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A B S T R A C T

The paper proposes a closed-form dynamic stiffness (DS) formulation for exact transverse free vibration analysis
of tapered and/or functionally graded beams based on Euler–Bernoulli theory. The novelties lie in both the DS
formulation and the solution technique. For the formulation, the developed DS is applicable to a wide range
of non-uniform beams whose bending stiffness and linear density are assumed to be polynomial functions
of position. This fills a gap of existing closed-form DS element library which is generally limited to linearly
tapered/functionally graded beams. For the solution technique, an elegant and efficient 𝐽0 count of tapered
element is proposed to apply the Wittrick-Williams (WW) algorithm most effectively. The investigation sheds
lights on the so-called 𝐽0 count challenge of the algorithm for other DS elements. The above two novelties
make exact and highly efficient modal analysis possible for a wide range of tapered and/or functionally graded
beams, without resorting to series solution, numerical integrations or refined mesh discretization. Results for
a particular case show excellent agreement with published results. Moreover, we investigate the effects of
the taper/functional gradient rate/index and boundary conditions on the free vibration behaviour. Benchmark
solutions are provided for individual beams as well as beam assemblies.
1. Introduction

Beam structures are commonly used as load bearing structures in
many engineering fields such as civil, aeronautical, mechanical and
electronic engineering. Such structures are often optimized to improve
the vibration and noise properties. For example, a tapered or function-
ally graded beam can be adopted for a light-weight design or specific
wave propagation effects, such as acoustic black hole effect [1], wave
propagation control [2], piezoelectric energy harvesting [3] amongst
many others including architectural considerations.

Of course, in order to design tapered beams, the finite element
method (FEM) is probably the most commonly used method in engi-
neering. When modelling such beams with continuously varying cross-
section or material, the FEM approximates the continuous beams by
the so called finite elements. The shape functions for each element
are assumed to be approximate polynomials, leading to separate and
frequency-independent element mass and stiffness matrices. Finally
the elemental matrices are assembled in the FEM resulting in global
stiffness and mass matrices with frequency as the eigenvalue parame-
ters in free vibration problem. This becomes a generalised eigenvalue
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problem which can be computed by usual linear algebra solvers. Based
on the uniform Bernoulli–Euler theory and the Timoshenko theory
respectively, Shahba et al. [4,5] derived arbitrarily tapered or axially
functionally graded beam elements and investigated their stability and
free vibration characteristics. Both free vibration and wave propa-
gation analysis of rotating Euler–Bernoulli tapered beams were also
reported [6] by using spectrally formulated finite elements. Rama-
lingerswara and Ganesan [7] investigated the harmonic response of
composite tapered beams by using FEM and a higher order shear defor-
mation theory based on a similar principle of higher order plate theory.
However, due to both the discretization of continuous function and the
approximation of the shape functions, only the lower order eigenvalues
could be accurately extracted from the FEM model. If one needs more
accurate results especially in the high frequency range, a much finer
mesh will be required, particularly for a tapered or functionally graded
beam than that for a uniform beam.

Meanwhile, analytical methods can serve as useful alternatives
whose advantages include accuracy, efficiency, convenience and
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physical-meaning clarity. For example, the Rayleigh–Ritz method is a
common analytical method. By employing the Rayleigh–Ritz method,
Abrate [8] performed the longitudinal vibration analysis of a variety of
tapered rods with quadratic polynomials for the area along the length;
Zhou and Cheung [9] established admissible functions representing the
solution to analyse the free vibration of a type of rectangular tapered
beams whereas the transverse vibration of rectangular Mindlin plates
with variable thickness was investigated in [10]. On the other hand, the
variational iteration method [11] was used to study the free vibration
of a linearly tapered beam mounted on two-degrees of freedom spring-
damper-mass subsystems. Huang and Lee [12] performed free vibration
analysis of axially functionally graded beams with non-uniform cross-
section based on the Bernoulli–Euler theory. The governing differential
equation with variable coefficients was transformed into Fredholm
integral equation, and the shape function was expanded in power
series. Ashour [13] investigated the transverse vibration of orthotropic
rectangular plates of variable thickness by combining the finite strip
technique with the transfer matrix method. The asymmetric develop-
ment method [14] was used for the free vibration of axially functionally
graded beams based on the Bernoulli–Euler theory. The investiga-
tion in [14] obtained approximate analytical formulas for natural
frequencies under several classical boundary conditions. Hein and
Feklistova [15] studied the free vibration of non-uniform and axially
functionally graded beams using the Haar wavelet approach and the
Bernoulli–Euler theory. Based on the Rayleigh-Love theory, Banerjee
et al. [16] analysed the axial vibration of a conical rod. By rewriting
the governing differential equation into the Legendre’s equation, the
shape function was obtained in series form, and the natural frequencies
were computed by the authors by substituting the boundary conditions
to eliminate the unknown constants. By contrast, the transfer matrix
method was employed by Mahmoud [17] to determine the natural
frequencies of axially functionally graded tapered cantilever Bernoulli–
Euler beams with point masses at the tips. However, all of the above
analytical methods are based on approximate series-form of shape
functions, leading to approximate results. There are, of course, other
research based on exact general solutions for some particular tapered
beams. For instance, the authors of [8] obtained the exact natural
frequency solutions of classical bar with quadratic cross-section area
and quartic cross-section area variations. Ece et al. [18] gave analytical
solution for the free vibration of tapered beam with exponential cross-
sectional area and moment of inertia variations. Jong-Shyong Wu [19]
summarized the analytical solutions in the form of Bessel functions
for a number of linearly tapered beams, including axial vibration of
conical rods, torsional vibration of conical shafts and bending vibration
of single-tapered beams. Zhao et al. [20] solved the analytical shape
function of a parabolically tapered annular Euler beam by using method
of substitution. Eventually, the natural frequencies and mode shapes
were solved by them using the Galerkin method. By applying the
coupled placement field method, Rajesh and Saheb [21] performed the
large deflection free vibration analysis of linearly tapered Timoshenko
beam and obtained closed form expression of frequency ratio for
hinged-hinged and clamped-clamped boundary conditions. Banerjee
and Ananthapuvirajah [22] utilized Bessel functions to represent the
free vibrational shape function of linearly tapered Bernoulli–Euler
beam accurately, and computed the natural frequencies by imposing
the boundary conditions. However, the above methods can only be
applied to a single tapered beam under special boundary conditions,
and cannot be applied to an assembly or combination of tapered beams
or for complicated boundary conditions in engineering.

Different from the above analytical methods, the dynamic stiffness
(DS) method uses the frequency-dependent shape function to derive the
dynamic stiffness matrix of a structural element, which can be assem-
bled directly to model complex built-up structures and importantly, any
boundary conditions can be easily imposed. The DS method was first
proposed by Kolousek [23]. Since then, many investigations have been
2

carried out for the DS formulation in the free vibration and buckling
analysis of the bars, beams, plates, shells, membranes and their assem-
blies. Another landmark in the DS method is the development of the
solution technique namely the Wittrick-Williams (WW) algorithm [24],
which facilitates an efficient and accurate eigenvalue analysis based on
the DS matrices. In what follows, we summarize the existing research
from both DS formulation aspect as well as from the solution technique
aspect.

