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1. Introduction

Approximation schemes such as the Rayleigh-Ritz method or the Galerkin technique have played a his-
torical role in the development of the theory of elastic stability [1,2]. They are still used on a large scale
in the engineering community and feature most prominently as the basis of sophisticated finite element
computer packages. The use of the more basic “incarnations” of these two methods (in the spirit of Tim-
oshenko’s book, for example) represents one of the most expedient ways for solving buckling problems
with a relatively modest amount of effort. Unfortunately, these more basic versions are not well suited
for describing localised eigendeformations unless one is prepared to allow for a large number of terms in
the corresponding approximations. It is precisely such localised effects that we have in mind, and one of
our main aims here is to propose a simple, yet efficient, modified energy strategy that circumvents these
shortcomings. We start with a brief detour that motivates the work in the subsequent sections.

By considering inhomogeneously stressed rectangular and annular elastic plates subjected to some
form of uniform in-plane stretching (see Figs. 1, 6 later in the paper for details of the precise setting), the
corresponding linear bifurcation equations for those configurations were found to be intimately controlled
by a typically large dimensionless parameter μ � 1 (whose definition was problem-dependent). Regu-
lar/periodic features of the eigendeformation in one of the two principal directions of the pre-buckling
state of stress facilitated the reduction of the corresponding PDEs to ODEs for an unknown transverse
amplitude function W . With the help of singular perturbation methods, the critical load λ and the
eigenfunction W were then represented as power series in μ−1/2, that is{

λ
W

}
=

∞∑
j=0

{
λj

Wj

}
μ−j/2, (1)

with the coefficients λj ∈ R and the functions Wj determined sequentially. An indication of the role
played by the size of μ on the accuracy of the approximations derived in [3–6] is included in Tables 1
and 2.
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Table 1. Typical comparisons for the critical edge-buckling loads λC of the clamped rectangular plate studied in [3,4].
Direct numerical simulations (NUM), two-term asymptotic results (ASY I), and three-term asymptotic expressions (ASY

II); the relative errors (R.E.) of the last two sets of data with respect to the first are recorded in the last two columns

μ NUM ASY (I) ASY (II) R.E. I (%) R.E. II (%)

400.0 0.213362 0.205769 0.212336 3.5588 0.4809
200.0 0.238152 0.221965 0.235099 6.7969 1.2819
80.0 0.300362 0.254101 0.286936 15.4015 4.4697
60.0 0.333067 0.267628 0.311407 19.6475 6.5030
40.0 0.399122 0.290318 0.355988 27.2608 10.8073
10.0 1.226536 0.413969 0.676648 66.2489 44.8326

Table 2. Same data as in Table 1, but for the annular plate discussed in [5,6] (with the corrected term λ∗
2 as given in

our Sect. 4). Here the ratio of the two radii of the annulus (η) is equal to 0.1

μ NUM ASY (I) ASY (II) R.E. I (%) R.E. II (%)

1200.0 0.197795 0.177290 0.195899 10.3668 0.9583
800.0 0.229288 0.197506 0.225421 13.8611 1.6867
400.0 0.311650 0.243140 0.298969 21.9830 4.0691
200.0 0.454089 0.307676 0.419334 32.2432 7.6538
80.0 0.854713 0.435724 0.714869 49.0210 16.3616
60.0 1.081105 0.489620 0.861813 54.7111 20.2841
40.0 1.556522 0.580031 1.138320 62.7354 26.8677
10.0 7.743505 1.072726 3.305881 86.1468 57.3077

It must be clear from these data that the asymptotic formulae perform admirably well for the range
they were intended to, but as μ decreases their reliability deteriorates fast. This trend is more pronounced
in the case of the annular plate, so the question arises: can those results be improved?

As pointed out in [5], typical values of the non-dimensional parameter μ for annular thin films are
in the vicinity of 300.0 or larger, but smaller numbers are also relevant to practical applications. Thus,
extending the results in the aforementioned works to a broader range of values for the stiffness parameter
μ would be desirable. Furthermore, from a strictly mathematical point of view, the limit μ → 0 is also
of interest, and this is relevant to the classical case of buckling for an unstretched plate under in-plane
bending moments.

The route we choose to pursue the answer to the question posed above is related to the so-called
Hybrid Galerkin Method discussed at length by Geer and Andersen in a number of interesting papers
[7–9]1. The essence of their method is simple, but it usually requires two distinct steps. In the first stage,
perturbation methods are used to produce an expansion similar to (1); this is expected to work well
when μ � 1 and can be obtained by either regular or singular perturbation techniques, depending on the
particular details of the problem at hand. The second stage dispenses with that assumption by replacing
the various powers of μ with arbitrary-independent variables that are subsequently found in exactly the
same way as in the classical versions of the Rayleigh-Ritz or Galerkin methods.

Gristchack et al. [10] have used the classical WKB method in conjunction with the theory developed
in [7–9] to determine the state of stress in an orthotropic elastic conical shell subjected to axial loading,
while in [11] they dealt with the problem of dynamic loading for a piezoelectric sandwich plate. Whiting
[12] modified existing multiple-scale results for buckling of a long strut on a nonlinear Winkler founda-
tion and used them as a starting point for his Galerkin procedure. That study was later extended by
Wadee et al. [13] for the stability of single-hump localised solutions in the same particular context.

1The idea of using boundary-layer type functions in conjunction with Galerkin methods can be traced back to much
earlier studies like that of Di Prima [16], for example.
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The very good accuracy obtained in all of these works is indicative of the high efficiency and reliability
of the hybrid approximation methods.

The paper is organised as follows. We start by setting the stage in the next section, where the
main ingredients of the energy method for elastic plates are briefly recalled. In Sect. 3, we discuss
the details of the modification we introduce for the case of the rectangular plate studied in [3,4]. It
is shown that the results obtained with the current strategy do improve the previous studies, espe-
cially for the range μ � 20.0 ÷ 300.0, but difficulties are still encountered for μ � 7.0 ÷ 10.0. Partly
motivated by this occurrence, we discuss the regular perturbation case μ → 0 and establish that the
relative errors of the new approximations are within 5 % for 0 < μ � 2.0; while the work in Sect. 3.2
is pursued from a purely mathematical perspective, it is particularly gratifying that its range of validity
extends well beyond its theoretical limitations. The more difficult problem of the stretched annular plate
investigated in [5,6] is tackled in Sect. 4 by using the same modified energy method. Again, compari-
sons with the earlier results and direct numerical simulations of the original equation show a marked
improvement. We conclude with a discussion of the main findings, together with suggestions for further
study.

