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a b s t r a c t

An exact method for free vibration analysis of plates with arbitrary boundary conditions is presented.
This is achieved by integrating the spectral method into the classical dynamic stiffness method. The for-
mulation satisfies the governing differential equation exactly and any arbitrary boundary conditions are
satisfied in a series sense. The Wittrick–Williams algorithm is enhanced with several elegant techniques
to obtain solutions. The exactness and computational efficiency of the method are demonstrated by com-
paring results obtained from other methods. Finally, mathematical and physical insights are gained and
significant conclusions are drawn for various analytical methods for free vibration analysis of plates.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The free vibration of rectangular plates is a historical problem
[1] for over two centuries which has given birth to many funda-
mental methods like the Rayleigh [2] and the Ritz [3] methods.
This problem has also been a standard benchmark for many other
analytical and numerical methods. However, the exact solutions
for the problem are available only for Navier or Levy-type plates
where at least one pair of opposite edges must be simply [4]
and/or guided [5] supported. For more general boundary condi-
tions, one needs to resort to approximate methods leading to
approximate results.

The purpose of this paper is to develop a novel spectral-
dynamic stiffness method (S-DSM) for free vibration analysis of
plates with arbitrary boundary conditions to arrive at the exact
solution. The superiority of the S-DSM also enables a comparative
discussion on a wide range of analytical methods for free vibration
analysis of plates.

Before embarking on the proposed method, some of the widely
used typical analytical methods are reviewed first. These can be
classified into two categories: weak-form based methods and
strong-form based methods. The weak-form based methods have
been frequently used, including for example, Rayleigh [2], Ritz
[3] and Kantorovich [6] methods. In these methods, the governing
differential equation (GDE) and sometimes the boundary condi-
tions (BC) are satisfied in a variational sense. On the other hand,

strong-form based methods obtain solutions satisfying both the
GDE and BC in a strong manner, e.g., superposition method [7–9],
generalised Koialovich’s limitant theory based on superposition
method [10], Fourier series based analytical method [11,12] and
dynamic stiffness method [13]. Clearly, the proposed S-DSM
belongs to the latter category.

The Rayleigh [2] and the Ritz [3] methods have been extensively
used in the free vibration analysis of plates due to their flexibility
and conceptual simplicity. These types of methods assume a super-
position (linear combination) of admissible (or named as basis/trial/
shape) functions. The geometric boundary conditions are satisfied
by the chosen admissible functions or by using the penalty method.
Then the unknown coefficients of the admissible functions are to be
determined by minimising the energy functional of the system. The
admissible functions including for example, beam characteristic
functions [14,15], boundary characteristic orthogonal polynomials
[16–18], orthogonal plate functions (sometimes called pb-2 polyno-
mials) [19–22] and many others. However, the above methods may
become numerically unstable when the admissible functions are
evaluated at higher orders [23] creating ill-conditioned mass and
stiffness matrices. To cope with this problem, Beslin and Nicolas
[23] proposed a set of hierarchical trigonometric functions which
was applied by Dozio [24] for free vibration analysis of rectangular
plates with various boundary condition. Also, the combination of
trigonometric function and lower-order polynomials [25–29] have
been used to avoid the aforementioned numerical problem.
However, it appears that the convergence rate of these methods is
still comparatively slow and the analysis is only limited to low to
medium frequency ranges. The Kantorovich method [6] together
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with its derivatives [30–33] belong to another type of weak-form
based methods. This type of methods approximate the deformation
as the product of an unknown function in one spatial variable and an
assumed function of both variables. In this way the original partial
differential equation (PDE) is reduced into an ordinary differential
equation (ODE) in the unknown function. The Kantorovich method
[6] was later extended by Kerr [30] by considering the original Kan-
torovich method to be just a single step in an iterative process. The
extended method was applied by Jones and Milne [31] and Sakata
et al. [32] for free vibration analysis of rectangular plates. Then
the extended version was further modified [33] by replacing the
iterative process with two simultaneous ODEs which can be solved
analytically. The authors of Ref. [33] emphasised that the method is
simpler than their contemporary methods such as the Ritz method.
However, the results of all versions of Kantorovich method always
have discrepancy with accurate solutions. This is due to the nature
of the method which will be explained later in Sections 5 and 6.

It should be recognised that even though different strong-form
based methods have different procedures, they are all somehow
based on superposition method which was pioneered by Lamé
[34] and then used by Iguchi [35] to discuss free vibration of a
completely free plate. Gorman [7,8] developed an accurate and sys-
tematic superposition method for plates to perform modal analysis
of plates with different boundary conditions. The method essen-
tially decomposes classical boundary conditions into a set of cases
whose analytical solutions are available in series form. Kshirsagar
and Bhaskar [9] extended the superposition method by using the
so-called untruncated infinite series (although the method did
use truncated moment series for non-Levy cases) to obtain highly
accurate results. However, their formulation seems to be
inapplicable to the cases with two adjacent free edges. Meleshko
and Papkov [10] and Papkov and Banerjee [36] enhanced the
superposition method by taking advantage of the regularity of
the ensuing infinite algebraic system. By using the generalised
Koialovich’s limitant theory [37], the upper and lower bounds of
the eigenvalues were predicted in [10,36]. Nevertheless, the for-
mulations given in Refs. [10,36] are quite complex even for the
most specific cases in which all of the plate edges are free [10] or
clamped [36]. Sakata and Hosokawa [38] used an iteration method
with superposition of double trigonometric series satisfying part of
the BC and then the GDE, while the rest of the BC led to a linear
algebraic equation to obtain very accurate results. The method
appears to have been reported only for fully clamped plates but
with very slow convergence rate. Xing and his coauthors [39–41]
proposed a novel separation of variables method for free vibration
analysis of rectangular plates with classical boundary conditions.
Unfortunately it was later pointed out by Bahrami et al. [42] that
this method does not give exact solutions for non-Levy type plates.
Lim et al. used a symplectic elasticity method [43] for exact free
vibration of Levy-type rectangular plates [44]. However, if this
method is applied to non-Levy-type plates [45], inaccuracy may
occur due to similar reason that arises from other methods
[39–41]. This will be explained later in Section 6. Evidently, in
the above mentioned superposition or related methods, different
BC require different formulations. To solve this problem, Li and
his coauthors [11,12] proposed a Fourier-series based analytical
method for plates with general boundary supports. In this method,
by using a fictitious Fourier cosine series to first satisfy the elastic
BC then the GDE, the final eigenvalue system is expressed by sep-
arate stiffness and mass matrices. This method uses a complete set
of series to deal with plates having elastic boundary conditions.
However, the basic concept of this method lies in using the elastic
BC as penalty parameters to model different BC, which may lead to
ill-conditioning stiffness or mass matrices and becomes an
obstacle for this method to obtain highly accurate results, particu-
larly in the higher frequency range.

The dynamic stiffness method (DSM) [13], or sometimes called
the spectral element method (SEM) [46] is another type of strong-
form based elegant method which provides exact solutions for
Levy-type plates and plate assemblies. The DSM is highly computa-
tionally efficient and accurate because the dynamic stiffness formu-
lation is based on exact shape function, which has much lower
degrees of freedom than that of the FEM. In addition, the application
of theWittrick–Williamsalgorithm[47] enables one to compute any
required natural frequencies at any desired accuracy, and the algo-
rithm ensures that no natural frequency will be missed. In the past
decades, numerous exact dynamic stiffness theories have been
developed for a wide range of one-dimensional (1D) elements such
as rods and beams. For two dimensional elements like plates, the
DSM has been developed by using different plate theories [48–53].
Nevertheless, all of these investigations were restricted to cases
where at least a pair of opposite edges of the plate are simply sup-
ported to enable a Levy solution. This imposed severe limitation to
prevent the DSM application for the general case.

The main difficulty encountered in the DS formulation for a 2D
plate with arbitrary boundary conditions lies in obtaining the
dynamic shape functions. This set of shape functions should cap-
ture all possible deformation governed by the GDE, and also it must
be capable of providing accurate representation for arbitrarily pre-
scribed boundary conditions on the plate edges. These arbitrary
continuous functions within a 2D domain cannot be easily
expressed in a simple analytical form because of their arbitrari-
ness. This difficulty is addressed in this paper by using the spectral
method (the letter S is justifiably used in the name S-DSM). The
general idea of spectral method is to represent an arbitrary func-
tion by an infinite series of functions (modified Fourier). In other
words, the modified Fourier series is used to facilitate the choice
of any desired freedom to cope with the arbitrariness of plate
motion subjected to arbitrary boundary conditions. Mathemati-
cally, it provides a robust formulation to reduce the differential
order of the governing differential equation (GDE) by introducing
the corresponding parameters like the frequency and the
wavenumbers. Physically, the concept of ‘spectral’ has built a
bridge between the wave propagation and structural vibration,
which helps understand the physics behind the vibration problem.
Throughout this paper the term ‘spectral’ is applied in both time
and spatial domains. The spectral Fourier Transform (FT) of the
time coordinate is referred as ‘frequency’ whilst the spectral
modified FT of the spatial coordinates is defined as ‘wavenumber’.
It should be emphasised that the spectral in the current S-DSM is
somehow different from the spectral element method (SEM) used
by Patera [54], Ostachowica et al. [55] and Lee [46]. In [54,55],
‘spectral’ of SEM is used only for spatial coordinates and the
‘spectral’ in the latter [46] is only applied for time coordinate.