As for the DS formulation aspect, there are a series of work on the
DS formulation of tapered and/or functionally graded bars and beams,
which can be classified into four broad category of methods:

Method 1 The first category of method is described to be as an approx-
imate model of a tapered element using a number of uniform
elements with different cross-section parameters, such as re-
ported in [25,26]. By using this method, the natural frequencies
and mode shapes of three types of linearly and parabolically
tapered Bernoulli–Euler beams under axial force were computed
and discussed in [25,26]. This method was implemented into
a program called BUNVIS-RG [27] for the free vibration and
buckling analyses of space frame structures consisting of tapered
Timoshenko beams under axial force. Later, Banerjee [28] mod-
elled tapered rotating Bernoulli–Euler beams as an assembly of a
large number of uniform beams, where the DS matrix of a uni-
form rotating Bernoulli–Euler beam was derived by Frobenius
method of power series solution. However, the disadvantage
of this type of approach is that it requires a large number of
elements and therefore reduces computational efficiency. More-
over, a numerical convergence test is needed to determine the
natural frequencies with required accuracy.

Method 2 As proposed by Yuan et al. [29], the general solutions and
their derivatives of non-uniform beams with gradual or step-
wise cross-section can be numerically solved by ODE solvers,
which are then used to formulate the DS matrices and the
mesh generation rules of element length. Then the free vibration
analysis of arbitrarily tapered or axial functionally graded beam
based on Timoshenko theory was performed by Yuan et al. [29].
Although the method is capable of providing highly accurate
results, the number of degrees of freedom used is quite large
which decreases the computation efficiency. This type of method
is essentially a combination of analytical and numerical methods
due to the fact that the general solutions are computed by using
the numerical ODE solvers.

Method 3 The DS formulations are developed in this method based
on series form or approximate polynomial shape functions. For
example, Banerjee et al. [30,31] used the Frobenius method
to solve the differential equations and then established the
dynamic stiffness matrix. Combined with the WW algorithm,
natural frequencies of linearly tapered rotating Bernoulli–Euler
beam [30] and Rayleigh-Love bar [31] were respectively com-
puted by them. Leung and Zhou [32] applied the Frobenius
method in the DS formulation of transverse vibration of tapered
or axial functionally graded Timoshenko beams, to compute the
natural frequencies. Similarly, Frobenius method was also used
to formulate the transfer matrix [33] to analyse the free vibra-
tion of linearly tapered beam based on Bernoulli–Euler theory,
and the natural frequencies were computed by the determinant
of the transfer matrix. Kim et al. [34] adopted approximate
polynomials as the shape function leading to the dynamic stiff-
ness matrix, which was transformed into a state-vector form.
However, it was found that in general, many series terms were
required to converge upon results with acceptable accuracy.

Method 4 Dynamic stiffness formulation can also be achieved based
on the closed-form exact solution of tapered beams, but this

method is limited to the case when the governing differential
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equation has closed-form exact general solution. Kolousek [23]
first proposed the dynamic stiffness matrix of a linearly tapered
beam based on the exact shape function in the form of Bessel
functions. Later, Banerjee and his coauthors [35] formulated
the explicit expressions of DS matrices for torsion, axial and
transverse free vibration of linearly tapered beam, based on
the closed-form Bessel equation. Su et al. [36] formulated the
DS for a functionally graded Bernoulli–Euler beam with mate-
rial parameters varying in power function along the thickness
direction, and the natural frequencies and mode shapes were
computed by applying the WW algorithm. The explicit expres-
sions of the DS matrix missing in [36] was later provided
by Banerjee and Ananthapuvirajah [37]. Recently, Popov [38]
stated the transfer matrix can be developed without deriving the
explicit exact general solution as in the DS formulation [37]. In
another research, Banerjee et al. [16] developed the DS matrix
of a linearly tapered Rayleigh-Love rod, and natural frequencies
for both individual rods and their assemblies were computed. To
get more details, [39] summarized the historical development of
the DS method.

Therefore, it can be easily seen from the above that Method 4 being
a closed-form exact formulation is the most efficient and accurate DS
formulation for tapered beams among the four methods. Nevertheless,
all existing research has been confined to linearly tapered beams so
far [16,23,35,37]. Although nonlinear tapered beams are sometimes
more commonly utilized in engineering applications, there appears to
be no closed-form DS formulation available for it. A closed-form DS for
tapered/functionally beams whose bending stiffness and linear density
are assumed to be polynomial functions of position will no-doubt fill
an important gap in the literature and add value to the closed-form
DS element library of tapered/functionally graded beams with arbitrary
cross sections.

Subsequently, once the analytically formulated matrices (such as
dynamic stiffness matrix or transfer matrix) are developed, one needs to
extract the natural frequencies and mode shapes from the analytically
formulated matrices (based on either series-form solutions or closed-
form solutions). There are generally two types of eigenvalue solution
techniques available for this purpose.

Technique 1 One of the most commonly used eigenvalue solution tech-
nique is to determine the eigenvalue when the determinant of
the system matrix becomes zero. This technique is used by most
of the analytical methods (e.g., see [8,19,20]), including transfer
matrix method [8,17,33,34,38,40]. However, the determinant
method needs the evaluation of the determinant numerically
for a frequency range. Deciding the step size to determine
the zeros of the frequency-determinant and avoid the poles
is problematic and far from being trivial. The problem arises
because a small step size leads to unnecessary computational
cost whereas a large step size increases the possibility of miss-
ing some genuine natural frequencies. This is especially true
for complex structures and also when computing higher order
natural frequencies. The problem is further compounded by
the fact that the frequency determinant often involves complex
and irregular transcendental functions such as the hyperbolic
functions. Nevertheless, the potential pitfalls and drawbacks of
the determinant method as mentioned above, still exist and hard
to overcome.

Technique 2 The WW algorithm [41], which has been used in many
DS formulations, e.g., [28,30,31,35–37,42]. The WW algorithm
is probably the most suitable solution technique for dynamic
stiffness models with the following advantages

(i) Accuracy: Eigenvalues within any required precision can
3

be computed; o
(ii) High efficiency: It is highly efficient mainly due to the
small-size matrix;

(iii) Analytical elegance: Infinite eigenvalues can be extracted
from the finite dimensional matrix;

(iv) Certainty: The algorithm ensures that no eigenvalue will
be missed.

However, the advantages of (ii), (iii) and (iv) can be realized
only when the key problem of the so called 𝐽0 count (the mode
count of all fully clamped members) in the WW algorithm can be
effectively solved; Otherwise, either some spurious modes will
enter into the calculation or some true modes will be missed,
so that the advantage of the above (iv) certainty cannot be fully
realised. Thus, 𝐽0 count problem is an important key issue when
applying the WW algorithm for the free vibration analysis. For
the axial and transverse vibration of relatively simple uniform
beam elements, the expression for 𝐽0 count can be derived an-
alytically, e.g., [39,41,43–50]. But for a tapered or functionally
graded beam, the 𝐽0 count problem becomes more challenging.
We found that the only work that mentioned the 𝐽0 problem of
tapered beam is [35], which discussed the 𝐽0 problem of linearly
tapered beam. Most of the existing dynamic stiffness of tapered
beams usually discretize a structure into elements small enough
so that each element will have 𝐽0 = 0 within the interested
frequency range. However, as the number of elements is greatly
increased, the above advantages of (ii) high efficiency and (iii)
analytical elegance will be somehow sacrificed, let alone the
fact that substructuring technique become less convenient to use
for tapered beams compared to uniform beams. So it is very
important to provide an efficient technique to compute the 𝐽0
count of the tapered beam member for the WW algorithm to be
most effective.

This paper essentially aims to fill the gap which is the limitation
f the existing research that closed-form DS formulation is confined to
inearly tapered and functionally graded beams only. The novelty of
his paper is two fold: (1) A closed-form DS formulation of tapered
nd/or functionally graded beams is developed based on the exact
eneral solution of the governing differential equation; (2) An efficient
olution for the most crucial issue of 𝐽0 count for the WW algorithm
s proposed. By doing so, exact modal analysis can be efficiently per-
ormed for more general tapered and functionally graded beams and
heir assemblies. This undertaking is an important supplement to the
xisting non-uniform DS element library. A wide range of tapered and
unctionally graded beam members and their assemblies or when they
re connected to uniform beams can be exactly modelled in the whole
requency range using a minimum number of degrees of freedom, and
xact natural frequencies and mode shapes can be computed efficiently.
his can be used for the efficient and accurate parametric studies and
ptimization of beam built-up structures.