2. Classical energy methods

The energy method is described at length in any good text on elastic stability [1,2,14,15], to which
the reader is referred for detailed accounts. Included below is just a sketch of the main ideas and the
significant facts relevant to the rest of the paper.

We consider a thin elastic plate whose mid-surface is mathematically represented by a two-dimen-
sional domain Ω ⊂ R

2; attached to this plane, there is an arbitrary system of coordinates whose z axis
is perpendicular to it, so that the mid-surface can be described by the equation z = 0. If λ > 0 rep-
resents the generic loading parameter, the total energy of the plate, Eλ (say), is assumed to split up
additively into two contributions: the bending energy, Ebend, and the stretching energy, Estretch, that
is Eλ(u) = Ebend(u) + Estretch(u), where u is the displacement field characterising the deformation
of the plate mid-surface. The Kirchhoff-Love assumption in classical plate theory is based on a special
approximation of the Lagrangian deformation tensor,

L =
1
2

(∇ ⊗ v + v ⊗ ∇) − z∇ ⊗ ∇w +
1
2

(∇w) ⊗ (∇w) ,

where the three-dimensional displacement field is assumed to admit the decomposition u = v +wn, with
v = (vα)α=1,2 the in-plane part and w the out-of-plane contribution; here n is the unit normal to the
oriented mid-surface of the plate.

The inextensional plate theory that lies at the foundation of our analysis is built on the assumption
that there is no stretching in the plate midplane, that is L

∣∣
z=0

� 0 or, more explicitly,

(∇ ⊗ v)s � −1
2
(∇w) ⊗ (∇w), (2)

with (∇ ⊗ v)s being the symmetric part of the gradient of the in-plane displacement field v. Letting
D > 0 be the bending rigidity of the plate, the individual energy contributions referred to above can be
expressed as

Ebend(u) :=
1
2
D

∫
Ω

{
(∇2w)2 − (1 − ν)[w,w]

}
dA (3)



866 C. D. Coman and X. Liu ZAMP

and

Estretch(u) :=
∫
Ω

N : (∇ ⊗ v)s dA ≡
∫
Ω

(∇ ⊗ v)s : C : (∇ ⊗ v)s dA

� 1
4

∫
Ω

(∇w) ⊗ (∇w) : C : (∇w) ⊗ (∇w) dA

� −1
2

∫
Ω

(∇ ⊗ v)s : C : (∇w) ⊗ (∇w) dA, (4)

where use has been made of Eq. (2). Here, the notation [f, g] := (∇2f)(∇2g) − (∇ ⊗ ∇f) : (∇ ⊗ ∇g)
stands for the Monge-Ampère bracket, ‘⊗’ is the usual tensor product, and the colon “ : ”denotes the
double contraction between tensors. The linearised membrane stress tensor N = (Nαβ) is related to the
linearised Lagrangian strain tensor (∇ ⊗ v)s with the help of the usual fourth-order membrane stiffness
tensor C = (Cαβγδ) through the relation N = C : (∇ ⊗ v)s. For the sake of completeness, we record
below the expression of its components,

Cαβγδ =
Eh

2(1 + ν)

[
2ν

1 − ν
gαβgγδ + gαγgβδ + gαδgβγ

]
,

where (gαβ) are the contravariant components of the two-dimensional identity tensor I, E is Young’s
modulus and ν represents Poisson’s ratio.

If we agree to denote by “̊ ” all pre-bifurcation fields, the flat basic state (ẘ ≡ 0) is determined by
the vanishing of the first variation of Eλ at u = ů,

δEλ(ů)[h] ≡ −2
∫
Ω

(∇ · N̊) · (δv) dA = 0,

for all virtual displacement fields h = δv + 0n compatible with the geometrical boundary conditions.
The determination of the neutrally stable buckling configurations is then obtained from the well-known
Trefftz criterion,

δ2Eλ(ů)[uC ,h] = 0, (5)

that must be satisfied by all h = δv + (δw)n compatible with the geometrical boundary conditions; this
variational problem defines the critical eigenvalue, λ = λC and the infinitesimal buckling mode u = uC .
We recall that the second variation is the bilinear functional defined by

δ2Eλ(ů)[h1,h2] := D

∫
Ω

∇2(δw1)∇2(δw2) − (1 − ν)[δw1, δw2] dA

−
∫
Ω

N̊ : ∇(δw1) ⊗ ∇(δw2) dA, (6)

where the virtual displacements hj ≡ δvj + (δwj)n (j = 1, 2) are assumed to comply with the geometric
boundary conditions. The Eq. (5) forms the basis of the classical Rayleigh-Ritz method. By expanding the
unknown transverse eigendisplacement in the form w � wk :=

∑k
j=1 Cjφj , where Cj ∈ R (j = 1, 2, . . . , k)

are undetermined constants, and the functions {φj} are a priori known and assumed to satisfy the kine-
matic boundary conditions for the problem at hand, the Trefftz criterion translates into the criticality
conditions ∂(δ2E)/∂Ci = 0 for i = 1, 2, . . . , k. This typically represents a matrix eigenvalue problem
that can be solved easily.

The strategy we propose in this work differs in several respects from the classical method. For example,
to allow convergence in the L2(Ω)-norm of the sequence of approximations, one would have to require
that the shape functions {φi} form a complete set in Ω; the agreement with the actual solution usually



Vol. 64 (2013) Semi-analytical approximations for a class 867

improves by increasing k ∈ N. Our choice of basis functions does not fulfil such requirements as it is
informed by the asymptotic analysis developed in [4,6]. Also, the kinematic boundary conditions are
satisfied only approximately, unlike in the classical case. More specific features of our approach will be
pointed out as we go along.

3. Rectangular plate

A detailed numerical and asymptotic analysis for the edge-buckling of a stretched elastic plate subjected
to in-plane bending was carried out in [3,4]. For the sake of completeness here, we include an outline of
the model and a summary of some of the main results.