The current paper is organised as follows. In Section 2, the exact
general solution is derived using the spectral method, which is
then partitioned into four components with different symmetric
or antisymmetric properties. In Section 3.1, the corresponding
spectral-dynamic stiffness (S-DS) matrices for these four compo-
nent cases are derived through a mixed-variable formulation pro-
cedure. Subsequently in Section 3.2, these S-DS component
matrices are assembled to form the S-DS matrix for the entire
plate. To this end, any prescribed boundary conditions can be
transformed to modified Fourier series whose coefficients are
related by the S-DS matrix. As the solution technique, the
Wittrick–Williams algorithm is enhanced by a couple of novel
techniques to resolve the mode count problem of a fully clamped
plate, see Section 4. In Section 5, exact natural frequencies are
computed using the current S-DSM for plates with different
boundary conditions which are validated and compared with
existing methods. Numerical simulations reveal that the current
S-DSM is remarkably efficient and yet it gives exact results.
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Comprehensive comparisons using a wide range of different meth-
ods made it possible to draw some general conclusions on various
analytical (and exact) methods for free vibration analysis of plates,
which are included in Section 6. The presentation is completed
with conclusions in Section 7.

2. Governing differential equation and general solution

A rectangular Kirchhoff plate of dimension 2a! 2b undergoing
transverse free vibration is shown in Fig. 1. Based on the customary
harmonic oscillation assumption, the transverse displacement
Wðx; yÞ is described by the frequency-dependent GDE as [56]:

@4W
@x4

þ 2
@4W
@x2@y2

þ @4W
@y4

þ v @2W
@x2

þ @2W
@y2

 !
% kW ¼ 0; ð1Þ

where

j ¼ qhx2

D
; v ¼ qh3x2

12D
; D ¼ Eh3

12ð1% m2Þ : ð2Þ

In Eq. (1) above, x is the circular frequency, hence both j and v are
frequency dependent parameters: j is inertia related while v is
rotatory inertia related. D is the bending rigidity of the plate, E is
the Young’s modulus of material, m is the Poisson ratio, h and q
are respectively the thickness and mass density of the plate. The
natural boundary conditions on the four plate edges can be
expressed through Hamilton’s principle [56] as

dW : Vx and d/x : Mx along x ¼ 'a; ð3aÞ
dW : Vy and d/y : My along y ¼ 'b: ð3bÞ

Here, /x and /y are the rotation of the transverse normals on the
boundary about y and x axes respectively, Mx;My are bending
moments and Vx;Vy are effective shear forces on the corresponding
boundaries. Following the sign conventions illustrated in Fig. 1, one
can write

/x ¼ % @W
@x

; /y ¼ % @W
@y

; ð4aÞ
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Vy ¼ %D
@3W
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þ C( @3W
@y@x2

þ v @W
@y

 !
; ð4cÞ

where C( ¼ 2% m.
It should be mentioned that the general solution of a plate

equation with arbitrary boundary conditions is much more
difficult to obtain than that for a beam or a Levy-type plate. This

will be evident when looking at the characteristic equation. The
general solution of Eq. (1) can be sought by using the method of
separation of variables

Wðx; yÞ ¼ XðxÞYðyÞ ¼ Ceqxþpy; ð5Þ

where C is an arbitrary constant, q and p are wave parameters in the
x and y directions respectively. Substituting Eq. (5) into Eq. (1) leads
to the following characteristic equation

q4 þ 2q2p2 þ p4 þ vðq2 þ p2Þ % j ¼ 0; ð6Þ

which gives the dispersion (spectrum) relation by relating the fre-
quency x (in the form of j and v) with the wave parameters q
and p. Here we mention in passing that the general solution of a
plate has an interesting parallel with the DSM formulation for
one-dimensional (1D) elements such as a beam. For a beam, there
is only one wave parameter in the characteristic equation. There-
fore, the roots of the characteristic equation for beam problems will
have only one wave parameter which can be expressed analytically
in terms of the frequency. However, for a two dimensional (2D) ele-
ment like plate, there will be two wave parameters in the character-
istic equation as in Eq. (6). Thus, any combination of the wave
parameters q;p and frequency x (in terms of j and v) satisfying
Eq. (6) represents a solution to the governing Eq. (1). So there are
infinite number of possibilities of such combinations. This is a for-
midable problem. (For Levy-type plate theories [48,49,53], this is
simple because one of the wave parameters, which corresponds to
the direction where opposite edges are simply supported, can be
assumed to be fixed. The roots of the other wave parameter can
be expressed in an analytical form just like that of a 1D element.)

As mentioned in the introduction, the difficulty for the plate
problems for the general case can be resolved by incorporating
the idea of spectral method in terms of modified Fourier series.
Essentially, the general solution is composed of two infinite series,
in each of which the solution in one directions (either XðxÞ or YðyÞ)
in Eq. (5) can be expressed by the modified Fourier basis function
of Eq. (A.1), see Appendix A

XðxÞ ¼
X

m2N
k2f0;1g

eCkmT kðakmxÞ; YðyÞ ¼
X

n2N
j2f0;1g

eCjnT jðbjnyÞ; ð7Þ

where eCkm and eCjn are unknowns, N ¼ f0;1;2;3; . . .g is the non-
negative integer set, and T k and T j are trigonometric functions
forming a complete orthogonal set defined in Eq. (A.1) with the
wavenumbers akm and bjn taking the carefully chosen forms as
shown below

akm ¼
mp
a k ¼ 0
mþ 1

2

! " p
a k ¼ 1

(
; bjn ¼

np
b j ¼ 0
nþ 1

2

! " p
b j ¼ 1

(
: ð8Þ

The above formulation in Eqs. (7) and (8) is the first key step taken
in the current S-DSM. Any arbitrary 1D function XðxÞ or YðyÞ with

Fig. 1. Coordinate system and notations for displacements and forces for a thin plate.
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arbitrary boundary conditions at its end (x ¼ 'a or y ¼ 'b) is
represented by the above complete orthogonal modified Fourier
series with an infinite set of discrete wavenumbers. The series can
be further partitioned into two parts, namely, symmetric and
antisymmetric components. Then for each wavenumber in one
direction, one can solve the solution analytically in the other direc-
tion. To this end, summing up the above two infinite series gener-
ated from Eq. (7) and based on Euler’s formula, the general
solution of the GDE of Eq. (1) can be expressed as

Wðx; yÞ ¼
X

m2N
k2f0;1g

T kðakmxÞ eAkm1 coshðp1kmyÞ þ eAkm2 coshðp2kmyÞ
h

þ eAkm3 sinhðp1kmyÞ þ eAkm4 sinhðp2kmyÞ
i

þ
X

n2N
j¼f0;1g

T jðbjnyÞ eBjn1 coshðq1jnxÞ þ eBjn2 coshðq2jnxÞ
h

þ eBjn3 sinhðq1jnxÞ þ eBjn4 sinhðq2jnxÞ
i
; ð9Þ

in which eAkm1 ) eAkm4 and eBjn1 ) eBjn4 are unknowns. The above wave
parameters p1km;p2km and q1jn;p2km are obtained by substituting
qkm ¼ iakm and pjn ¼ ibjn into the characteristic Eq. (6) to give

either p1km ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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rs
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a2
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2
þ
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4
þj

rs

; ð10aÞ

or q1jn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
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v
2
%
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2
þj
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; q2jn ¼
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b2
jn%

v
2
þ
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2
þj

rs

: ð10bÞ

It should be noted that the general solution of Eq. (9) forms a com-
plete set satisfying the GDE of Eq. (1). This is one of the most impor-
tant techniques used to make the current method converge to the
exact results with a very fast convergence rate with respect to the
number of terms used in the series. The discussion of this particular
aspect will be made in detail in Section 6 when comparison will be
made with the series used in a wide range of other analytical meth-
ods. By considering the symmetry/antisymmetry of the hyperbolic
and trigonometric functions, the general solution of Eq. (9) can be
partitioned into a sum of four solution components Wkjðx; yÞ as

Wðx; yÞ ¼
X

k;j2f0;1g

Wkjðx; yÞ ¼ W00 þW01 þW10 þW11; ð11Þ

where all of the four components of solution take the following con-
cise form:

Wkj ¼
X

m2N
A1kmHjðp1kmyÞ þ A2kmHjðp2kmyÞ
$ %

T kðakmxÞ

þ
X

n2N
B1jnHkðq1jnxÞ þ B2jnHkðq2jnxÞ
$ %

T jðbjnyÞ: ð12Þ

In Eqs. (11) and (12), indices k and j denote respectively the symme-
try relating to x and y axes. For example, k taking ‘0’ or ‘1’ denotes
an even or odd function in x respectively. In Eq. (12), A1km;A2km;B1jn

and B2jn are unknown coefficients to be eliminated, T is trigonomet-
ric functions defined in Eq. (A.1) of Appendix A and H stands for
hyperbolic functions defined as follows:

HlðCnÞ ¼
coshðCnÞ; l ¼ 0
sinhðCnÞ; l ¼ 1

&
ð13Þ

with

either n ¼ x; l ¼ k; C ¼ p1km or p2km ð14aÞ
or n ¼ y; l ¼ j; C ¼ q1jn or q2jn: ð14bÞ

Before proceeding with further development, some of the differen-
tial properties of the hyperbolic H and trigonometric T functions
are to be made use of. By introducing the notation

H(
l ðCnÞ ¼

dHlðCnÞ
Cdn

; ð15Þ

one has

diHlðCnÞ
dni

¼
CiHlðCnÞ i is even

Ci%1H(
l ðCnÞ i is odd

(
ð16Þ

and

diT lðclsLÞ
dni

¼ ð%1Þsþi=2cils i is even
0 i is odd

(

ð17Þ

according to the wavenumbers defined in Eq. (8). Also, an inspec-
tion on Eq. (10) suggests the following relationships to be valid

p2
1km þ p2

2km ¼ 2a2
km % v; q2

1jn þ q2
2jn ¼ 2b2

jn % v; ð18aÞ

p2
2km % p2

1km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4j

q
; q2

2jn % q2
1jn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4j

q
; ð18bÞ

p2
1kmp

2
2km ¼ a2

kmða2
km % vÞ % j; q2

1jnq
2
2jn ¼ b2

jnðb
2
jn % vÞ % j; ð18cÞ

ðp2
1km þ b2

jnÞðp
2
2km þ b2

jnÞ ¼ ðq2
1jn þ a2

kmÞðq
2
2jn þ a2

kmÞ: ð18dÞ

The above expressions will be used later.

3. Development of the spectral-dynamic stiffness matrix

The general solution obtained previously will serve as the
frequency-dependent dynamic shape functions to develop
the spectral-dynamic stiffness (S-DS) matrix in this section. In
this method, the general solution Wðx; yÞ of Eq. (11) has been
partitioned into four components Wkj in Eq. (12). In this section,
advantage of the above partitioning is taken by first developing
the S-DS component matrix Kkj based on the expressions of
Eq. (12). These Kkj matrices are then assembled to form the overall
K for the entire plate. The final S-DS matrix K f is obtained by
applying the prescribed boundary conditions onto the S-DS matrix
K , see Section 3.2.

3.1. Development of the S-DS component matrix Kkj

The formulation of the S-DS component matrices Kkj is achieved
by substituting the general solution component of Eq. (12) into the
corresponding boundary conditions and eliminating the unknown
coefficients. Note that the following derivation procedure is gen-
eral so that it is valid for all of the four kj symmetric/antisymmetric
component cases.

For the sake of brevity, the displacement and force boundary
conditions on the plate edges can be written in vector form as

Wkj
a

Wkj
b

/kj
a

/kj
b

2

666664

3

777775
;

Vkj
a

Vkj
b

Mkj
a

Mkj
b

2

666664

3

777775
: ð19Þ

The entries in the above vectors (Wkj
a ;V

kj
a , etc.) can be expressed

either by substituting the solution components of Eq. (12) into
the natural boundary conditions of Eq. (3) or by expressing them
using the modified Fourier series of Eq. (A.2). Thus,
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The modified Fourier coefficients of the boundary conditions
(e.g. Wajn and Vbkm in Eq. (20) were obtained from the modified
Fourier series of Eq. (A.2) to give

Wajn ¼
Z b

%b
Wkj

a

T jðbjnyÞffiffiffiffiffiffiffiffi
fjnb

p dy; Vbkm ¼
Z a

%a

Vkj
b

D
T kðakmxÞffiffiffiffiffiffiffiffiffiffi

fkma
p dx: ð21Þ

The
ffiffiffiffiffiffiffiffi
fjnb

p
and

ffiffiffiffiffiffiffiffiffiffi
fkma

p
appearing in Eqs. (20) and (21) provide the

symmetry of the forward and inverse modified Fourier transforma-
tion to eliminate the dependence of the length in the integral ranges
½%b; b+ or ½%a; a+. Therefore, when a – b the ensuing S-DS component
matrices Kkj will remain symmetric. This is the second key step
taken in the method.

In view of Eqs. (16) and (17), the expressions for /kj
a in Eq. (20a)

and Vkj
a in Eq. (20b) yield

%@Wkj=@x
)))
x¼a

¼
X

n2N
/ajnT jðbjnyÞ=

ffiffiffiffiffiffiffiffi
fjnb

q
; ð22aÞ

% @3

@x3
þ C( @3

@x@y2
þ v @

@x

 !

Wkjjx¼a ¼
X

n2N
Vajn

T jðbjnyÞffiffiffiffiffiffiffiffi
fjnb

p ; ð22bÞ

which give

%/ajn=
ffiffiffiffiffiffiffiffi
fjnb

q
¼ q1jnH(

kðq1jnaÞB1jn þ q2jnH(
kðq2jnaÞB2jn; ð23aÞ

%Vajn=
ffiffiffiffiffiffiffiffi
fjnb

q
¼ q2

1jn % C(b2
jn þ v

' (
q1jnH(

kðq1jnaÞB1jn

þ q2
2jn % C(b2

jn þ v
' (

q2jnH(
kðq2jnaÞB2jn ð23bÞ

for all n 2 N. With the help of Eq. (18a), the unknowns coefficients
B1jn and B2jn can be determined from Eq. (23) for all n 2 N. These are

B1jn ¼
Vajn % ðmb2

jn % q2
1jnÞ/ajnffiffiffiffiffiffiffiffi

fjnb
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4j
p

q1jnH(
kðq1jnaÞ

; ð24aÞ

B2jn ¼ %
Vajn % ðmb2

jn % q2
2jnÞ/ajnffiffiffiffiffiffiffiffi

fjnb
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4j
p

q2jnH(
kðq2jnaÞ

: ð24bÞ

Following similar procedure and with the help of Eq. (18a), the
expressions of /kj

b in Eq. (20a) and Vkj
b in Eq. (20b) yield the

unknowns A1km and A2km as

A1km ¼
Vbkm % ðma2

km % p2
1kmÞ/bkmffiffiffiffiffiffiffiffiffiffi

fkma
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4j
p

p1kmH(
j ðp1kmbÞ

; ð25aÞ

A2km ¼ %
Vbkm % ðma2

km % p2
2kmÞ/bkmffiffiffiffiffiffiffiffiffiffi

fkma
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4j
p

p2kmH(
j ðp2kmbÞ

: ð25bÞ

So far, all of the unknown coefficients A1km;A2km; B1jn and B1jn in the
general solution of Eq. (12) have been determined by using the
expressions of /kj

a ;/
kj
b ;V

kj
a and Vkj

b of Eq. (20). Next, by substituting

the already determined unknowns into the rest of the expressions
for Wkj

a ;W
kj
b ;M

kj
a and Mkj

b in Eq. (20) and by applying the modified
Fourier series formula (A.2), one can arrive at four infinite sets of
algebraic equations relating all the Fourier coefficients
(Wajn;Wbkm, etc.) in Eq. (20). The detailed derivation is described
in Appendix B. To this end, the four infinite sets of equations can
be recast into the following vector form:

Wkj

Mkj

" #
¼

Akj
WU Akj

WV

Akj
MU Akj

MV

" #
Ukj

Vkj

" #
ð26Þ

where

Vkj ¼ ½Vaj0;Vaj1; . . . ;Vajn; . . . ;Vbk0;Vbk1; . . . ;Vbkm; . . .+T ; ð27aÞ

Mkj ¼ ½Maj0;Maj1; . . . ;Majn; . . . ;Mbk0;Mbk1; . . . ;Mbkm; . . .+T ; ð27bÞ

Wkj ¼ ½Waj0;Waj1; . . . ;Wajn; . . . ;Wbk0;Wbk1; . . . ;Wbkm; . . .+T ; ð27cÞ

Ukj ¼ ½/aj0;/aj1; . . . ;/ajn; . . . ;/bk0;/bk1; . . . ;/bkm; . . .+
T : ð27dÞ

The explicit expressions for the coefficient matrices Akj
WU;A

kj
WV ;A

kj
MU

and Akj
MV are given in Appendix C in a remarkably concise form

whose physical meanings are also interpreted. It is worth emphasis-
ing that the whole coefficient matrix of the right hand side of Eq.
(26) has a symplectic structure: Akj

WV and Akj
MU are symmetric matri-

ces and Akj
WU ¼ %Akj

MV
T . This is owing to the adoption of the modified

Fourier series formula (A.2) in the formulation which keeps the
symplecticity [57] of the original Hamiltonian system. On the basis
of Eq. (26), the spectral-dynamic stiffness (S-DS) matrix Kkj can be
constructed in the form

f kj ¼ Kkjdkj
; ð28Þ

in which

f kj ¼ D
Vkj

Mkj

" #

; dkj ¼ Wkj

Ukj

" #

;

Kkj ¼ D
Akj

WV
%1 %Akj

WV
%1Akj

WU

Akj
MVA

kj
WV

%1 Akj
MU % Akj

MVA
kj
WV

%1Akj
WU

" #

: ð29Þ

In the above equation, the scalar parameter D is the plate rigidity
(recalling the D in Eq. (20b)).