The paper is organized as follows. Section 2 provides the develop-
ent of DS formulation in explicit form based on the exact solution

f tapered and/or functionally graded Euler–Bernoulli beam. Section 3
escribes the modal analysis by using the WW algorithm, where the
mphasis is placed on proposing an efficient and reliable 𝐽0 count
rocedure for a tapered and/or functionally graded beam member. In
ection 4, the proposed method is validated by comparing current so-
utions with published results and those computed by commercial FEM
oftware, to demonstrate the exactness, efficiency and wide application
cope of the proposed theory and solution technique. Finally, Section 5
oncludes the paper.

. Dynamic stiffness formulation

.1. Governing differential equations and boundary conditions

The governing differential equation (GDE) for the flexural vibration

f a tapered beam shown in Fig. 1 can be derived using Newton’s law
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Fig. 1. Several tapered and/or functionally graded beams developed in this paper.
or Hamilton’s principle to give [33]

𝜕2

𝜕𝑥2

[

𝐸(𝑥)𝐼(𝑥) 𝜕
2𝑤
𝜕𝑥2

]

+ 𝜌(𝑥)𝐴(𝑥) 𝜕
2𝑤
𝜕𝑡2

= 0 (1)

where

𝜌(𝑥)𝐴(𝑥) = 𝜌0𝐴0

(

1 − 𝑐
𝐿
𝑥
)𝑛

, 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0
(

1 − 𝑐
𝐿
𝑥
)𝑛+4

(2)

where 𝑤 = 𝑤(𝑥, 𝑡) is the flexural displacement, 𝑡 is time, the flexural
rigidity 𝐸(𝑥)𝐼(𝑥) and the mass of the beam per unit length 𝜌(𝑥)𝐴(𝑥)
are functions of the spatial variable 𝑥 ∈ [0, 𝐿]. Apparently, 𝐸(𝑥)𝐼(𝑥)
depends on elasticity modulus 𝐸(𝑥) and the second moment of area
𝐼(𝑥) and 𝜌(𝑥)𝐴(𝑥) is decided by the mass density of beam material
𝜌(𝑥) and the cross-sectional area 𝐴(𝑥). Therefore, the closed-form DS
formulation derived in this paper is applicable to tapered beams, func-
tionally graded beams and functionally graded beams with variable
cross-section as shown in Fig. 1, provided that the beam parameters
meet the Eq. (2) requirements. For a functionally graded beam, both
𝐼(𝑥) and 𝐴(𝑥) are constants. For a tapered beam, 𝐸(𝑥) and 𝜌(𝑥) are
constants.

Both 𝐸 and 𝜌 are related to only one parameter, that is, the material
type of the beam, while 𝐴 and 𝐼 are determined by two parameters,
namely the length and width of the beam. This means that, for tapered
beams, different cross-section types can have the same bending stiffness
and linear density. Table 1 shows some representative combinations of
cross-sectional parameters of tapered beams that are covered by the
proposed DS formulation. In Table 1, 𝑏 and ℎ are the width and depth
of the rectangular section, 𝑑 and 𝑟 are the thickness and outer radius of
the thin annular section of a thin walled cylinder, 𝑅𝑎 is the radius of the
circular section or the outer radius of the annular section, and 𝑟𝑎 is the
inner radius of the annular section. The second moment of area of the
rectangular section is 𝐼 = 𝑏ℎ3∕12 and the corresponding area is 𝐴 = 𝑏ℎ,
and 𝐼 = 𝜋𝑑𝑟3, 𝐴 = 2𝜋𝑑𝑟 for the thin annular section. 𝐿 is the total length
of the beam. The subscript ‘0’ represents the section parameters (𝐴0, 𝐼0,
𝑏0, 𝑑0, 𝑟0, 𝑟𝑎0, 𝑅𝑎0 and ℎ0) of the largest cross-section of the beam which
is considered to be the origin. 𝑐 and 𝑛 are the taper/functional gradient
rate and taper/functional gradient index respectively, where 𝑐 ∈ (0, 1)
and 𝑛 can have any real values. We found that for a circular or annular
cross-section, since there is only radius being the parameter and Eq. (2)
must be satisfied, 𝑛 can only be 4. For a rectangular section or a thin
annular section, ℎ (or 𝑟) is always proportional to (1 − 𝑐𝑥∕𝐿)2, and 𝑏
(or 𝑑) is proportional to (1 − 𝑐𝑥∕𝐿)𝑛−2. Interestingly, for rectangular
section or a thin annular section, 𝑛 is also allowed to be a fraction,
which will be applicable to a wide range of cross-sections. It should be
noted that the model proposed in this paper is not directly applicable
to arbitrarily non-uniform beams but is a valuable contribution to
the analysis of generally tapered and/or functionally graded beams.
It is well known that many existing researches have used linearly
4

Fig. 2. Sign convention for a tapered Bernoulli–Euler beam element.

tapered and/or functionally graded elements (either dynamic stiffness
elements [25,26] or transfer matrix elements [8,38]) to model higher-
order beams, and consequently, a large number of linearly tapered
and/or functionally graded elements are required to get results with
acceptable accuracy. It is understandable that in order to approximate
a higher-order function, a significantly fewer number of parabolic
segments are required compared to the number of linear segments.
Therefore, the higher-order tapered and/or functionally graded beam
element proposed in this manuscript provide a more efficient yet more
accurate tool to model tapered and/or functionally graded beam not
covered in this paper, for instance, in the investigation of black holes.

We assume that the non-uniform beam is vibrating harmonically so
that

𝑤(𝑥, 𝑡) = 𝑊 (𝑥)ei𝜔𝑡 (3)

where 𝑊 (𝑥) is the amplitude of the transverse displacement of the GDE
in the frequency domain. Substituting Eq. (3) into Eq. (1), we get

𝐸(𝑥)𝐼(𝑥) d
4𝑊
d𝑥4

+ 2
d[𝐸(𝑥)𝐼(𝑥)]

d𝑥
d3𝑊
d𝑥3

+
d2[𝐸(𝑥)𝐼(𝑥)]

d𝑥2
d2𝑊
d𝑥2

− 𝜌(𝑥)𝐴(𝑥)𝜔2𝑊 = 0 (4)

2.2. Exact general solutions

By introducing variable substitutions 𝜉 = 𝑥∕𝐿, 𝜁 = 1 − 𝑐𝜉 and
𝜂 = ln 𝜁 [20], Eq. (4) becomes

d4𝑊
d𝜂4

+(2𝑛+2) d
3𝑊
d𝜂3

+
(

𝑛2 + 𝑛 − 1
) d2𝑊

d𝜂2
+
(

−𝑛2 − 3𝑛 − 2
) d𝑊

d𝜂
−𝑘4𝑏𝑊 = 0

(5)
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Table 1
Wide ranging possibilities covered by the non-uniform beam model developed in this work.
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where

𝑘4𝑏 = 𝜌0𝐴0𝐿
4𝜔2∕𝐸0𝐼0𝑐

4 (6)

The auxiliary or characteristic equation of Eq. (5) is

𝑟4 + (2𝑛 + 2)𝑟3 +
(

𝑛2 + 𝑛 − 1
)

𝑟2 +
(

−𝑛2 − 3𝑛 − 2
)