The rectangular thin elastic plate of length 2a, width b, and thickness h (h/b 
 1) corresponds to the
situation illustrated in Fig. 1; it is assumed to occupy the domain Ω ≡ {

(x, y) ∈ R
2 | − a≤x≤a, 0≤y≤b}.

The plate is stretched by normal stresses σ0 in the y-direction, while on the two lateral edges, it is
subjected to the loads P at the midpoints. Further in-plane bending moments M act simultaneously, as
indicated in the aforementioned figure. Under the combined action of these loads, the plate develops a
region of compressive stresses adjacent to one of the long edges, leading eventually to a regular wrin-
kling pattern in the x−direction (for a certain critical value of the ratio M/P ). With the short sides
taken as simply supported, the linearised Donnell-von Kármán buckling equation used for describing the
bifurcations of this plate is reduced to an ODE by expressing the transverse displacement in the form
w(x, y) = W (y) sin(Amx). Eventually, it transpires that

W ′′′′(y) + P1(μ,Am)W ′′(y) + P2(y;μ,Am)W (y) = 0, 0 < y < 1, (7)

where

P1(μ,Am) := −(μ2 + 2A2
m),

P2(y;μ,Am) := A2
m

{
A2

m + 6μ2

[
2λy −

(
λ− 1

6

)]}
,

and

η :=
a

b
, Am :=

mπ

η
, λ :=

M

Pb
, μ2 := 12(1 − ν2)

(σ0

E

)(
b

h

)2

.

The mode number m ∈ N is uniquely determined by identifying the global minimum of the curve λ =
λ(Am). We shall use the appellative ‘critical’ in relation to these values.

Fig. 1. Stretched thin film under in-plane bending
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The same normal-mode solution transforms the boundary conditions along the long edges into rela-
tively simple expressions. In the case of clamped edges, they take the form

W = W ′ = 0 at y = 0, 1, (8)

while for the free-edge case, we have

W ′′ − νA2
mW = 0 at y = 0, 1, (9a)

W ′′′ − [
μ2 + (2 − ν)A2

m

]
W = 0 at y = 0, 1. (9b)

Finally, the work in [4] provides the asymptotic expansion for the critical buckling load λC and the
corresponding critical buckling mode number (proportional to AC

m below) in the form

W = W0(Y ) + μ−1/2W1(Y ) + μ−1W2(Y ) + μ−3/2W3(Y ) + O(μ−2), Y := μ1/2y, (10a)

λC = λ0 + λ∗
1iμ

−1/2 + λ∗
2iμ

−1 + O(μ−3/2), for i = 1, 2, (10b)

(AC
m)2 = M∗

0iμ
3/2 +M∗

1iμ+ O(μ1/2), for i = 1, 2, (10c)

where the extra subscript ‘1’ is used to indicate the values for the free-edge case, and ‘2’ applies to the
clamped-edge approximation. The coefficients that appear in (10) are recorded below and are identified
through a sequence of lengthy matched asymptotic calculations,

λ0 = 1/6, M∗
02 = 1.17306, M∗

01 = 0.62912,
λ∗

12 = 0.78204, λ∗
22 = 2.62679, M∗

12 = 0.79737,
λ∗

11 = 0.41941, λ∗
21 = 0.65966 − 0.11111ν2, M∗

11 = 0.39579 − 0.66666ν2.

Details on the Wj−terms in the expansion of the eigenfunctions are given in the next section (as adapted
to our immediate purposes). The comparison between these asymptotic results and numerics showed good
agreement for both the two- and three-term approximations when μ � 1; the question here is whether
or not this assumption can be relaxed without affecting the accuracy.

3.1. Modified energy method

We start by noticing that setting h → uC in (5) gives

δ2Eλ(ů)[uC ,uC ] = 0 ; (11)

in the case of our rectangular plate this equation assumes the form
1∫

0

[
W ′′ 2(y) + (μ2 + 2A2

m)W ′ 2(y) + P2(y;μ,Am)W 2(y)
]
dy = 0. (12)

Alternatively, the energy integral (12) can be also obtained by multiplying equation (7) by W ≡ W (y)
and then integrating the resulting expression over [0, 1] with the help of the corresponding boundary
conditions and the integration by parts formula.

As already pointed out, since our main interest lies with the approximation of the envelope of the
neutral stability curves, we are essentially looking for eigenvalues satisfying ∂λ/∂Am = 0. On differenti-
ating (12) with respect to A2

m and making use of the boundary conditions (8), we derive an extra integral
constraint applicable to the case in which the long edges are clamped,

1∫
0

{
W ′ 2(y) +

[
A2

m + 3μ2
(
2λy −

(
λ− 1

6

))]
W 2(y)

}
dy = 0. (13)

An alternative route for arriving at Eq. (13) was given by one of us in [4], and it relies on the use of the
Fredholm solvability condition for a certain inhomogeneous fourth-order ODE.
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The counterpart of (13) for the case when the long edges of the plate are ‘free’ rather than ‘clamped’ is
obtained similarly, with the only difference that this time we need to make use of the boundary conditions
(9). The final result reads

1∫
0

{
− νW (y)W ′′(y) + (1 − ν)W ′ 2(y) +

[
A2

m + 3μ2
(
2λy −

(
λ− 1

6

))]
W 2(y)

}
dy = 0. (14)

A possible candidate for the ansatz of our modified energy method is

λC = λ0 + λ∗
1jc1, (AC

m)2 = M∗
0jc2, (15a)

W (y) = W0(y) +W1(y)c3 + · · · , (15b)

where

W0(y) = Ai
(
ωμ1/2y + ζ0j

)
, ω := (2M∗

0j)
1/3, (16)

is W0(Y ) in (10a) expressed in terms of y, and ζ0j denotes the first zero of the equation Ai(j)(ζ) = 0
(j = 1, 2); for the free-edge case, we take ζ01 � −1.01879, while for clamped edges, ζ02 � −2.3381. The
expression of W1(y) (which is just W1(Y ) in (10a) expressed in terms of y) is not given here because of
its high complexity, but it can be found in [4] (see Eqs. 16 and 17) in that reference).

The above approximation is obtained from (10) in which the powers of μ have been replaced by the
arbitrary constants ci (i = 1, . . . , n); for notational simplicity, we let c := [c1, c2, . . . , cn]. Note that (15a)
do not require more terms as in (10b) or (10c)—it is just the expansion (15b) that could potentially
improve the accuracy of our numerical strategy.