3.2. Assembly procedure using the S-DS component matrix Kkj to form
the complete S-DS matrix K

In this section, the previously formulated S-DS component
matrix Kkj for the four symmetric or anti-symmetric component
cases are to be assembled to form the S-DS matrix K of the entire
plate.

Using the modified Fourier series formula of Eq. (A.2), any arbi-
trarily prescribed boundary conditions on the four plate bound-
aries can be transformed into the vector form d and f as

d ¼ dT
1;d

T
2;d

T
3;d

T
4

h iT
; f ¼ f T1; f

T
2; f

T
3; f

T
4

$ %T
; ð30Þ

in which

di ¼ W0
i
T
;W1

i
T
;U0

i
T
;U1

i
T

h iT
; f i ¼ V0

i
T
;V1

i
T
;M0

i
T
;M1

i
Th iT

; ð31Þ

where the sub-vectors superscripted by ‘0’ and ‘1’ denote respec-
tively the vectors of the Fourier cosine and sine series coefficients.
Following the partition of the general solution into four compo-
nents as shown in Eq. (11), the displacement and force vectors d
and f in Eq. (30) can be split into four symmetric or anti-
symmetric components. Therefore, the combination of the four
sub-vectors in each case represents the total displacement and force
vectors on the boundaries of the plate. In this way, one can write
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d ¼ T½d00T
;d01T

;d10T
;d11T +

T
; f ¼ T½f 00

T
; f 01

T
; f 10

T
; f 11

T
+
T
; ð32Þ

where T is the total transfer matrix taking the form

T ¼

In O O O O O O O In O O O O O O O
O O O O In O O O O O O O In O O O
O In O O O O O O O In O O O O O O
O O O O O In O O O O O O O In O O
O O Im O O O Im O O O O O O O O O
O O O O O O O O O O Im O O O Im O
O O O Im O O O Im O O O O O O O O
O O O O O O O O O O O Im O O O Im
In O O O O O O O %In O O O O O O O
O O O O In O O O O O O O %In O O O
O %In O O O O O O O In O O O O O O
O O O O O %In O O O O O O O In O O
O O Im O O O %Im O O O O O O O O O
O O O O O O O O O O Im O O O %Im O
O O O %Im O O O Im O O O O O O O O
O O O O O O O O O O O %Im O O O Im

2

6666666666666666666666666666666664

3

7777777777777777777777777777777775

;

ð33Þ

Here In and Im are identity matrices of dimension n and m respec-
tively, and O represents null matrices. It is interesting to note that
T has the following property

T%1 ¼ TT=2; 8 M;N 2 N: ð34Þ

Applying the property shown in Eq. (34) to Eq. (32) yields

½d00T
;d01T

;d10T
;d11T +

T
¼ 1

2
TTd: ð35Þ

Finally, putting Eqs. (28), (30), (32) and (35) together leads to the
relation:

f ¼ Kd; ð36Þ

where

K ¼ 1
2
T

K00 O O O
O K01 O O
O O K10 O
O O O K11

2

6664

3

7775T
T : ð37Þ

In Eq. (36), K is the S-DS matrix for the entire plate, which relates
the force f and displacement d vectors on the four edges of the
plate. Each element of f or d corresponds to a frequency-
wavenumber dependent DOF on the plate boundary (FWDOF).
Finally, any arbitrarily prescribed boundary conditions on the four
plate edges can be transformed into vectors in the form of Eqs.
(30) and (31). The zero elements, if any, in the vector d will be
removed yielding df and the corresponding rows and columns of
K will be condensed leading to K f , and f reduced to f f .

4. The Wittrick–Williams algorithm and its enhancements

The final spectral-dynamic stiffness (S-DS) matrix K f for a plate
with arbitrarily prescribed boundary conditions can now be used
to perform an accurate and efficient free vibration analysis. A reli-
able method of computing the natural frequencies of a structure
using the S-DS method is to apply the well-known Wittrick–Wil-
liams (WW) algorithm [47]. Essentially, the algorithm monitors
the Sturm sequence condition of K f in such a way that there is
no possibility of missing any natural frequency of the structure.
Moreover, any required natural frequency can be computed to
any desired precision even from only a single element.

In the Wittrick–Williams algorithm, the mode count J is a
fundamental concept, which defines the number of natural fre-

quencies passed as the frequency x is increased from zero to x(.
The mode count J is given by

J ¼ J0 þ sfK f g; ð38Þ

where K f , whose elements all depend on x, is evaluated at
x ¼ x(; sfK f g is the number of negative elements on the leading
diagonal of KD

f and KD
f is the upper triangular matrix obtained by

applying the Gauss elimination to K f ; J0 is the number of natural
frequencies between x ¼ 0 and x ¼ x( for the plate with all its
ends clamped, namely when d ¼ 0. Thus, it is possible to ascertain
howmany natural frequencies of a structure lie below an arbitrarily
chosen trial frequency x(. This simple feature of the algorithm
(coupled with the fact that successive trial frequencies can be cho-
sen by the user to bracket a natural frequency) can be used to con-
verge on any required natural frequency to any desired accuracy.

It is apparent from above that J0 count is an essential part of the
algorithm, not a peripheral issue. However, computation of J0 can
sometimes be a difficult task and may become a drawback when
applying the algorithm. In the literature, many of the previous
DS methods on plates [49–53] used a sufficiently fine mesh to
ensure that J0 , 0 at the frequency range of interest. However, this
will no doubt increase the computation time. It is especially the
case for the current S-DSM because a finer mesh will increase
the number of DOFs more significantly than that in the DS theory
of a Levy-type plate. However, there is another strategy to compute
J0 indirectly by considering the Navier type plate whose edges are
all simply supported. Obviously, Eq. (38) also applies to such a spe-
cial case, i.e., for a trial frequencyx(, one has JS ¼ J0 þ sfKSg, where
JS is the overall mode count of the Navier plate, and sðKSÞ is the sign
count of the formulated S-DS matrix KS of the Navier plate. There-
fore, the J0 can be obtained indirectly as below

J0 ¼ JS % sðKSÞ: ð39Þ

Similar technique as that of Eq. (39) has been successfully applied to
beam elements [58,59]. However, when it comes to plate problems
it becomes more complicated. In fact, this technique has been
restricted to the most simple Levy case when the corresponding
DS matrix KS can be decoupled into 2! 2 matrices. The technique
of Eq. (39) has never been applied so far for cases when the corre-
sponding DS matrices KS are more complex, see e.g., [48–53]. To
meet this challenge, a set of novel techniques is proposed here to
compute J0 in an extremely efficient and robust way.

First the computation of JS in Eq. (39) is accomplished analyti-
cally in the light of the knowledge in analytical number theory. It
is well-known that the exact solution for the natural frequency
of an all-round simply supported Kirchhoff plate is the familiar
Navier solution [56]. The dimensionless natural frequency param-
eter for this case can be expressed analytically in the following
form

2a
p

* +2
ffiffiffiffiffiffi
qh
D

r
xm̂n̂ ¼ m̂2 þ n̂a=bð Þ2

1þ ph=að Þ2 m̂2 þ ðn̂a=bÞ2
h i

=48
; ð40Þ

where m̂ and n̂ are the number of half-waves in the x and y direction
respectively (m̂ and n̂ are used to distinguish with previousm and n,
the number of terms in the series expansion). Then, JS of Eq. (39) is
essentially the number of pairs of m̂ and n̂ such that the left-hand
side of Eq. (40) with xm̂n̂ ¼ x( is greater than the right-hand side.
Obviously, this can be implemented using a numerical search tech-
nique which can be computationally expensive and the procedure
may possibly miss some of the natural frequencies. However, there
indeed exists an analytical expression for determining JS if one
recognises that this problem is an extension of the analytical num-
ber theory problem called Gauss circle problem [60]. Thus, JS can be
given as follows
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JS ¼
Xb
ffiffiffiffiffi
P1

4
p

c

n̂¼1

bm̂(ðn̂;x(Þc; ð41Þ

in which

m̂(ðn̂;x(Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

2 þ 4P1

q, -
=2% ðn̂a=bÞ2

s

; ð42Þ

P1 ¼ ð2a=pÞ4x(2qh=D;P2 ¼ ðx(a=pÞ2qh3
=ð3DÞ: ð43Þ

In Eq (41), ‘b-c’ is the floor function denoting the largest integer not
greater than ‘-’. The detailed mathematical proof is not given here
for the sake of brevity.

