave space evolution of an incident wave
packet is conducted to illustrate the broadband wave atten-
uation properties of the proposed scissor-like system. Only
3.8% of the input wave packet transmits the proposed struc-
ture lattice with three units, which is 22.8% of that through

the classic 1D local resonance metamaterial. The proposed
scissor-like metamaterial shows a tunable bandgap and strong
vibration attenuation of the broadband wave, based on the tra-
ditional scissor-like vibration isolation platform. Future work
should focus on numerical simulations and the experiment of
application-oriented structures.
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