If we confine ourselves to the case when just W0(y) is used in (15b), we essentially end up with two
unknowns for which we need only two equations. Substituting (15) into the integral constraint (12) yields
a first nonlinear equation in the ci’s, which we shall identify by the notation f1(c) = 0. A second equa-
tion is obtained by plugging the same ansatz into either (13) or (14); this will generically be referred
to as f2(c) = 0. Thus, we get two nonlinear equations in two unknowns. Below we provide some details
together with a number of simplifications for the concrete case of clamped edges that is investigated
numerically at the end of this section (similar calculations can be easily worked out for other type of
boundary constraints).

To begin with, we rewrite the energy integral in (12) in the form
1∫

0

[
W ′′ 2(y) − P1(μ;Am)W ′ 2(y) + R1(μ;Am, λ)W 2(y) + R2(μ;Am, λ)yW 2(y)

]
dy = 0, (17)

where

R1(μ;Am, λ) := A2
m

[
A2

m − 6μ2

(
λ− 1

6

)]
,

R2(μ;Am, λ) := 12μ2A2
mλ.

As mentioned earlier, we choose an ansatz based on the leading-order asymptotic prediction W (y) =
Ai(ky+ ζ02), where Ai is the usual Airy function of the first kind, k := μ1/2ω = μ1/2(2M∗

02)
1/3, and M∗

02

is a constant that has already been mentioned in Sect. 3. To simplify the notation, we then introduce the
new variable Z := ky+ζ02, so that nowW (y) = Ai(Z). Furthermore, notice that dn(·)/dyn = kndn(·)/dZn

together with

Z
∣∣
y=0

= ζ02 =: a1 and Z
∣∣
y=1

= k + ζ0 =: a2 ;

the temporary re-labelling of the first zero of the Airy function is done in order to provide a more uniform
notation in the subsequent calculations.
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By using the change of variable just introduced above, the integrals in (17) can be recast as following

1∫
0

[
d2W

dy2
(y)

]2

dy = k3

a2∫
a1

Z2W 2(Z) dZ,

1∫
0

[
dW
dy

(y)
]2

dy = k

a2∫
a1

[
dW
dZ

(Z)
]2

dZ,

1∫
0

W 2(y)dy =
1
k

a2∫
a1

W 2(Z) dZ,

1∫
0

yW 2(y)dy =
1
k2

a2∫
a1

ZW 2(Z) dZ − a1

k2

a2∫
a1

W 2(Z)dZ.

Therefore, (17) can be further re-arranged as

k3T1 − kP1(μ;Am)T2 +
[R1(μ;Am, λ)

k
− a1R2(μ;Am, λ)

k2

]
T3 +

R2(μ;Am, λ)
k2

T4 = 0, (18)

where

T1 :=

a2∫
a1

[
d2W

dZ2
(Z)

]2

dZ, T2 :=

a2∫
a1

[
dW
dZ

(Z)
]2

dZ,

T3 :=

a2∫
a1

W 2(Z)dZ, T4 :=

a2∫
a1

ZW 2(Z)dZ.

Reference [17] provides us with a set of interesting formulae that facilitate the simplification of integrals
of products of Airy functions. That strategy will be applied in the context of (18) as indicated below,

T1 :=

a2∫
a1

Z2Ai2(Z)dZ =
1
5

[
2
{
ZAi(Z)Ai′(Z) − 1

2
Ai2(Z)

}
− Z2Ai′ 2(Z) + Z3Ai2(Z)

]a2

a1

, (19a)

T2 :=

a2∫
a1

Ai′ 2(Z)dZ =
1
3

[
2Ai(Z)Ai′(Z) + ZAi′ 2(Z) − Z2Ai2(Z)

]a2

a1
, (19b)

T3 :=

a2∫
a1

Ai2(Z)dZ =
[
ZAi2(Z) − Ai′ 2(Z)

]a2

a1

, (19c)

T4 :=

a2∫
a1

ZAi2(Z)dZ =
1
3

[
Ai(Z)Ai′(Z) − ZAi′ 2(Z) + Z2Ai2(Z))

]a2

a1

, (19d)

where [ψ]a2
a1

≡ ψ(a2) − ψ(a1). As mentioned earlier, the integration limits a1, a2 depend only on the
parameter μ. Thus, with μ given, the quantities Ti = Ti(μ) (for i = 1, 2, 3, 4) can be calculated once and
for all. On substituting (19) into (18), we end up with the first equation f1(Am, λ) = 0.

Recall that we have also derived the integral constraint (13), which enforces the criticality condition
∂λ/∂Am = 0. This is re-written in the form



Vol. 64 (2013) Semi-analytical approximations for a class 871

(a) (b)

Fig. 2. Comparisons between two- (dot-dashed line) and three-term (dashed line) asymptotic approximations of the criti-
cal eigenvalue, the modified energy method (small circles) and the corresponding direct numerical simulations (continuous
line) for the clamped-edge rectangular plate

1∫
0

{
W ′ 2(y) +

[
R3(μ;Am, λ) + R4(μ;Am, λ)y

]
W 2(y)

}
dy = 0, (20)

where

R3(μ;Am, λ) = A2
m − μ2

(
3λ− 1

2

)
, R4(μ;λ) = 6μ2λ.

Carrying out the same transformation on variables as for (17), we eventually get

kT2 +
[R3(μ;Am, λ)

k
− a1R4(μ;λ)

k2

]
T3 +

R4(μ;λ)
k2

T4 = 0, (21)

where T2, T3, T4 were introduced earlier in (18). If we plug (19) into (21), we then obtain the second
equation f2(Am, λ) = 0.

To summarise, we have formulated two nonlinear equations f1 = 0, f2 = 0 in two unknowns Am, λ.
Since Am and λ depend only on c1 and c2, according to (15), we essentially have two equations in the
two unknowns c1 and c2. To complete the solution, the multi-dimensional root finding problem is trans-
formed into a minimisation problem by considering I(c) := f2

1 (c) + f2
2 (c), which is expected to be zero

when c ∈ R
2 corresponds to our actual solution. Cast in this form the problem is then solved by using

Powell’s method (e.g., see [18] for details). The situation we are confronted with is not trivial because the
functional that needs to be minimised is highly nonlinear. We have checked that the minima of I(c) lead
to values of the functional that are virtually indistinguishable from zero; this indicates that our approxi-
mate solution satisfies the neutral stability condition (12) and guarantees that the most dangerous mode
has been captured. A final observation worth stating is that, owing to the non-quadratic nature of the
functional to be minimised, providing an initial guess requires additional care. We employed a numerical
continuation strategy in which the original guess was supplied by various powers of μ � 1, as hinted by
(10), with μ then being decreased progressively until it reached O(1)−values.