The computation of sðKSÞ in Eq. (39) is achieved in an elegant
and efficient way by taking advantage of the symplecticity of the
coefficient matrices in Eq. (26). It is well-known that when a geo-
metrically symmetric structure is subject to symmetric boundary
conditions, the displacement field is either symmetric or antisym-
metric. Therefore, when a rectangular plate subjected to simple
supports on all its edges, the four symmetric/antisymmetric S-DS
matrices are decoupled to describe the deformation with corre-
sponding symmetric/antisymmetric properties. Hence,

sðKSÞ ¼
X

k;j2f0;1g

sðKkj
S Þ: ð44Þ

Now returning to Eq. (28), the case with all the plate edges simply
supported is equivalent to letting Mkj ¼ Wkj ¼ 0, so that

sðKkj
S Þ ¼ sðAkj

MU % Akj
MVA

kj
WV

%1
Akj

WUÞ. Thus

sðKSÞ ¼
X

k;j2f0;1g

sðAkj
MU % Akj

MVA
kj
WV

%1
Akj

WUÞ: ð45Þ

The above technique of computing JS and sðKSÞ retains high reliabil-
ity and accuracy of the WW algorithm application by providing the
J0 in an elegant and extremely efficient way.

The mode shape computation is a little bit more complicated
than that of the usual procedure generally adopted in other DSM
methods. Once an arbitrary value is assigned to a chosen degree
of freedom, the rest of the values in the displacement vector df

can be determined in terms of the given one by solving the alge-
braic system. Then the displacement component vectors dkj can
be determined from d by using Eq. (35). Subsequently f kj can be
obtained from Eq. (28). Finally the unknown coefficients can be
calculated using Eqs. (24) and (25) which will be substituted into
Eq. (12) to recover the mode shapes.

5. Results

The current S-DSM has been implemented into a MATLAB pro-
gram which computes the natural frequencies and mode shapes
of rectangular plates with arbitrary boundary conditions. To keep
the presentation concise, selective but representative examples
are presented in this section. The results computed by the present
S-DSM are accurate up to the last figure presented which is
rounded (all accurate values are shown in bold). Six or seven digit
accuracy is provided to establish benchmark solutions. Some of
these results are compared with published ones wherever possible
to facilitate discussions on a wide range of different analytical
methods for free vibration analysis of plates, see Section 6. Some
representative mode shapes computed by the S-DSM are also
presented.

Attention should be paid that the dimensions of the plate are
always 2a! 2b and the dimensionless frequency parameters are
defined accordingly when the results are presented.

5.1. Convergence, boundedness and efficiency studies

Of course, by using the current method, any desired accuracy of
results can be achieved by using suitable number of terms in the
series expansion. However, the series-form general solution of
Eq. (12) and the resultant infinite algebraic systems of Eq. (28) will
have to be truncated at some stage during the numerical computa-
tion. Therefore, the convergence rate and the computational effi-
ciency of this method should be properly examined. For this
purpose, extensive case studies have been performed to examine
the high convergence rate as well as the high efficiency of the cur-
rent method.

Table 1 shows four sets of results for a square plate with differ-
ent boundary conditions, namely, FFFF, CCCC, CCSC and SCSC.
Throughout this paper, F, C and S represent free, clamped and sim-
ply supported edges of the plate respectively. The first, second,
third and fourth letters of each four-letter combination are for
the right, up, left and bottom edges respectively in an anticlock-
wise sense. The first eight dimensionless natural frequencies
k ¼ 4xa2

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
are computed by the current S-DSM when

M ¼ N, the number of terms in the series, varies from 2 to 20.
The results are compared with those obtained by FEM package
ABAQUS using a very fine mesh with 300! 300 S4R5 elements
(four-node thin shell elements with five DOFs at each node). The
plate parameters in the FEM modelling are taken as
2a ¼ 2b ¼ 1 m;h ¼ 0:001 m;E ¼ 30 GPa;m ¼ 0:3;q ¼ 2500 kN=m3.
For the SCSC case, exact solutions from Ref. [15] are also presented
which coincide with the S-DSM results. The computation of both
S-DSM and FEM results was performed on a PC equipped with a
3.40 GHz Intel 4-core processor and 8 GB of memory. The total
execution time for the first eight non-zeros natural frequencies is
included in the last column of Table 1.

Indeed, the S-DSM results exhibit a very fast convergence rate
relating to the number of series terms. With only 2–3 terms
included in the series, the first eight natural frequencies show
three to four significant figure accuracy; a five-term series leads
to five significant-figure accuracy and a fifteen-term series gives
results with accuracy of at least six significant figures. This is
indeed an extremely fast convergence rate compared with other
series based methods. For example, Ref. [61] gives only two digit
accuracy results for an FFFF plate with 30 terms in the series,
Ref. [11] gives five-digit precision in the results for the first six nat-
ural frequencies of a CCCC plate with at least 17 terms included in
the series. Numerical studies also indicate that the convergence
rate is slightly different for different BC, which is not unexpected.
To obtain results with the same level of accuracy, the cases with
the same prescribed BC on all edges like FFFF and CCCC require less
terms in the series than the other cases like CCSC and SCSC. Never-
theless, for all of the cases, the convergence rate is seemingly much
faster than all existing methods.

Although the S-DSM solutions converge very fast towards exact
solutions, it is worth pointing out that the boundedness of its
results is quite similar to strong-formed based method like Gor-
man’s superposition method (GSM) [7]. The boundedness of both
S-DSM and GSM are case dependent. This is different from weak-
form based methods like the Ritz and Kantorovich methods, whose
results always serve as the upper bound of the accurate solution.
Convergence studies suggest that the results of the present S-
DSM converge from below if the truncated-series building blocks
have more flexible boundary conditions (BC) than the original BC,
such as for the CCCC case in Table 1. On the contrary, the results
from S-DSM converge from above if its building blocks for the
boundary conditions are stiffer than the original boundary condi-
tions, such as the FFFF case in Table 1. However, the boundedness
cannot be predicted if the building blocks contain both stiffer and
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more flexible boundary conditions with respect to the modelled
plate, such as the CFFF case. These findings coincide with those
of GSM as pointed out by Mochida [62]. This is due to the similar-
ities in the adopted series and bearing in mind that both S-DSM
and GSM are based on strong formulation. In any case, the afore-
mentioned boundedness properties are not of any major conse-
quence due to the highly accurate results presented (accurate up
to all figures presented).

Moreover, results of Table 1 demonstrate enormously high com-
putational efficiency of the current S-DSM over that of the FEM
using ABAQUS. To compute the first eight natural frequencies,
FEM took 38–50 s of CPU time giving results with four significant
figures whereas S-DSM took only 0.09–0.34 s with five significant
figures (M ¼ N ¼ 5). That is to say, S-DSM gives much more accu-
rate results than FEM with the execution time less than 1% of its
opponent (more than 100 folds advantage in computational speed).

5.2. Comparisons with Levy solutions and discussions on the effect of
the rotatory inertia

It is well-known that exact solutions for plates are generally
available for Levy-type plates (with Navier solution as a special
case). Thus, it is appropriate to validate the current S-DSM with
Levy solutions. The rotatory inertia effect has been included in con-
junction with the CPT in the current S-DSM development, which
enables discussions on the rotatory inertia effect on the free vibra-
tion of plates. In Table 2, six Levy-type cases together with an FFFF
and a CCCC cases are considered. The results computed by S-DSM
with/without rotatory inertia I2 are compared with the exact Levy
solutions without considering I2 [63,44]. It can be found that the
dimensionless natural frequencies of CPT without rotatory inertia
calculated using S-DSM are in exact agreement with the exact Levy
solutions for all of the six cases. The presence of the rotatory inertia
decreases the natural frequencies to some extent as expected. The

differences in results depend on the thickness of the plate as well
as on the boundary conditions: The thicker is the plate, the lower
the dimensionless natural frequencies will be. Also, it can be
observed that the effect of rotatory inertia plays a more pro-
nounced role for plates with clamped edges than those with free
edges. However, if the rotatory inertia is not taken into considera-
tion, the thickness of the plate will not affect the results. This is
because the thickness has been rescaled out of the GDE and BC.
In all of the following results, the rotatory inertia will not be taken
into account.

5.3. Completely free and fully clamped rectangular plates

Both completely free and fully clamped plates are probably the
most demanding cases which have been attempted using a wide
range of different methods in the past [15]. Therefore, these two
cases provide an ideal opportunity to compare the current S-DSM
with other methods.

5.3.1. Completely free case
The free vibration of a plate with completely free edges is prob-

ably the most historic problem firstly raised by Chladni [1]. This
problem has directly motivated the development of the well-
known Rayleigh [2] and Ritz [3] methods, both of which of course,
fall within weak-form-based methods as mentioned earlier in
Section 1. It should be noted that there are different versions of
Ritz methods with admissible functions taking, for example beam
characteristic [3,15] or orthogonal polynomials [64]. However, as
pointed out by Leissa [15], for the completely free case, the Ritz
method gives relatively poor results compared to other boundary
conditions. This is due to the difficulties involved in obtaining
the solution which satisfies both the GDE and the free BC. In com-
parison, strong-form based methods for completely free plates give
much better results, including Gorman’s superposition method

Table 1
Convergence, boundedness and efficiency studies for the dimensionless natural frequency parameter of a square isotropic plate (m ¼ 0:3) with four sets of different boundary
conditions using S-DSM. FEM solutions are obtained by (ABAQUS) using a 300! 300 mesh. Exact solutions indicate the Levy solutions for SCSC case [15]. Bold values are those for
which the computed eignfrequencies using S-DSM converge to the last figure of the presented values.