𝑟 − 𝑘4𝑏 = 0 (7)

which can be rewritten in the following form
[

(

𝑟 + 𝑛 + 1
2

)2
− 𝑛2

4
− 𝑛 − 5

4

]2
= 𝑘4𝑏 +

( 𝑛
2
+ 1

)2
(8)

ith four roots

1,2 = −𝛤1 ±
√

𝛤2 +
√

𝛤3, 𝑟3,4 = −𝛤1 ±
√

𝛤2 −
√

𝛤3 (9)

where

𝛤1 =
𝑛 + 1
2

, 𝛤2 =
𝑛2

4
+ 𝑛 + 5

4
, 𝛤3 = 𝑘4𝑏 +

( 𝑛
2
+ 1

)2
(10)

Thus the general solution of Eq. (5) can be written as

𝑊 (𝜂) = e−
(

𝑛+1
2

)

𝜂 [𝐶1 cos(𝑘1𝜂) + 𝐶2 sin(𝑘1𝜂) + 𝐶3 cosh(𝑘2𝜂) + 𝐶4 sinh(𝑘2𝜂)
]

(11)

where 𝐶1 − 𝐶4 are unknown constants.
In terms of the original spatial variable 𝑥, the solution given by

Eq. (11) becomes

𝑊 (𝑥) =
(

1 − 𝑐 𝑥
𝐿

)− 𝑛+1
2
[

𝐶1 cos
(

𝑘1 ln
(

1 − 𝑐 𝑥
𝐿

))

+ 𝐶2 sin
(

𝑘1 ln
(

1 − 𝑐 𝑥
𝐿

))

+𝐶3 cosh
(

𝑘2 ln
(

1 − 𝑐 𝑥
𝐿

))

+ 𝐶4 sinh
(

𝑘2 ln
(

1 − 𝑐 𝑥
𝐿

))]

(12)

where

𝑘1 =
√

−𝛤2 +
√

𝛤3, 𝑘2 =
√

𝛤2 +
√

𝛤3 (13)

The amplitudes of the shear force (𝑉 ) and bending moment (𝑀) in the
frequency domain take the following form

𝑀(𝑥) = 𝐸𝐼(𝑥) d
2𝑊
d𝑥2

(14)

𝑉 (𝑥) = − d
d𝑥

(

𝐸𝐼(𝑥) d
2𝑊
d𝑥2

)

(15)

Referring to Fig. 2, the displacement and force boundary conditions for
the two nodes (1 and 2) of the beam element can be applied as follows

𝑊1 = 𝑊 (0), 𝛩1 = 𝛩(0), 𝑀1 = −𝑀(0), 𝑉1 = −𝑉 (0)
𝑊2 = 𝑊 (𝐿), 𝛩2 = 𝛩(𝐿), 𝑀2 = 𝑀(𝐿), 𝑉2 = 𝑉 (𝐿)

(16)

ubstituting Eqs. (12), (14) and (15) into Eqs. (16), we have

= 𝐃�̄�, 𝐟 = 𝐅�̄� (17)

ith

=

⎡

⎢

⎢

⎢

⎢

𝑊1
𝛩1
𝑊2

⎤

⎥

⎥

⎥

⎥

𝐟 =

⎡

⎢

⎢

⎢

⎢

𝑉1
𝑀1
𝑉2

⎤

⎥

⎥

⎥

⎥

�̄� =

⎡

⎢

⎢

⎢

⎢

𝐶1
𝐶2
𝐶3

⎤

⎥

⎥

⎥

⎥

(18)
5

⎣

𝛩2 ⎦ ⎣

𝑀2 ⎦ ⎣

𝐶4 ⎦

t

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 1 0
𝑐𝑛1
2𝐿 − 𝑐𝑘1

𝐿
𝑐𝑛1
2𝐿 − 𝑐𝑘2

𝐿
𝑐1𝐶 𝑐1𝑆 𝑐1𝐶ℎ 𝑐1𝑆ℎ
𝑐3𝛷1 𝑐3𝛷2 𝑐3𝛷3 𝑐3𝛷4

⎤

⎥

⎥

⎥

⎥

⎦

(19)

where

𝑐1 = (1 − 𝑐)−
𝑛1
2 , 𝑐3 = (1 − 𝑐)−

𝑛3
2 𝑐∕(2𝐿)

𝑛1 = 𝑛 + 1, 𝑛2 = 𝑛 + 2, 𝑛3 = 𝑛 + 3
𝐶ℎ = cosh

(

𝑘2 ln(1 − 𝑐)
)

, 𝑆ℎ = sinh
(

𝑘2 ln(1 − 𝑐)
)

𝐶 = cos
(

𝑘1 ln(1 − 𝑐)
)

, 𝑆 = sin
(

𝑘1 ln(1 − 𝑐)
)

𝛷1 = 𝑛1𝐶 + 2𝑘1𝑆, 𝛷2 = 𝑛1𝑆 − 2𝑘1𝐶
𝛷3 = 𝑛1𝐶ℎ − 2𝑘2𝑆ℎ, 𝛷4 = 𝑛1𝑆ℎ − 2𝑘2𝐶ℎ

(20)

and

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−𝐸1𝑛1𝛬1 2𝐸1𝑘1𝛬1 𝐸1𝑛1𝛬2 −2𝐸1𝑘2𝛬2

𝐸2𝛬3 4𝐸2𝑘1𝑛2 −𝐸2𝛬4 4𝐸2𝑘2𝑛2
𝐸3𝛬1𝛷1 𝐸3𝛬1𝛷2 −𝐸3𝛬2𝛷3 −𝐸3𝛬2𝛷4

𝐸4(−𝛬3𝐶 + 4𝑘1𝑛2𝑆) 𝐸4(−𝛬3𝑆 − 4𝑘1𝑛2𝐶) 𝐸4(𝛬4𝐶ℎ − 4𝑘2𝑛2𝑆ℎ) 𝐸4(𝛬4𝑆ℎ − 4𝑘2𝑛2𝐶ℎ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(21)

here

𝐸1 = 𝐸𝐼0𝑐3∕8𝐿3, 𝐸2 = 𝐸𝐼0𝑐2∕4𝐿2, 𝐸3 = 𝐸1(1 − 𝑐)
𝑛1
2 , 𝐸4 = 𝐸2(1 − 𝑐)

𝑛3
2

𝛬1 = 4𝑘21 + 𝑛23, 𝛬2 = 4𝑘22 − 𝑛23, 𝛬3 = 4𝑘21 − 𝑛1𝑛3, 𝛬4 = 4𝑘22 + 𝑛1𝑛3

(22)

y eliminating the unknown constant vector �̄� from Eqs. (17), the
xplicit expressions for the entries of the 4 × 4 dynamic stiffness matrix

of the non-uniform Bernoulli–Euler beam can be obtained

= 𝐅𝐃−1𝐝 = 𝐊𝐝 (23)

here

=
𝐸𝐼0
𝛿

⎡

⎢

⎢

⎢

⎢

⎣

𝐾11 𝐾12 𝐾13 𝐾14
𝐾22 𝐾23 𝐾24

𝐾33 𝐾34
𝑆𝑦𝑚𝑚. 𝐾44

⎤

⎥

⎥

⎥

⎥

⎦

(24)

here explicit analytical expressions for the entries 𝐾11 − 𝐾44 above
or an individual element member can be deduced by using symbolic
omputation which are given in Appendix.

It should be noted in passing that 𝛿 in Eq. (A.11) is the common
enominator of the dynamic stiffness matrix 𝐊, which is a function
f frequency 𝜔. The roots 𝜔𝑖 from 𝛿(𝜔) = 0 correspond to the natural
requencies of a fully clamped non-uniform beam.

Once the elemental dynamic stiffness matrices of Eq. (24) for each
lement are developed, they can be assembled directly to each other or
o elements of other non-uniform or uniform beam elements. So that
eam assemblies with uniform or other non-uniform beam members
an be modelled.