Results of this method are recorded in Figs. 2 and 3 for clamped and, respectively, free-edge boundary
conditions. The direct numerical simulations are shown with a continuous line, while the new approxima-
tions are represented by the white markers. To put things in perspective, we have also included the two-
and three-term asymptotic approximations from [4] (the dashed/dot-dashed lines). It is quite remarkable
that the simple-minded ansatz (16) informed by the leading-order asymptotic analysis of equation (7)
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(a) (b)

Fig. 3. Same as per Fig. 2, but for the free-edge rectangular plate

outperforms by a long shot the two-term asymptotic approximation obtained through a very laborious
analysis [4]. In Fig. 2, the relative errors between the modified energy results and numerics tend to dete-
riorate for μ below 11.0 (R.E. � 5.14% in that case), although for μ � 60.0 we have R.E. � 2.73%.
Similar conclusions can be drawn in relation to Fig. 3—see [19] for more details.

A caveat needs to be raised about our choice of test function (16). In the case of a clamped plate,
for relatively largish values of μ (typically, greater than 10.0), this function and its derivative display
exponential decay for y � 1.0, so the constraints W (1) = W ′(1) = 0 are satisfied asymptotically. Note
that by definition W (0) = 0 (exactly), but W ′(0) �= 0. It was shown in [4] that satisfaction of the latter
condition demanded the introduction of an O(μ−1) layer that had to be matched to the solution described
by Eq. (10). Here, we have disregarded this effect because the results obtained with the apparently crude
choice of (16) already lead to values that improve considerably upon the earlier studies. In Sect. 5, we
shall reconsider this point and look more closely at what happens if the test function is replaced by the
O(μ−1) composite asymptotic approximation that partially satisfies the derivative boundary condition at
y = 0. It is also important to keep in mind that higher-order asymptotic results are not easily available
for the annulus problem discussed in Sect. 4.

It might be tempting to try and improve the results already obtained, especially since W1(y) in (15b)
is available [4]. In this case, we have three unknowns, so a change of tack is imperative. The criticality
conditions (13) or (14) will remain unchanged, but two further equations are obtained with the help of (5)
in which δw → W0(y) sin(Amx) and δw → W1(y) sin(Amx), respectively. Doing this, however, does not
lead to any noteworthy headway since the kinematic boundary condition W ′(0) = 0 is still violated (and
will continue to be so as long as we do not take into consideration the O(μ−1) layer mentioned above).

3.2. The limiting case µ → 0

As already pointed out in the Introduction, for very thin plates, it is the limit μ � 1 that matters
most. However, from a mathematical point of view, it would be important to understand the asymptotic
structure of the opposite limit μ → 0 as well. This case is relevant to the important situation σ0 = 0
and represents an interesting regular perturbation problem. We also anticipate that the range of validity
for these new asymptotic results will extend beyond their immediate limit of applicability, so they could
be useful (at least in principle) as numerical guesses for the optimisation routines used in the modified
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(a) (b)

Fig. 4. Comparison between the asymptotic approximation λC � λ∗
0/μ2 (circle-dash) and its counterpart obtained by

direct numerical simulations (continuous line) in the case of a clamped-edge rectangular plate. The right window gives an
idea about a similar comparison involving the corresponding mode numbers

energy method. Another motivation for the work in this section comes from the related papers of Geer
and Andersen [7–9], although it will eventually transpire that we cannot follow their strategy very closely.

3.2.1. Clamped-edge boundary conditions. For a rectangular plate with clamped edges AC
m = O(1) as

μ → 0. At the same time, the critical eigenvalue λC displays a tendency to blow up, which was verified
by the direct numerical simulations. This limiting behaviour is captured by the following ansatz

W (y) = W0(y) +W1(y)μ2 + · · · , (22a)
λ = λ0μ

−2 + λ1 + λ2μ
2 + · · · , (22b)

(Am)2 = M0 +M1μ
2 + · · · , (22c)

where W0, λ0, and M0 satisfy the simplified differential equation

W ′′′′
0 − 2M2

0W
′′
0 +M0 [M0 + 6λ0(2y − 1)]W0 = 0, (23)

that is to be solved subject to the boundary conditions W0 = W ′
0 = 0 for y = 0, 1. Here, and in the next

section, we shall employ some of the labels used previously for expanding λ,Am and W in order to avoid
overdoing the notation; no confusion should arise as these derivations are independent of each other.

Note that this reduced problem depends only on the parameters λ0 and M0, so we can integrate it
numerically once and for all to identify the values for which the curve λ0 = λ0(M0) has a global minimum.
It is found that the critical values are (λ∗

0,M
∗
0 ) = (65.0663, 6.6399).

Some comparisons with direct numerical simulations are included in Fig. 4. It can be clearly seen
that the asymptotic solution for 0 < μ 
 1 is applicable even for 0 < μ � 2.0, since its relative error is
within 5 % for this range of μ. Unfortunately, the asymptotic analysis can be executed only to the leading
order—similar limitations were encountered in a couple of recent works [20,21].