M ¼ N k ¼ 4xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
Time (s)

FFFF 4 5 6 7 8 9 10 11
2 13.4688 19.5961 24.2708 34.8070 34.8070 61.0947 61.0947 63.7187 0.08
5 13.4682 19.5961 24.2702 34.8010 34.8010 61.0933 61.0933 63.6869 0.11
10 13.4682 19.5961 24.2702 34.8009 34.8009 61.0932 61.0932 63.6861 0.11
15 13.4682 19.5961 24.2702 34.8009 34.8009 61.0932 61.0932 63.6861 0.12
20 13.4682 19.5961 24.2702 34.8009 34.8009 61.0932 61.0932 63.6861 0.13
FEM 13.467 19.596 24.271 34.799 34.799 61.095 61.095 63.684 50.0

CCCC 1 2 3 4 5 6 7 8
2 35.9825 73.3731 73.3731 108.140 131.159 131.159 164.386 164.386 0.08
5 35.9848 73.3932 73.3932 108.215 131.581 132.203 164.998 164.998 0.09
10 35.9852 73.3938 73.3938 108.216 131.581 132.205 165.000 165.000 0.10
15 35.9852 73.3938 73.3938 108.217 131.581 132.205 165.000 165.000 0.10
20 35.9852 73.3938 73.3938 108.217 131.581 132.205 165.000 165.000 0.11
FEM 35.985 73.400 73.400 108.22 131.59 132.22 165.01 165.01 43.0

CCSC 1 2 3 4 5 6 7 8
3 31.8235 63.3170 71.0710 100.764 116.309 130.306 151.760 159.286 0.29
5 31.8258 63.3299 71.0758 100.790 116.355 130.350 151.888 159.470 0.31
10 31.8260 63.3307 71.0762 100.792 116.357 130.351 151.893 159.476 0.45
15 31.8260 63.3308 71.0763 100.792 116.357 130.351 151.893 159.477 0.70
20 31.8260 63.3308 71.0763 100.792 116.357 130.351 151.893 159.477 1.14
FEM 31.826 63.330 71.080 100.80 116.37 130.36 151.90 159.49 40.0

SCSC 1 2 3 4 5 6 7 8
3 28.9482 54.7287 69.3193 94.5498 102.139 129.026 140.008 154.503 0.27
5 28.9508 54.7425 69.3267 94.5835 102.214 129.094 140.197 154.767 0.34
10 28.9508 54.7431 69.3270 94.5852 102.216 129.096 140.204 154.776 0.46
15 28.9509 54.7431 69.3270 94.5853 102.216 129.096 140.205 154.776 0.71
20 28.9509 54.7431 69.3270 94.5853 102.216 129.096 140.205 154.776 1.16
FEM 28.951 54.744 69.330 94.588 102.22 129.11 140.21 154.79 38.0
Exact 28.9509 54.7431 69.327 94.5853 102.216 129.096 140.205 154.776 –
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(GSM) [7,65], the generalised Koialovich’s limitant theory based on
superposition method [10] and the current S-DSM. Tables 3 and 4
show the natural frequencies obtained by the present method and
other methods [3,10,15,29,61,64,65].

Table 3 includes the first 41 natural frequencies in terms of the
dimensionless parameter x2qha4=D computed by the current
S-DSM, the Ritz method [3] as well as generalised Koialovich’s lim-
itant theory based on superposition method [10]. It should be
emphasised that the first three modes have zero frequencies corre-
sponding to rigid body modes: one for transverse translation and
two for rotation. These three rigid body modes were not obtainable
by most of the other analytical methods like Ritz [15] and superpo-
sition [65] method. However, they can be found by the current
S-DSM due to the application of the Wittrick–Williams algorithm.
Table 3 includes only nonzero natural frequencies starting from the
fourth one. All of the first 41 natural frequencies obtained by the
current S-DSM converge to the sixth digit when even less than
20 terms are used in the series. The results obtained by Ritz [3]
more than a century ago are still reasonably accurate for lower fre-
quencies, but his results deteriorate for higher natural frequencies,
say, over the tenth one. The reason for this will be explained later
in Section 6. The results obtained by the generalised Koialovich’s
limitant theory based on superposition method [10] are more
accurate than the Ritz method. However, it seems that the com-
plexities of the limitant theory method prevents the pursuit of
more accurate results in a simple manner. Some representative
mode shapes from the current method are presented in Fig. 2,
which resemble the well-known Chaldni patterns [1]. The 5th

and 39th modes are doubly symmetric, the 4th and 35th modes
are doubly antisymmetric, and the 7th and 40th modes are sym-
metric about the x-axis but antisymmetric about the y-axis.

Table 4 compares the current method with several other meth-
ods [15,29,64,61,65]. The results are presented for different plate
aspect ratios and Poisson ratios in terms of two different dimen-
sionless natural frequency parameters k. Note that all of the results
by the current S-DSM in Table 4 are accurate up to six significant
digits with only ten terms included in the series (This appears to
be the most accurate results reported for FFFF case so far). The
results obtained by Gorman’s superposition method [65] using
15 series terms have four digit accuracy, which agree with the first
four digits of the current method, see the first top half of Table 4. In
the second half of Table 4, the current method is compared with
four weak-form based methods, namely, three Ritz methods using
different admissible functions (a set of trigonometric functions and
polynomials [29], algebraic polynomials [64] and beam character-
istic functions [15]) and one variational method called WEM [61].
Apart from the current S-DSM, the results by the Ritz methods in
Refs. [29,64] are more accurate than the other two weak-form
based methods [15,61]. The results by WEM using 30 terms in
the series have only three digit precision, whose convergence rate
appears to be the slowest amongst all of the other methods.
Another argument on Gorman’s superposition method [65] made
by Rosales and Filipich in Ref. [66] appears to be in error. As
claimed by Rosales and Filipich, the second frequency of an isotro-
pic square plate (doubly symmetric, quoted as 19.61) was missing
therefore it was concluded that the series functions in Ref. [65] was

Table 2
Comparisons of the present S-DSM results using CPT with/without rotatory inertia to Levy solutions [44,63] without rotatory inertia for dimensionless natural frequency
parameter k ¼ 2xa2=p

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
of rectangular plates (m ¼ 0:3).

BC b=a Mode CPT without I2 S-DSM (CPT+I2)

Exact Levy [44,63] S-DSM h=b

0.02 0.01 0.005

SSSS 2 1st 1.963495 1.963495 1.961883 1.963092 1.963395
SCSC 1 7th 22.31424 22.31424 22.26502 22.30190 22.31115
SSSC 0.5 4th 32.89686 32.89686 32.86932 32.88996 32.89513
SSSF 2 4th 5.908996 5.908996 5.892135 5.904767 5.907938
SCSF 1 3rd 6.637068 6.637068 6.632315 6.635878 6.636770
SFSF 0.5 8th 23.38027 23.38027 23.35777 23.37464 23.37886
FFFF 1 7th – 5.538734 5.533302 5.537374 5.538734
CCCC 1 5th – 20.94173 20.90330 20.93210 20.93932

Table 3
Dimensionless nonzero natural frequency parameters k ¼ x2qha4

=D for a square F-F-F-F plates compared with the analytical results firstly obtained by Ritz in 1909 [3] and those
using generalised Koialovich’s Limitant theory by Meleshko and Papkov [10] (m ¼ 0:225).

Mode no. ðk; jÞ S-DSM Limitant [10] Ritz [3] Mode no. ðk; jÞ S-DSM Limitant [10] Ritz [3]

4 (1, 1) 12.4540 12.454 12.43 23 (0, 1) 2476.92 2476.9 2500
5 (0, 0) 25.9764 25.949 26.40 24 (1, 0) 2476.92 2476.9 2497
6 (0, 0) 35.6347 35.62 35.73 25 (1, 1) 2684.44 2684.4 2713
7 (0, 1) 80.8957 80.895 80.8 26 (1, 1) 2870.64 2870.6 2945
8 (1, 0) 80.8957 80.895 80.8 27 (0, 1) 3004.55 3003.5 3240
9 (0, 1) 235.387 235.38 237.1 28 (1, 0) 3004.55 3003.5 3240

10 (1, 0) 235.387 235.38 237.1 30 (0, 1) 3774.07 3774.1 3927
11 (0, 0) 269.328 269.31 226.0 30 (1, 0) 3774.07 3774.1 3927
12 (1, 1) 320.685 320.67 316.1 31 (0, 0) 5114.01 5112.8 5480
13 (1, 1) 375.218 375.22 378 32 (0, 0) 5460.70 5459.9 5640
14 (0, 1) 730.123 730.12 746 33 (1, 1) 5503.14 5503.1 5570
15 (1, 0) 730.123 730.12 746 34 (0, 0) 5619.53 5619.1 5640
16 (0, 0) 876.237 876.42 886 35 (1, 1) 5698.55 5698.5 6303
17 (0, 0) 933.829 933.84 941 36 (0, 1) 5959.69 5958.9 6036
18 (0, 1) 1103.37 1103.38 1131 37 (1, 0) 5959.69 5958.9 6036
19 (1, 0) 1103.37 1103.38 1131 38 (0, 0) 7236.24 7235.8 7310
20 (1, 1) 1525.91 1525.88 1554 39 (0, 0) 7505.22 – 7840
21 (0, 0) 1700.85 1700.91 1702 40 (0, 1) 8527.41 – 9030
22 (0, 0) 1813.12 1812.68 2020 41 (1, 0) 8527.41 – 9030
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not a complete set. This is surely a mistake made by Rosales and
Filipich [66]. As a matter of fact, the second dimensionless fre-
quency parameter xa2

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
with m ¼ 0:3 in Table 4 of Ref. [65]

by Gorman is 4.899 (plate dimension a! a), which can be easily
transformed into 19.60 in terms of the dimensionless parameter
xð2aÞ2

ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
(plate dimension 2a! 2a).