. The Wittrick-Williams algorithm and modal analysis

Each entry of the global dynamic stiffness matrix of the final struc-
ure obtained above is a transcendental function of frequency, and



International Journal of Mechanical Sciences 214 (2022) 106887X. Liu et al.
the powerful solution technique of the Wittrick-Williams (WW) algo-
rithm [41] will be applied to compute the natural frequencies. The WW
algorithm uses the Sturm sequence property of the dynamic stiffness
matrix to give the number of natural frequencies, below an arbitrarily
chosen trial frequency 𝐽 (𝜔#). It is essentially a counting method. Its
basic principles are briefly summarized as follows

𝐽
(

𝜔#) = 𝐽0
(

𝜔#) + 𝑠
{

𝐊
(

𝜔#)} (25)

where 𝜔# is the trial frequency, 𝑠
{

𝐊(𝜔#)
}

is the negative inertia index
of the dynamic stiffness matrix under the trial frequency, which is es-
sentially the number of negative diagonal terms in the upper triangular
matrix that is formed from the dynamic stiffness matrix 𝐊(𝜔#) through
the usual Gaussian elimination technique. 𝐽0(𝜔#) is the number of the
natural frequencies lower than the trial frequency when all nodes of 𝑚
elements of the structure are fully clamped, i.e. when 𝐝 = 𝟎 in 𝐊𝐝 = 𝟎.
𝐽0(𝜔#) can be determined by the following summation

𝐽0
(

𝜔#) =
𝑚
∑

𝑖=1
𝐽𝑖

(

𝜔#) (26)

where 𝐽𝑖(𝜔#) is the number of natural frequencies less than the trial
frequency when all nodes of the 𝑖th element are fully clamped.

Based on the mode count given in Eq. (25), it is clear that as the
trial frequency 𝜔# passes a natural frequency, the value of integer 𝐽 (𝜔#)
will increase by one. Following this procedure, any required natural
frequencies can be computed to any required precision by using, say,
the bisection method. As discussed in Section 1, the advantages of the
WW algorithm include high efficiency, exact, reliable and analytical
elegance. All of the four advantages are guaranteed under the precon-
dition that the crucial issue of 𝐽0 count to be resolved. Next we will
give a discussion on three different solutions to the 𝐽0 count problem

Solution 1 Discretize the structures into small enough elements such
that 𝐽0 = 0 always. However, more elements mean larger
matrices, and therefore more expensive computation and lower
efficiency. Therefore, it should be avoided as far as possible.

Solution 2 If the analytic solutions for mode count of a member with
special boundary conditions (e.g., simple supports at both ends
is 𝐽𝑠) which is somehow known, 𝐽0 can be obtained by applying
WW algorithm in the reverse direction, i.e., 𝐽0 = 𝐽𝑠 − 𝑠(𝐊𝑠),
where 𝐊𝑠 is the DS of a simply supported beam, see [45] for
example.

Solution 3 If the common denominator 𝛿(𝜔) of the DS matrix of the
element has an analytical expression, then the 𝐽0 can be derived
from 𝛿(𝜔) = 0, but this is only applicable to very simple uniform
bars or beams. There are two situations that can arise for this
case

(i) 𝐽0 can be directly derived through the analysis of 𝛿(𝜔),
such as the axial free vibration problem of the classical
rod theory with constant section, see [41], which is not
applicable to the case where 𝐽0 cannot be derived from
𝛿(𝜔) = 0, such as the tapered beam, considered here.

(ii) The 𝐽0 expression cannot be obtained directly from the
analytical expression of 𝛿(𝜔), so the 𝛿(𝜔) needs to be
plotted, and the frequency that makes 𝛿(𝜔) = 0 needs to
be numerically found and saved. But this method can be
error prone to miss natural frequencies, and it is time-
consuming to determine the precise frequency that makes
𝛿(𝜔) = 0.

As for tapered beam, the above Solution 1 works but is ineffi-
cient; Solution 2 is not applicable since analytical expression for the
mode count of element with special boundary conditions (e.g., simply
6

supported) cannot be easily deduced; Although the expression for
Fig. 3. The 𝛿(𝜔) plots shown in (b), (d) and (f) correspond to three cases, namely, (a)
uniform beam with cross-section 𝐼0 , 𝐴0, (c) tapered beam with cross-section 𝐼0 , 𝐴0 and
𝐼1 , 𝐴1 on both ends, and (e) uniform beam with cross-section 𝐼1 , 𝐴1.

the common denominator of the DS matrix is available, as given by
Eq. (A.11), it is difficult to deduce 𝐽0 directly from 𝛿(𝜔) = 0 based
on Eq. (A.11), so Solution (3i) is not suitable, while Solution (3ii) is
inefficient and likely to miss some roots. Since all of the above method
are not appropriate, therefore we propose a new method to provide an
efficient and reliable method to compute 𝐽0 with certainty for the DS
element of a tapered beam.

3.1. 𝐽0 problem and natural frequencies

In this section, we make full use of the physical meaning and
their properties of natural frequencies of a fully clamped element,
namely, 𝛿(𝜔) = 0, and propose an algorithm which computes 𝐽0 that
theoretically ensures high computational efficiency and also that no
root can be missed. This method is not only very suitable for the non-
uniform beam in this paper, but also can be extended to other DS
elements that have 𝛿(𝜔) expressions but cannot derive the analytical
expression for 𝐽0.

First, we draw the 𝛿(𝜔) functions of three different beams, including
a tapered beam and two uniform beams as examples, as shown in Fig. 3.
To be more specific, the 𝛿(𝜔) plots shown in (b), (d) and (f) correspond
respectively to the three cases, namely, (a) uniform beam with cross-
section 𝐼0, 𝐴0, (c) tapered beam with cross-section 𝐼0, 𝐴0 and 𝐼1, 𝐴1 on
two ends, and (e) uniform beam with cross-section 𝐼1, 𝐴1. We know
that the common denominators of the DS matrices of two uniform Euler
beams in Figs. (𝑎) and (𝑒) are already available, see e.g., [41].

𝛿(𝜔) = 1 − cos 𝜆 sin 𝜆 (27)

where

𝜆 =
(

𝜔2𝐿4𝜌𝐴∕𝐸𝐼
)1∕4 (28)

A close inspection on Fig. 3 reveals that

(1) For both uniform and non-uniform beams clamped at both ends,
see Figs. 3 (b), (d) and (f), as the frequency 𝜔 increases from
zero, the value of 𝛿(𝜔) starting from zero to positive first and
then negative, followed by the curve changing from positive to
negative values alternately.

(2) For the same order of natural frequencies for the three cases,
larger cross-section leads to larger natural frequencies (i.e., 𝜔𝑖
< �̄�𝑖), and the tapered beam frequencies fall between the upper
limit and the lower limit of the two, which is given by

𝜔𝑖 < 𝜔𝑖 < �̄�𝑖 (29)

The above rule is also physically explicable because larger stiff-
ness means higher natural frequencies.
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Fig. 4. The curve of 𝛿(𝜔) of the DS matrix of a non-uniform beam versus frequency.

able 2
he sign of 𝛿 and 𝐽0 versus frequency 𝜔𝑡𝑖 for a fully clamped non-uniform beam.
Frequencies 𝜔𝑡1 𝜔𝑡2 𝜔𝑡3 𝜔𝑡4 ... 𝜔𝑡𝑖 ...

sign(𝛿(𝜔𝑡𝑖)) 1 −1 1 −1 ... 1 or −1 ...
𝐽0(𝜔𝑡𝑖) 0 1 2 3 ... i-1 ...