3.2.2. Free edges. For the free-edge case, informed by numerical simulations, we expect the critical Am

to approach zero as μ → 0 and λC is found to display a similar blow-up behaviour as seen previously.
However, the asymptotic structure of the limiting case is somewhat different. It turns out that this time
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we need an ansatz of the form

W (y) = W0(y) +W1(y)μ+W2(y)μ2 + · · · , (24a)
λ = λ0μ

−1 + λ1 + λ2μ+ · · · , (24b)
(Am)2 = M0μ

2 +M1μ
3 + · · · . (24c)

Substituting (24) into the bifurcation equation (7) and setting to zero the coefficients of successive powers
of μ we obtain

O(1) : W ′′′′
0 = 0, (25a)

O(μ) : W ′′′′
1 = 0, (25b)

O(μ2) : W ′′′′
2 − (1 + 2M0)W ′′

0 = 0, (25c)
O(μ3) : W ′′′′

3 − (1 + 2M0)W ′′
1 − 2M1W

′′
0 + 6M0(2y − 1)λ0W0 = 0. (25d)

Similarly, plugging (24) into the boundary conditions (9), we derive the constraints that Wj (for j =
1, 2, . . .) must satisfy at y = 0, 1

W ′′
0 = 0, W ′′′

0 = 0, (26a)
W ′′

1 = 0, W ′′′
1 = 0, (26b)

W ′′
2 − νM0W0 = 0, W ′′′

2 − [1 + (2 − ν)M0]W ′
0 = 0, (26c)

W ′′
3 − νM0W1 − νM1W0 = 0, W ′′′

3 − [1 + (2 − ν)M0]W ′
1 − (2 − ν)M1W

′
0 = 0. (26d)

Finally, the critical buckling mode condition (14) can be expanded in powers of μ and results in the
following additional constraints

O(1) :

1∫
0

[
νW0W

′′
0 − (1 − ν)W ′2

0

]
dy = 0, (27a)

O(μ) :

1∫
0

[νW0W
′′
1 − 2(1 − ν)W ′

0W
′
1 + νW ′′

0 W1 + Γ1] dy = 0, (27b)

O(μ2) :

1∫
0

[νW0W
′′
2 − 2(1 − ν)W ′

0W
′
2 + νW ′′

0 W2 + Γ2] dy = 0, (27c)

where

Γ1 := −3(2y − 1)λ0W
2
0 ,

Γ2 := νW1W
′′
1 − (1 − ν)W ′2

1 − 6(2y − 1)λ0W0W1 −
[
M0 + 3(2y − 1)λ1 − 1

2

]
W 2

0 .

The leading order Eq. (25a) together with the boundary conditions (26a) produces the general solution
W0(y) = γ1y + γ2 in which γ1, γ2 ∈ R are constants that will be fixed as we go along. On substituting
this W0 into (27a) results in γ1 = 0, and hence W0(y) = γ2; without any loss of generality, we can assume
γ2 = 1.

Next, considering the Eq. (25b) subject to the end constraints (26b) yields W1(y) = γ3y + γ4, where
γ3, γ4 ∈ R are constants. Note that γ4 can be taken to be zero because of the homogeneous nature of
the problem and, as we have W0(y) already, it is only γ3 that needs to be determined. To this end, we
carry on with solving the next order problem, consisting of (25c) in conjunction with (26c); some simple

algebra eventually leads to W2(y) =
1
2
νM0γ2y

2.
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We mention in passing that the criticality constraint (27b) is identically satisfied with the information
we have thus far, so we need to look at (27c). It transpires that

(1 − ν)γ2
3 + λ0γ2γ3 +

[
(1 − ν2)M0 +

1
2

]
γ2
2 = 0, (29)

an equation that will be used shortly to identify λ0. After some further manipulations, the solution of
(25d) and (26d) is found to be

W ′′
3 (y) = −6M0

(
y3

3
− y2

2

)
λ0γ2 + γ5y + γ6, (30)

with

γ5 := (νγ3 − λ0γ2)M0, γ6 := νM1γ2 ;

in the course of reaching equation (30), it also emerges that

γ3 = −
[

M0λ0

1 + 2(1 − ν)

]
γ2.

On substituting this value of γ3 into (29), we arrive at

λ2
0 =

M0(1 − ν2) + 1
2

ω2M0 − ω1M2
0

, (31)

where

ω1 :=
1 − ν

[1 + 2(1 − ν)]2
and ω2 :=

1
1 + 2(1 − ν)

.

As we aim for the lowest critical load, this expression must be minimised with respect to M0, that is
∂λ2

0/∂M0 = 0. The result is a quadratic algebraic equation for M0, whose unique positive root will give
the critical value

M∗
0 =

−1 +
√

7 + 2ν − 4ν2

2(1 − ν2)
. (32)

The corresponding critical value of λ0 is obtained by substituting (32) into (31), that is

λ∗
0 = λ0

∣∣
M0=M∗

0
. (33)

To assess the relevance and usefulness of these last two formulae, a representative sample of comparisons
between them and direct numerical simulations is summarised in Fig. 5.

The remarks made in the previous section vis-á-vis the range of applicability of the results derived
for the free-edge case remain valid. Relative errors between asymptotics and numerics are roughly 5 %
for 0 < μ � 2.0. Further work, not discussed here, has shown that the term λ1 in the asymptotic ansatz
(24b) is negative. Once obtained, that term does improve the accuracy of the approximation as μ gets
closer and closer to zero, but within the range 1.0 < μ < 2.0 the results become worse.

4. Annular plate

Full details of this model and a comprehensive asymptotic analysis can be found in [5,6]; only the most
important aspects are highlighted below.

We consider an annular plate with inner radius R1, outer radius R2, and thickness h (h 
 R2)—as
shown in Fig. 6. This configuration is stretched by applying uniform radial displacement fields u1 and
u2 on the inner and outer rims, respectively. The Lamé solution for the corresponding plane stress prob-
lem reveals the presence of compressive stresses near the inner rim. Coupled with the same Donnell-von
Kármán buckling equation as in Sect. 3, the bifurcation problem that results is reduced to an ODE by
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(a) (b)

Fig. 5. Free-edge rectangular plate: comparison between the asymptotic approximation λC � λ∗
0/μ (small circles) given

by (33) and direct numerical simulations. The accuracy of (24c) and (32) can be appreciated by inspecting the window on
the right

Fig. 6. An annular plate subjected to uniform displacement fields on its boundaries. For a sufficiently large ratio u1/u2,
localised buckling emerges near the central hole

using the separable variables solution w(r, θ) = W (r) cosnθ, where n ∈ N is the mode number (equal to
half the number of identical wrinkles in the azimuthal direction). The final result reads

W ′′′′ + P3(ρ)W ′′′ + P4(ρ)W ′′ + P5(ρ)W ′ + P6(ρ)W = 0, η < ρ < 1, (34)

where η := R1/R2, ρ := r/R2 and the rescaled W is denoted by the same letter to avoid overloading the
notation. The coefficients of (34) are defined by