Also, one can make another observation from Table 4 that the
results of both the Ritz methods as well as the variation-based
WEM serve as the upper bounds for the S-DSM solutions, as
expected.

5.3.2. Fully clamped case
A rectangular plate with fully clamped edges is a very common

case in many engineering structures, whose free vibration analysis
has received wide attention and extensive coverage in the litera-
ture. In Table 5 the first eight natural frequencies are obtained by
the S-DSM for three plate aspect ratios (b=a ¼ 0:5; 1 and 2). These
are compared with results obtained from thirteen other typical
methods. The number of terms used in the basis functions for dif-
ferent methods and the number of significant digits of the com-
puted results are also included in the last two columns of the

Table 4
Dimensionless nonzero frequency parameters for completely free plates with three different aspect ratios using the present method compared with Gorman [65], Ritz [29,64,15]
methods as well as WEM method [61].

b=a Method 4 5 6 7 8 9 10 11

m ¼ 0:333; k ¼ xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p

0.5 (0, 0) (1, 1) (0, 1) (1, 0) (0, 0) (1, 1) (1, 0) (0, 0)
S-DSM 5.31026 6.49344 14.3372 14.7682 21.9052 24.9782 25.8108 29.5260

1 (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 0)
S-DSM 3.29214 4.80596 6.10571 8.55815 8.55815 15.2330 15.2330 15.6893
GSM [65] 3.292 4.806 6.106 8.558 8.558 15.23 15.23 15.69

2 (0, 0) (1, 1) (1, 0) (0, 1) (0, 0) (1, 1) (0, 1) (0, 0)
S-DSM 1.32756 1.62336 3.58430 3.69205 5.47631 6.24454 6.45271 7.38149
GSM [65] 1.328 1.623 3.584 3.692 5.476 6.245 6.453 7.381

m ¼ 0:3; k ¼ 4xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p

0.5 (0, 0) (1, 1) (0, 1) (1, 0) (0, 0) (1, 1) (1, 0) (0, 0)
S-DSM 21.4631 26.5749 58.4820 59.6061 88.0097 101.503 104.002 118.726
Ritz (poly.) [64] 21.463 26.575 58.483 59.620 88.080 101.53 104.02 –

1 (1, 1) (0, 0) (0, 0) (0, 1) (1, 0) (0, 1) (1, 0) (0, 0)
S-DSM 13.4682 19.5961 24.2702 34.8009 34.8009 61.0932 61.0932 63.6861
Ritz (t-p) [29] 13.468 19.596 24.270 34.801 34.801 61.093 – –
Ritz (poly.) [64] 13.468 19.596 24.271 34.801 34.801 61.111 61.111 –
Ritz (beam) [15] 13.489 19.789 24.432 35.024 35.024 61.526 61.526 –
WEM [61] 13.47 19.61 24.28 34.82 34.82 61.13 61.13 63.72

2 S-DSM 5.36579 6.64373 14.6205 14.9015 22.0024 25.3757 26.0005 29.6814

Fig. 2. Representative mode shapes with different ðk; jÞ symmetric/antisymmetric properties of an FFFF isotropic square plate, namely, the 4; 5; 7; 35; 39 and 40th modes.
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table wherever available. Numerical simulations suggest that all of
the S-DSM results converge to the 5th (6th or 7th) digit with
M ¼ N P 5 (11 or 16), which seems to be the fastest convergence
rate compared with all other competing methods. Five amongst
the thirteen methods are classified into the strong-form based
methods, namely, the current S-DSM, Fourier series analytical
method (FSA) [11], the novel separation of variable method
(NSV) [40], untruncated infinite series superposition method
(UISSM) [9] and iterative method based on dual trigonometric
series (IM (DTS)) [38]. Evidently, all of the Ritz methods
[15,16,22,24,29,68] using different basis functions and the
extended Kantorovich method [31–33] belong to weak-form based
methods.

In Table 5, the results from the current S-DSM match closely
with those by UISSM [9] and IM(DTS) [38] which are presumably
the most accurate results amongst all of the thirteen methods
other than the S-DSM. This high level of accuracy is expected since
these three methods are based on strong formulation and use com-
plete set of series. The results from these three methods provide
over six digit precision. However, the method IM(DTS) uses a very
large number of dual trigonometric series (360! 360) and the
UISSM [9] misses some of the natural frequencies (denoted by
HH in Table 5). By using a 17! 17 Fourier cosine series, FSA [11]
leads to results with four to five digit accuracy. By using a
24! 24 grid together with 23 ghost points extended from each

edge, the GQD [67] gives five digit accuracy results whereas DSC
[67] gives results up to four digit accuracy with a grid size 24! 24.

The Ritz methods in Table 5 are based on six different basis
functions [15,16,22,24,29,68]. It can be found that all of the results
based on Ritz method serve as the upper bound as expected. The
results in Ref. [22] using pb-2 polynomials and Ref. [68] using plate
characteristic equations are of better accuracy than the others
[15,16,24,29]. Even though the trigonometric basis function
adopted in Ref. [24] was proven to be applicable to higher order
modes [23], the convergence rate is not so fast: a series with 50
terms give only four digit accuracy. The set of trigonometric func-
tions and polynomials used in Ref. [29] give accurate results for the
completely free case (see Table 4) but its convergence rate is com-
paratively slower for the fully clamped case: a 40-term series only
leads to four digit accuracy results. This might be due to the
involvement of the penalty method in Ref. [29]. The extended Kan-
torovich methods [31–33] also lead to upper bound results with
three digit accuracy. Inaccuracy always occurs when this type of
methods are applied to non-Levy-type plates no matter whether
the reduction is following either an iterative procedure [31,32] or
an analytical procedure [33]. This is due to the nature of this
method which will be further examined in Section 6.

Another interesting point which is worth mentioning is the so-
called ‘degenerate mode’ for a square isotropic plate. For notational
convenience, a mode with m̂ and n̂ half-waves in x and y directions

Table 5
Dimensionless frequency parameter for fully clamped rectangular plates with three aspect ratios. Results computed by the present method are compared with those obtained
using other methods.

b=a Method k ¼ 4xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p
M ¼ N Signif. digits

1 2 3 4 5 6 7 8

0.5 (1, 1) (2, 1) (3, 1) (4, 1) (1, 2) (2, 2) (3, 2) (5, 1)
S-DSM 98.31084 127.3039 179.0786 253.3230 255.9325 284.3050 333.0908 349.0107 5/11/16 5/6/7
FSAa 98.309 127.30 179.07 253.31 255.92 284.29 – – 17 4
NSVb 97.542 125.751 177.613 – 255.678 283.509 331.85 – 1 2
Ext. Kant.c 98.324 127.333 179.115 – 255.939 284.325 333.125 – – 4

1 (1, 1) (1, 2) (2, 1) (2, 2) (1/3–3/1) (1/3 + 3/1) (2, 3) (3, 2)
S-DSM 35.98519 73.39385 73.39385 108.2165 131.5808 132.2048 165.0004 165.0004 5/11/16 5/6/7
FSAa 35.985 73.393 73.393 108.21 131.58 132.20 – – 17 5
NSVb 35.112 72.899 72.899 107.47 131.63⁄ 131.63⁄ 164.39 164.39 1 2
UISSMd 35.9852 73.3938 HH 108.2165 131.5808 132.2048 – – – 6
IM (DTS)e 35.98519 73.39385 73.39385 108.2165 131.5808 132.2048 – – 360 7
GDQf 35.985 73.394 73.394 108.21 131.58 132.20 165.00 165.00 24 5
DSC(LK)g 35.989 73.407 73.407 108.25 131.62 132.24 165.07 165.07 24 4
Ritz (pb-2)h 35.985 73.394 73.394 108.22 131.58 132.20 165.00 165.00 16 5
Ritz (plate)i 35.985 73.394 73.394 108.22 131.58 132.21 165.00 165.00 30 5
Ritz (trig.)j 35.986 73.395 73.395 108.22 131.59 132.21 165.01 165.01 50 4
Ritz (beam)k 35.992 73.413 73.413 108.27 131.64 132.24 – – 6 3
Ritz (poly.)l 35.985 73.395 73.395 108.22 131.78 132.41 – – 6 3
Ritz (t-p)m 35.986 73.397 73.397 108.225 131.592 132.215 – – 40 4
Ext. Kant.c 35.999 73.405 73.405 108.24 131.90⁄ 131.90⁄ 165.02 165.02 – 3