(3) The difference between two adjacent natural frequencies of uni-
form beams and non-uniform beams is not a constant. Let (𝛥𝜔)𝑖 =
𝜔𝑖+1 − 𝜔𝑖, (𝛥𝜔)𝑖 = �̄�𝑖+1 − �̄�𝑖, (𝛥𝜔)𝑖 = 𝜔𝑖+1 − 𝜔𝑖, three of which
increase with the cross-section size and frequency range; and the
difference between the two adjacent natural frequencies (𝛥𝜔)𝑖
of a fully clamped tapered beam lies between that of the two
uniform beams, which is

(𝛥𝜔)𝑖 < (𝛥𝜔)𝑖 < (𝛥𝜔)𝑖 (30)

We are now in position to evaluate 𝛿(𝜔𝑡𝑖) and 𝐽0(𝜔𝑡𝑖) at certain
alues of 𝜔 as shown in Fig. 4. However, in order to ensure that no
oots will be missed and meanwhile the computational cost is reduced
o the minimum, it is necessary to take appropriate values of the initial
alue and the step-size of frequencies where 𝛿(𝜔) is to be evaluated.
ccording to the above observations, we may take 𝜔1 as the initial

requency, and (𝛥𝜔)1 as the step-size to evaluate 𝛿(𝜔), with different
positive or negative signs, see Fig. 4. If the signs of 𝛿(𝜔) of two or more
adjacent frequencies are the same, we keep any one of them and discard
the rest, resulting in an ascending list of 𝜔𝑡𝑖(𝑖 = 1, 2, 3...) with alternative
positive and negative signs. Meanwhile, the sign count 𝐽0(𝜔𝑡𝑖) can be
determined and recorded, as shown in Table 2. By doing so, the roots of
𝛿(𝜔) = 0, i.e. 𝜔𝑖(𝑖 = 1, 2, 3,…) (where 𝐽0 shifts) will be located between
two adjacent 𝜔𝑡𝑖’s in the list and then 𝐽0(𝜔𝑡𝑖) can be determined, as
clearly illustrated in Fig. 4.

It is now straightforward to determine 𝐽0(𝜔#) at a given 𝜔# based
n Table 2. We first find a pair of adjacent (𝜔𝑡𝑗 , 𝜔𝑡(𝑗+1)) such that
𝑡𝑗 < 𝜔# < 𝜔𝑡(𝑗+1). Then we evaluate sign(𝛿(𝜔#)) which must lead

o either sign(𝛿(𝜔#)) = sign(𝛿(𝜔𝑡𝑗 )) or sign(𝛿(𝜔#)) = sign(𝛿(𝜔𝑡(𝑗+1))). If
he former equation holds, it means that there is no natural frequency
etween 𝜔# and 𝜔𝑡𝑗 , therefore 𝐽0(𝜔#) = 𝐽0(𝜔𝑡𝑗 ) = 𝑗 − 1. If the latter

holds, 𝐽0(𝜔#) = 𝐽0(𝜔𝑡(𝑗+1)) = 𝑗. The above procedure has been written as
a flow chart shown in Fig. 5. The idea of this highly efficient and exact
algorithm can also be applied to other non-uniform elements, such as
functionally graded beams.

In summary, we first make use of the upper and lower limits of
uniform beams of both eigen-frequencies and their differences be-
tween two adjacent eigenvalues of a fully clamped tapered beams.
Then, we evaluation the analytical function of 𝛿(𝜔) at the appropriate
pre-determined frequencies and create ascending table of 𝛿(𝜔) with
alternatingly positive and negative values. Finally, the 𝐽0 at any trial
frequency is obtained by comparing the trial frequency and the as-
cending table of 𝛿(𝜔), together with comparison on the sign of 𝛿(𝜔#)
7

g

and that of ascending table 𝛿(𝜔). In this way, no root of 𝛿(𝜔) = 0 is
issed, and at the same time, the computation efficiency is improved

ery considerably.

.2. Modal shape computation

After the natural frequencies are computed, one can recover the
ode shapes in a straightforward manner. By letting an entry of the
isplacement vector corresponding to an appropriate degree of freedom
qual to 1, the displacement vector in the global coordinate system
an be obtained. Then the displacement vector of each element in the
ocal coordinate system can be obtained by applying the transformation
atrix. The unknown coefficient vector �̄� can be obtained from �̄� =
−1𝐝 by recalling Eq. (17). Finally, the mode shapes corresponding to

he natural frequency can be recovered.

. Results and discussions

The method described in this paper has been implemented in a
ATLAB program to calculate the natural frequencies and mode shapes

f non-uniform beams and their assemblies. First, Section 4.1 illustrates
he high efficiency and exactness of the current method by comparing
t with the FEM. Section 4.2 validates the present results with the
xisting results under different taper/functional gradient rates 𝑐. In
ection 4.3, we explore the effect of the taper/functional gradient index
on the natural frequencies. Then, in Section 4.4, we compute the

atural frequencies of the tapered beam under all possible 16 boundary
onditions. Finally, Section 4.5 shows the application of the proposed
ethod to the modal analysis of a beam assembly consisting of two
arabolically tapered beams.

It should be noted that the letters ‘C’, ‘G’, ‘P’ and ‘F’ in this paper
epresent ‘clamped’, ‘guided’, ‘pinned’ and ‘free’ boundary conditions,
espectively. The letters on the left represent boundary condition on
he larger cross-section, and the letters on the right represent boundary
ondition on the smaller cross-section. ‘BCs’ is, of course, an abbre-
iation for boundary conditions and ‘NOE’ is an abbreviation for the
umber of elements. All results obtained by the present method are
xact solutions without any approximation, and all are accurate to the
ast digit, specified and result can be obtained up to machine accuracy
f needed.

.1. Efficiency and exactness

All the beams in numerical examples are made of steel (elasticity
odulus 𝐸0 = 2.0 × 1011N/m2, density 𝜌0 = 7850kg/m3). Here we

onsider a tapered beam with annular section of length 𝑙 = 25m,
aper/functional gradient rate 𝑐 = 0.7, taper/functional gradient index
= 4, outer radius 𝑅𝑎0 = 0.1m and inner radius 𝑟𝑎0 = 0.05m.

able 3 shows the first eight natural frequencies subject to three BCs
omputed by the present method and compared with those computed
y FE software ANSYS. Side by side the number of elements and total
omputational time are also shown. All the computations in this paper
re performed on the same computer with an Intel core i5-9400 CPU
ith 8 GB RAM. In ANSYS software, we used 100, 200, 600, 900
lements to simulate the beam, taking at least 0.16s, 0.9s, 1.0s, 1.1s,
espectively. With the increase of the number of elements, the results of
EM gradually tend to the results of the analytical method.(When the
apered beam is analysed by FEM with different number of elements,
he convergence rate is much slower than that of uniform cross-section
eams, as expected.) By contrast, the present method only needs one
lement to compute the first eight exact natural frequencies, taking
aximum 0.018s, about less than 1% of the time used by the FEM. This

s a very low degree of freedom and yet, gives very high computational
fficiency. Compared with FEM, the method presented in this paper
as clear advantages in modal analysis of tapered and/or functionally

raded beam.
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b
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Fig. 5. The flow chart for computing the 𝐽0 count of a tapered beam. The ‘sign’ is the sign function and ‘==’ is the equal operator. 𝑖 is the maximum order of the natural
frequency to be solved.
Table 3
Comparison of NOE used and computational time for computing the first eight natural frequencies of a parabolically tapered beam by using
present method and the FEM package (ANSYS).
BCs NOE Time(𝑠) Natural frequencies (Hz)