P3(ρ) :=
2
ρ
, P4(ρ) := −

[
2n2 + 1
ρ2

+ μ2

(
A+

B

ρ2

)]
,
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P5(ρ) :=
1
ρ

[
2n2 + 1
ρ2

− μ2

(
A− B

ρ2

)]
, P6(ρ) :=

n2

ρ2

[
n2 − 4
ρ2

+ μ2

(
A− B

ρ2

)]
,

with

A := (1 + ν)
1 + λη

1 − η2
, B := (1 − ν)

η2 + λη

1 − η2
, λ :=

u1

u2
, μ2 :=

12u2R2

h2
. (35)

For the sake of brevity, only clamped boundary conditions are considered. In terms of the amplitude
W (ρ), these are

W (ρ) = W ′(ρ) = 0 at ρ = 0, 1. (36)

In [6,22], Coman and Bassom provided a detailed asymptotic investigation of the aforementioned model.
They showed that the neutral stability envelope can be obtained by various expansions in suitable powers
of μ � 1,

W (Y ) = W0(Y ) +W1(Y )μ−1/2 + O(μ−1), Y := μ1/2(ρ− η), (37a)

(nC)2 = N∗
0μ

3/2 + O(μ), (37b)

λC = λ0 + λ∗
1μ

−1/2 + λ∗
2μ

−1 + O(μ−3/2), (37c)

where

N∗
0 =

(
2
3
ζ0η

2Â0

)3/4

, λ0 =
2νη

1 − ν − η2(1 + ν)
,

λ∗
1 = 4N∗

0G, λ∗
2 = 2η2G

[
4ζ0(N∗

0 )2/3

(
GÂ1 +

1
2η2

)
+

(Â0)1/2

η
√

2

]
;

(−ζ0) � −2.3381 represents the first zero of the Airy function Ai, and we have introduced the notations

Â0 :=
(1 + ν)(1 + λ0η)

1 − η2
, Â1 :=

(1 + ν)η
1 − η2

, G :=
1 − η2

η(1 − ν) − η3(1 + ν)
.

Note that in the expansion of (nC)2, only the critical value N∗
0 is available—as pointed out in [6], the

effort required to find N∗
1 is significant. Thus, improving on these results is far from being a lightweight

undertaking.
The modified energy method for the annular plate proceeds along the same route as in Sect. 3.1; the

ansatz that we use is given by

λ � λC ≡ λ0 + λ∗
1c1, n2 � (nC)2 ≡ N∗

0 c2, W = W0(Y ) +W1(Y )c3 + · · · , (38)

where

W0(ρ) = Ai

(
N

∗1/3
0 μ1/2

η
(ρ− η) + ζ0

)
. (39)

In this case W1(Y ) is not easily available, so our approximation will have only two degrees of freedom
(c1 and c2). These constants are found from (11), which for an annular plate becomes

1∫
η

[
Π3W

′′2(ρ) + Π4W
′2(ρ) + Π5W

2(ρ)
]
dρ = 0, (40)

with
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Π3 := ρ, Π4 :=
2n2 + 1

ρ
− Δ1(1 + λη)ρ− Δ2

η(λ+ η)
ρ

,

Π5 :=
n2(n2 − 4)

ρ3
− n2

ρ

(
Δ1 − Δ2

ρ2

)
(λη + 1),

and

Δ1 :=
μ2(1 + ν)

1 − η2
, Δ2 :=

μ2(1 − ν)
1 − η2

.

An additional equation is obtained from the criticality condition of λ ≡ λ(n) with respect to n2,

1∫
η

[
Π6W

′ 2(ρ) + Π7W (ρ)W ′(ρ) + Π8W
2(ρ)

]
dρ = 0, (41)

where

Π6 :=
2
ρ2
, Π7 := − 2

ρ3
, Π8 :=

μ2

ρ2

(
A− B

ρ2

)
+

2(n2 − 2)
ρ4

,

and the expressions of A and B were defined in (35). These equations will be used in the numerical
strategy described in Sect. 3.1 and already employed in the previous section, so we omit the details.

In contrast to the rectangular plate, we now have an extra parameter, 0 < η < 1, so our comparisons
between asymptotics and numerics will have to reflect this new addition. Figure 7 shows a first set of com-
parisons for η = 0.2 and, respectively, η = 0.4, similar to the ones included in Figs. 2 and 3. The results
of the modified energy method based on the one-term ansatz (39) appear to perform better than both
the two- and three-term asymptotic approximations derived in [6]. More specifically, the relative errors
between the values computed with the former approach and direct numerical simulations lie between 1.06
and 1.49 % for μ in the range [22.0, 350.0], but they tend to deteriorate quickly as μ � 10.0 because the
boundary condition W (1) = 0 starts to be violated in that instance. Given our previous experience from
Sect. 3.1, this is not unexpected. As shown in [19] that regime can be captured by the low-μ asymptotic
analysis, which here is left out in the interest of brevity.

A different set of comparisons is presented in Figs. 8 and 9, which contain the neutral stability enve-
lopes for the stretched annulus. It is known [23] that the individual curves λ = λ(η;m) for m = 2, 3, . . .
satisfy limη→0 λ(η;m) = +∞, and therefore the envelope of this family of curves is expected to have the
same characteristic. However, the asymptotic analysis proposed in [6] was conducted under the assump-
tion that η = OS(1), so the approximations of the envelope derived there, and reproduced here as the
dash/dash-dot lines for convenience, cannot be expected to be a faithful description of what happens
for η � 02. Interestingly enough, the modified energy approximation is free of such shortcomings, and
it appears to follow the numerical envelope quite closely. The relative errors in Fig. 8a are admittedly
large because μ = 10.0, but they decrease quickly as this parameter increases. For example, in Fig. 9a
(μ = 40.0), they are within 5.20 % for η ∈ [0.095, 0.5], while in Fig. 9d (μ = 350.0), the maximum relative
error is 1.5 % for 0.03 < η < 0.5. We also want to point out that the blow-up of λ (both the numerical
solution and our current approximations) is present in all four plots in Fig. 9, but it is not emphasised
since the η−region over which this behaviour occurs is awkward to represent graphically; furthermore,
this regime has very little relevance from a practical point of view.