C-F 1 2 3 4 5 6 7 8

Present 1 0.018 0.49243 1.0687 2.0769 3.5420 5.4760 7.8837 10.768 14.129

FEM

100 0.1719 0.49031 1.0732 2.1006 3.6084 5.5691 8.0278 10.972 14.428
200 0.959 0.49165 1.0690 2.0799 3.5498 5.4912 7.9113 10.816 14.196
600 1.039 0.49191 1.0684 2.0772 3.5432 5.4779 7.8863 10.770 14.131
900 1.229 0.49191 1.0684 2.0771 3.5431 5.4777 7.8858 10.769 14.130

C-P 1 2 3 4 5 6 7 8

Present 1 0.016 0.69737 1.5906 2.9412 4.7588 7.0493 9.8153 13.058 16.779

FEM

100 0.1694 0.70155 1.6087 2.9765 4.8054 7.1670 9.9783 13.303 17.142
200 0.983 0.69788 1.5936 2.9485 4.7732 7.0741 9.8516 13.102 16.843
600 1.051 0.69731 1.5911 2.9424 4.7609 7.0521 9.8187 13.062 16.782
900 1.124 0.69731 1.5911 2.9423 4.7607 7.0517 9.8178 13.060 16.779

C-C 1 2 3 4 5 6 7 8

Present 1 0.016 0.76292 1.7503 3.2065 5.1355 7.5403 10.422 13.783 17.621

FEM

100 0.1673 0.76606 1.7659 3.2452 5.1833 7.6507 10.590 14.045 18.002
200 0.925 0.76349 1.7528 3.2124 5.1473 7.5624 10.460 13.833 17.682
600 1.011 0.76291 1.7507 3.2073 5.1364 7.5409 10.422 13.781 17.618

900 1.103 0.76290 1.7506 3.2071 5.1361 7.5403 10.421 13.779 17.615
4.2. Validation and dependence of natural frequencies on taper/functional
gradient rate 𝑐

In this section, we consider tapered beams and functionally graded
eams with annular cross-section sharing the same bending stiffness
nd linear density of length 𝑙 = 2m, different taper/functional gradient
ates 𝑐 including 0, 0.1, 0.3, 0.5, 0.7, and 0.8, taper/functional gradient
ndex 𝑛 = 4, outer radius 𝑅𝑎0 = 0.1m and inner radius 𝑟𝑎0 = 0.05m.

Thus the linear density is 𝜌(𝑥)𝐴(𝑥) = 𝜌0𝐴0 (1 − 𝑐𝑥∕𝐿)4 and the bending
stiffness is 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 (1 − 𝑐𝑥∕𝐿)8. Results show the natural
frequencies of the two beams that share the same bending stiffness and
linear density are equal. Table 4 compares the results of the tapered
(or functionally graded) beam subject to C-F BC computed by the
present method with those by the Galerkin method [20]. All the present
results are accurate up to the last digits. It can be observed that the
results of both methods agree very well. It is seen that under the C-
F BC condition, the fundamental natural frequency increases with the
increase of 𝑐, while the remaining natural frequencies decrease with
the increase of 𝑐. Similar observation was made in [20].
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Table 4
Comparisons of natural frequencies of C-F tapered (or functionally graded) beams with
different taper/functional gradient rates 𝑐 by using the present method and the Galerkin
method [20].

Modes Methods Natural frequencies (Hz)

𝑐 = 0 𝑐 = 0.1 𝑐 = 0.3 𝑐 = 0.5 𝑐 = 0.7 𝑐 = 0.8

1 Galerkin [20] 39 43 52 62 77 85
Present 39.474 43.003 51.563 62.656 76.943 85.393

2 Galerkin [20] 247 236 214 191 167 154
Present 247.38 236.49 214.06 190.93 166.98 154.16

3 Galerkin [20] 693 637 530 427 325 272
Present 692.68 637.46 530.37 426.82 324.51 271.87

4.3. Dependence of natural frequencies on taper/functional gradient index
𝑛

In this section, we consider tapered beams and functionally graded
beams with two different cross-section types sharing the same bend-
ing stiffness and linear density. The beam is of length 𝑙 = 2m, ta-
per/functional gradient rate 𝑐 = 0.1, different taper/functional gradient
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Table 5
The first eight natural frequencies of tapered (or functionally graded) beam with different taper/functional gradient indexes 𝑛 with rectangular
or annular cross-section.
Cross section 𝑛 Natural frequencies (Hz)

1 2 3 4 5 6 7 8

Rectangular

−2 0.11750 0.73656 2.0623 4.0412 6.6804 9.9794 13.938 18.557
0 0.12529 0.75130 2.0766 4.0556 6.6948 9.9938 13.953 18.571
1/3 0.12663 0.75379 2.0791 4.0581 6.6973 9.9962 13.955 18.574
2 0.13350 0.76631 2.0915 4.0706 6.7098 10.009 13.968 18.586
4 0.14212 0.78160 2.1068 4.0861 6.7255 10.025 13.983 18.602

Annular 4 0.27522 1.5136 4.0798 7.9128 13.024 19.412 27.079 36.022
Fig. 6. A parabolically tapered beam assembly.

indexes 𝑛 taking −2, 0, 1∕3, 2, and 4, outer radius 𝑅𝑎0 = 0.1m and inner
radius 𝑟𝑎0 = 0.05m for the ones with annular section, and width 𝑏0 =
0.1m and height ℎ0 = 0.1m for those with rectangular section. Therefore
the linear density is 𝜌(𝑥)𝐴(𝑥) = 𝜌0𝐴0 (1 − 0.1𝑥∕𝐿)𝑛 and the bending
stiffness is 𝐸(𝑥)𝐼(𝑥) = 𝐸0𝐼0 (1 − 0.1𝑥∕𝐿)𝑛+4. Results show the natural
frequencies of the tapered beams and the functionally graded beams
that share the same bending stiffness and linear density are equal.
Table 5 tabulates the first eight natural frequencies of parabolically
tapered (or functionally graded) beams with several types of cross
sections identified by different taper/functional gradient indexes 𝑛. The
BCs are taken to be C-F. The results show that as the taper/functional
gradient index 𝑛 increases, which means the sharper the beam, the
higher the natural frequency.

4.4. Effects of different boundary conditions

Next, we will demonstrate that this method is easy to model beams
subject to different BCs. It is possible that a tapered beam can have 16
different combinations of BCs (see Table 6) whereas a uniform beam
can only have 10 different combinations. Table 6 shows the first eight
natural frequencies of a parabolically tapered beam with all 16 BCs.
The parameters of the beam are the same as those in Table 3. It can
be seen that the non-rigid body natural frequencies of F-F and C–C BCs
are identical; Also, the natural frequencies of P-F and C-P BCs, F-P and
P-C BCs beams have the same non-rigid bodies natural frequencies. This
finding is consistent with that of uniform beams.

4.5. Beam assembly consisting of two parabolically tapered beam elements

The dynamic stiffness (DS) elements of tapered and functionally
graded beam proposed in this paper can be assembled directly with
the DS those of available tapered elements and/or those with uniform
cross sections. Here, the presented method is used to model a beam
assembly, which is composed of two parabolically tapered beams, as
shown in Fig. 6. All data of the two parabolically tapered beams are the
same as those in Section 4.1 except that the two beams have different
lengths, which are 10m and 15m respectively. Modal analysis of the
beam is carried out under three typical BCs, namely C–C, P-P, and
C-F. The letters on the left represent the BC on the left end of the
beam assembly, and the letters on the right represent the BC on the
right. 500 elements are used to determine first eight natural frequencies
and it takes 2.3s, while the proposed method use only 2 elements and
costs only 0.02s which is 100 times faster. The natural frequencies and
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corresponding mode shapes calculated by the proposed method and
ANSYS software shown in Fig. 7. All results have five significant digit
precision and they agree with each other very well. It is easily seen
from the fundamental mode shapes that the free vibration waves are
localized in the centre section where bending stiffnesses are smaller,
which is in a sharp contract to those of a uniform beam, as expected.