2This assertion does not contradict the results obtained by Coman and Bassom in [6] since for μ � 1 the range of η
for which their formula is not accurate is extremely small; in fact, it can be argued that to the level of accuracy of visual
inspection, their formulae perform very well for the entire range of realistic values of η. As shown in [23] by the first author,
(37c) plays the role of some sort of outer approximation for |η − 1| � 1 that can be complemented by a similar expression
for η → 0.
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(a) (b)

(c) (d)

Fig. 7. Comparisons of the various approximations of the critical eigenvalue λC ≡ λC(μ): two- (dot-dashed line) & three-
term (dashed line) asymptotic results, the modified energy method (small circles), and the direct numerical results (con-
tinuous line) for the stretched annular plate. Here η = 0.2 in (a, b) and η = 0.4 in (c, d)

5. Discussion

Motivated by recent work on the bending instabilities of thin elastic plates in tension (e.g., [4,6]), a
modified energy method has been proposed to improve upon those earlier results. With the help of an
ansatz informed by the asymptotic structure of the problems at hand, we have showed that the new
strategy is capable of producing approximations for both the critical edge-buckling loads and the number
of wrinkles that are valid for moderate values of the stiffness parameter μ. It is remarkable that the
accuracy achieved is very good despite the simplicity of the ansatz employed. This leads us to believe
that leading-order asymptotic approximations in other contexts (such as the two-dimensional problems
in [24], for instance) could form the basis for similar energy strategies, thus circumventing the need of
complicated numerical work.
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(a) (b)

Fig. 8. Dependence on η of the two- (dot-dashed line) & three-term (dashed line) asymptotic results, the modified energy
method (small circles), and the direct numerical results (continuous line) for the stretched annular plate: μ = 10.0 (a) and
μ = 20.0 (b)

In the context of asymmetric buckling problems, our modified energy method is particularly versatile
since it is able to capture the neutral stability envelope with minimum effort. Indeed, this is done by
simply adding an extra integral constraint as demanded by the criticality of the eigenvalue with respect
to the mode number. It is interesting to note that while the general asymptotic approach in [4] and [6]
for rectangular and annular plates, respectively, was identical, its accuracy was problem-dependent. The
modified energy method seems to be free of such shortcomings and is quite robust.

It was mentioned in Sect. 3.1 that a more suitable ansatz for the problems discussed in this work
would be one that incorporates the effect of the O(μ−1) bending layer. Prompted by that observation,
we shall now consider replacing W in (16) by

Ŵ (y) = Ai(Z) + μ−1/2
{
β1Ai′(Z) + β2Ai′′′(Z) + Ai′(ζ02) exp(−μy)}, (42)

where Z := ωμ1/2y + ζ02 and βj (j = 1, 2) are the complicated expressions defined in Eq. (17) of [4].
Comparisons with various other results obtained previously are recorded in Table 3. The data included
there indicates a significant improvement over both the asymptotic results reported in [6] and our earlier
simplified Rayleigh-Ritz strategy. It can be shown that the free-edge case for the rectangular plate is ame-
nable to a similar treatment by following the analysis available in [4], although things are considerably
more involved for the annular plate. That is partly due to the fact that one has to take the asymptotic
analysis of [6] to the next order ([19] contains the relevant details and some further comparisons).

Refining the ansatz (16) or (39) as indicated above can only provide a sensible improvement as long as
μ does not get too small, typically μ � 10.0. Indeed, the analysis of Geer and Andersen in [7–9] suggests
that for lower μ-values one would have to augment the Rayleigh-Ritz ansatz by terms coming from the
asymptotic analysis in which 0 < μ 
 1. Unfortunately, as we have already seen in Sect. 3.2 for the
clamped plate, the expression of the corresponding eigenmodes is not immediately available in closed
form. While in principle we can construct the refined ansatz and use numerical methods to carry out
the programme outlined in Sect. 3.1, there is little scope in pursuing it as this would defeat the whole
purpose of using the Rayleigh-Ritz method in the first place.

Finally, the analysis described in this paper reinforces the duality between numerics and asymptot-
ics. By using the techniques of asymptotic analysis, one is naturally led to a correct estimate of the
ansatz that needs to be used in approximate methods such as the Rayleigh-Ritz technique. It would be
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(a) (b)

(c) (d)

Fig. 9. Same as per Fig. 8, except that μ = 40.0 in (a), μ = 60.0 in (b), μ = 100.0 in (c), and μ = 350.0 in (d)

Table 3. Comparisons between various approximations of the critical eigenvalues and direct numerical simulations
(NUM) for the edge-buckling of a clamped rectangular plate. The following conventions are used: ASY II represents the

asymptotic result λC := λ0 + λ∗
1μ−1/2 + λ∗

2μ−1 from the paper [4]; W0 denotes the values of λ obtained via the modified

energy method with the simplest ansatz W = W0; finally, Ŵ is used to identify the approximate eigenvalues obtained with
the test function (42). The relative errors (R.E.) with respect to the corresponding direct numerical results are recorded in

the last three columns

μ NUM ASY (II) W0 Ŵ R.E. ASY (II) (%) R.E. W0 (%) R.E. Ŵ (%)

10.0 1.226536 0.676648 1.348720 1.329550 44.8326 9.9617 8.3988
20.0 0.620428 0.472876 0.593808 0.617041 23.7824 4.2906 0.5460
30.0 0.468225 0.397007 0.448233 0.464508 15.2103 4.2696 0.7939
40.0 0.399122 0.355988 0.384502 0.396310 10.8073 3.6630 0.7045
50.0 0.359254 0.329800 0.347982 0.357133 8.1988 3.1377 0.5904
100.0 0.280448 0.271139 0.275470 0.279756 3.3196 1.7751 0.2470
200.0 0.238152 0.235099 0.235919 0.237944 1.2819 0.9377 0.0873
300.0 0.222183 0.220574 0.220768 0.222085 0.7244 0.6367 0.0443
400.0 0.213362 0.212336 0.212333 0.213306 0.4809 0.4821 0.0263
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interesting to explore the validity of this statement to problems in which the asymptotics are governed
by differential equations that are not solvable in closed form. A pertinent example is provided by the
paper [25], in which the authors used finite element simulations to identify the optimal choice of such
an ansatz. The alternative asymptotic description given by the first author in [20] for the same problem
hinged upon a boundary-layer analysis governed by a fourth-order differential equation with variable
coefficients. Extending the present work to that situation would be an interesting exercise that we hope
to revisit elsewhere.
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