5. Conclusions

Closed-form dynamic stiffness (DS) formulation for tapered/
functionally graded beams has been proposed. The formulation is based
on the exact general solution of the governing differential equation
of a non-uniform Euler–Bernoulli beam, and explicit expressions are
derived. The developed DS is applicable to a wide range of tapered
and/or functionally graded beams whose bending stiffness and linear
density are assumed to be polynomial functions of position. This
is significant in the context that existing research is predominantly
confined to linearly tapered/functionally graded beams only. As a
well-established solution technique, the Wittrick-Williams algorithm is
applied for exact modal analysis of individual tapered beam as well
as their assemblies. The most crucial issue, the 𝐽0 count of the WW
algorithm is resolved in an elegant and efficient manner. The two
novelties in both the DS formulation and the solution technique make
exact and highly efficient modal analysis possible for any combinations
of tapered profiles, without resorting to series solution, numerical
integrations or refined mesh discretization. Benchmark solutions have
been provided for tapered and functionally graded beams with different
taper/functional gradient rates, taper/functional gradient indexes and
boundary conditions. The proposed research provides a necessary and
significant supplement to the existing closed-form DS element library
of beams, which can be used in parametric studies and optimal design
of beam assemblies with tapered/functionally graded members. The
limitation of this paper is that the Euler–Bernoulli beam theory is
only applicable to beams with high slenderness, which can be broken
through by developing the dynamic stiffness formulations for tapered
beams based on Timoshenko theory.
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Table 6
The first eight natural frequencies for a parabolically tapered beam subject to 16 different combinations of end constrains.
BCs Natural frequencies (Hz)

1 2 3 4 5 6 7 8

F-F 0 0 0.76292 1.7503 3.2065 5.1355 7.5403 10.422
F-G 0 0.022486 0.82142 1.9056 3.4692 5.5108 8.0307 11.029
F-P 0 0.18687 1.2402 2.5940 4.4115 6.7014 9.4668 12.709
F-C 0.0060803 0.23785 1.3881 2.8520 4.7833 7.1889 10.071 13.432
G-F 0 0.53219 1.1878 2.2932 3.8655 5.9114 8.4338 11.434
G-G 0 0.55544 1.2802 2.4809 4.1599 6.3178 8.9550 12.072
G-P 0.041063 0.78472 1.7772 3.2347 5.1643 7.5694 10.452 13.812
G-C 0.054572 0.86510 1.9577 3.5242 5.5670 8.0876 11.087 14.565
P-F 0 0.69737 1.5906 2.9412 4.7588 7.0493 9.8153 13.058
P-G 0.014380 0.74524 1.7273 3.1811 5.1090 7.5131 10.395 13.755
P-P 0.14626 1.1118 2.3593 4.0652 6.2406 8.8899 12.015 15.618
P-C 0.18687 1.2402 2.5940 4.4115 6.7014 9.4668 12.709 16.430
C-F 0.49243 1.0687 2.0769 3.5420 5.4760 7.8837 10.768 14.129
C-G 0.50991 1.1466 2.2441 3.8127 5.8567 8.3780 11.378 14.856
C-P 0.69737 1.5906 2.9412 4.7588 7.0493 9.8153 13.058 16.779
C-C 0.76292 1.7503 3.2065 5.1355 7.5403 10.422 13.783 17.621
Fig. 7. The first eight natural frequencies and mode shapes for the beam shown in Fig. 6 subject to 3 sets of classical BCs calculated by two methods.
cknowledgements
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ppendix

The explicit expressions for each entries 𝐾11 − 𝐾44 of the dynamic
stiffness matrix of Eq. (24) of the tapered/functionally graded beam
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𝐾

element are given as,

𝐾11 = −𝑐3𝑃1
(

𝐶ℎ𝑘2
(

4𝑘21 + 𝑛21
)

𝑆 + 𝑆ℎ
(

𝐶𝑘1
(

4𝑘22 − 𝑛21
)

+ 2𝑃1𝑛1𝑆
))

∕(4𝐿3)

(A.1)

𝐾12 = 𝑐2
(

4𝑘1𝑘2𝑛2 − 2𝐶ℎ𝑘2(2𝐶𝑘1𝑛2 + 𝑃1𝑛1𝑆)

+ 𝑆ℎ(2𝐶𝑘1𝑃1𝑛1 + (−𝑘22𝑛
2
1 + 𝑘21(−8𝑘

2
2 + 𝑛21))𝑆)

)

∕(4𝐿2)
(A.2)

𝐾13 = (1 − 𝑐)
𝑛1
2 𝑐3𝑃1

(

𝑘1
(

4𝑘22 − 𝑛21
)

𝑆ℎ + 𝑘2
(

4𝑘21 + 𝑛21
)

𝑆
)

∕(4𝐿3) (A.3)

𝐾14 = −(1− 𝑐)
𝑛3
2 𝑐2𝑃1(−2𝐶ℎ𝑘1𝑘2 +2𝐶𝑘1𝑘2 −𝑘1𝑛1𝑆ℎ +𝑘2𝑛1𝑆)∕(2𝐿2) (A.4)

( ( ) ( ))
22 = 𝑐 −2𝑘1𝑘2𝑛2 − 𝐶ℎ𝑘2 −2𝐶𝑘1𝑛2 + 𝑃1𝑆 + 𝑆ℎ 𝐶𝑘1𝑃1 + 𝑃2𝑛2𝑆 ∕𝐿
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(A.5)

𝐾23 = (1 − 𝑐)
𝑛1
2 𝑐2𝑃1(−2𝐶ℎ𝑘1𝑘2 + 2𝐶𝑘1𝑘2 + 𝑘1𝑛1𝑆ℎ − 𝑘2𝑛1𝑆)∕(2𝐿2) (A.6)

𝐾24 = −(1 − 𝑐)
𝑛3
2 𝑐𝑃1(𝑘1𝑆ℎ − 𝑘2𝑆)∕𝐿 (A.7)

𝐾33 = −(1 − 𝑐)𝑛1 𝑐3𝑃1
(

𝐶ℎ𝑘2
(

4𝑘21 + 𝑛21
)

𝑆

− 𝑆ℎ
(

𝐶𝑘1
(

−4𝑘22 + 𝑛21
)

+ 2𝑃1𝑛1𝑆
))

∕(4𝐿3)
(A.8)

𝐾34 = −(1 − 𝑐)𝑛2 𝑐2
(

−4𝑘1𝑘2𝑛2 − 2𝐶ℎ𝑘2(−2𝐶𝑘1𝑛2 + (𝑘21 + 𝑘22)𝑛1𝑆)

+𝑆ℎ(2𝐶𝑘1𝑃1𝑛1 + (𝑘22𝑛
2
1 + 𝑘21(8𝑘

2
2 − 𝑛21))𝑆)

)

∕(4𝐿2)
(A.9)

𝐾44 = (1 − 𝑐)𝑛3 𝑐
(

2𝑘1𝑘2𝑛2 − 𝐶ℎ𝑘2
(

2𝐶𝑘1𝑛2 + 𝑃1𝑆
)

+𝑆ℎ
(

𝐶𝑘1𝑃1 − 𝑃2𝑛2𝑆
))

∕𝐿 (A.10)

𝛿 = 2𝑘1𝑘2 − 2𝐶ℎ𝐶𝑘1𝑘2 − 𝑃2𝑆ℎ𝑆 (A.11)

where

𝑃1 = 𝑘21 + 𝑘22, 𝑃2 = 𝑘21 − 𝑘22 (A.12)

and the notations such as 𝑐, 𝑛1, 𝑃1, 𝑃2, 𝑆, 𝐶, 𝑆ℎ, 𝐶ℎ, etc. have been
defined in Eqs. (1)–(22).
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