2 (1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (1, 5)
S-DSM 24.57771 31.82597 44.76966 63.33075 63.98313 71.07625 83.27270 87.25267 5/11/16 5/6/7
UISSMd 24.5777 31.8260 44.7696 HH HH 71.0763 HH 87.2526 – 6
IM (DTS)e 24.57771 31.82598 44.76966 63.33076 63.98313 – – – 360 7
NSVa 24.358 31.438 – – 63.920 70.877 – – 1 2
Ext. Kant.c 24.581 31.833 44.779 63.340 63.985 71.081 83.281 – – 3

a Fourier Series based Analytical method [11].
b Novel Separation of Variables [40].
c Extended Kantorovich [31–33].
d Untruncated Infinite Series Superposition Method [9].
e Iterative Method (Dual Trigonometric Series) [38].
f Generalised Differential Quadrature [67].
g Discrete Singular Convolution (Lagrange’s delta kernel) [67].
h Ritz (pb-2 polynomials) [22].
i Ritz (plate characteristic functions) [68].
j Ritz (trigonometric functions) [24].
k Ritz (beam eigenfunctions) [15].
l Ritz (orthogonal polynomials) [16].

m Ritz (trigonometric functions and polynomials) [29].
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respectively is denoted as the ðm̂; n̂Þ mode. If the nodal lines are
assumed to be parallel to the x and y axes, there will be ðm̂% 1Þ
and ðn̂% 1Þ nodal lines parallel to y and x coordinates respectively.
However, this assumption is generally not valid for non-Levy
plates. In Table 5, the notations (1/3 % 3/1) or (1/3 + 3/1) represent
the first two so-called ‘degenerate modes’ with non-parallel nodal
lines when considering the clamped isotropic square plates. The
first four degenerate modes are shown in Fig. 3. It is clear that
the nodal lines of the 5th (1/3 % 3/1) and the 16th (1/5 % 5/1)
modes are essentially the diagonal lines of the rectangular plate
whereas the nodal lines of the 6th (1/3 + 3/1) and the 17th (1/5
+ 5/1) modes are not straight at all. These degenerate modes can
neither be predicted by the extended Kantorovich method
[31–33] nor by the separation of variable method given by Xing
and Liu [40] (see the values with superscript ‘(’ in Table 5), but
can be captured by other methods including the current S-DSM.
This is because of the problematic series used in the Kantorovich
and the separation of variable methods. The details will be
explained later in Section 6.

5.4. Three other practical cases

The free vibration of a rectangular plate with different classical
boundary conditions have been covered by many investigations
such as Leissa’s classical monograph [69]. Nevertheless, there are
relatively few accurate results reported in the literature. In this
section, we revisit three cases with particular practical importance

in engineering by using the present S-DSM in order to provide
exact solutions. The three cases are: a cantilever plate (CFFF), a
hinged plate (SFFF) and a plate with three edges clamped and
the fourth edge free. All of the S-DSM results presented in this sec-
tion are accurate up to six digit precision so that they can be used
for benchmark purposes.

The cantilever plate problem is of common practical interest. In
particular, an aircraft wing in aeronautical engineering can be
ideally modelled as a cantilevered plate in the first instance. This
problem has been studied extensively both numerically and
experimentally. The first eight natural frequencies with six digit
accuracy are shown in Table 6, where ‘S’ and ‘A’ stand for the
symmetric and antisymmetric natural modes. In the first part of
Table 6, the S-DSM results with m ¼ 0:3 are compared with those
by four types of Ritz methods [15,22,24,29] as well as by the
Fourier series based analytical method [11]. In the second part of
Table 6, the S-DSM results with m ¼ 0:333 are compared with the
Gorman’s superposition method [70]. The Ritz methods (weak-
form based) in Refs. [15,22,24,29] give the upper-bound solutions
while the boundedness of the Fourier series based analytical
method [11] (strong-form based) is apparently case dependent.
The results by Gorman’s superposition method [70] provide accu-
rate results up to four digit accuracy, all of which coincide with
the first four digit of the results from the present method. The first
four mode shapes of a CFFF plate with b=a ¼ 0:5; m ¼ 0:3 are illus-
trated in Fig. 4. The first and third modes are symmetric whilst the
second and fourth ones are antisymmetric.

Fig. 3. The first four degenerate mode shapes for a clamped square isotropic plate (m ¼ 0:3), namely, the 5th (1/3 % 3/1), 6th (1/3 + 3/1), 16th (1/5 % 5/1) and the 17th
(1/5 + 5/1) modes.
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Table 7 shows natural frequencies for the other two cases, i.e.,
SFFF and CCCF. A SFFF rectangular plate is a model for hinged gates
encountered frequently, for example, in the field of civil, aeronau-
tical and hydraulic engineering. However, this case has only
received sporadic attention [15]. It should be emphasised that
the first mode for a SFFF plate is rigid body rotation mode corre-
sponding to zero natural frequency, which can be captured by
the current S-DSM due to the application of the WW algorithm.
Table 7 includes only nonzero natural frequencies of an SFFF plate

starting from the second mode. Meanwhile, a plate with three
clamped and one free edges is another case with much practical
importance. The results by the current S-DSM are compared with
those by three Ritz methods [15,19,29] and the extended Kan-
torovich method [32]. In both SFFF and CCCF cases, the results
obtained by the Ritz methods in Refs. [15,19] and the extended
Kantorovich method [32] in Table 7 only have two digit precision,
and the results from Ref. [29] have four digit precision, which are
compared to the present S-DSM results having six figure accuracy.

Table 6
Dimensionless natural frequencies for a CFFF plate computed by the current S-DSM for different plate aspect ratios and different Poisson’s ratios. Side by side are the results by
Fourier series based analytical method [11], four Ritz methods using different admissible functions [15,22,24,29] and Gorman’s superposition method [70].

b=a Method k ¼ 4xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p

1 2 3 4 5 6 7 8

m ¼ 0:3
0.5 S A S A S A S S

S-DSM 3.43923 14.8013 21.4331 48.1758 60.1478 92.5154 93.1014 118.447
FSA [11] 3.439 14.800 21.430 48.171 60.143 92.507 – –

1 S A S S A S S A
S-DSM 3.47100 8.50619 21.2839 27.1987 30.9542 54.1836 61.2534 64.1420
FSA [11] 3.470 8.504 21.279 27.201 30.948 54.185 – –
Ritz (t-p) [29] 3.471 8.507 21.285 27.199 30.957 54.188 – –
Ritz (trig.) [24] 3.4711 8.5066 21.285 27.199 30.956 54.187 61.255 64.142
Ritz (pb-2) [22] 3.4714 8.5083 21.288 27.199 30.962 54.195 61.260 64.163
Ritz (beam) [15] 3.4917 8.5246 21.429 27.331 31.111 54.443 – –

2 S A S S A S S A
S-DSM 3.49279 5.35093 10.1805 19.0747 21.8379 24.6698 31.4252 34.0283

m ¼ 0:333
1 S A S S A S S A

S-DSM 3.45955 8.35603 21.0887 27.0645 30.5510 53.5228 61.1157 63.6162
GSM [70] 3.459 8.356 21.09 27.06 30.55 53.53 61.12 63.62

2 S A S S A S S A
S-DSM 3.48693 5.27817 10.0323 18.8402 21.7831 24.5540 31.0664 33.8824
GSM [70] 3.487 5.278 10.03 18.84 21.78 24.55 31.07 33.88

Fig. 4. The first four mode shapes of a cantilevered isotropic rectangular plate (b=a ¼ 0:5; m ¼ 0:3).
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It should be noted that all of the weak-form based solutions in Refs.
[15,19,32,29] serve as the upper bound solutions as expected.

6. Discussions of and insight into different analytical methods
for free vibration of rectangular plates

The comparison of the current S-DSM with a wide range of
existing methods in the last section enables the discussion of dif-
ferent methods for free vibration analysis of rectangular plates.
In Section 6.1, different series-based solutions are classified into
three types and the completeness of series solution is discussed.
Then an explanation is given in Section 6.2 for why closed-form
solution is available only for Levy-type plates. Finally, Section 6.3
gives specific as well as general conclusions on the suitability or
otherwise of various analytical methods for the free vibration of
rectangular plates.

6.1. Three types of series solutions and discussion on the completeness

In the literature, possible exact solutions for non-Levy type
solutions are generally available only in series form, but different
series solutions have different attributes regarding the conver-
gence and accuracy of the solution. Irrespective of whether the
method is strong- or weak-form based, there are mainly three
types of solutions for free vibration analysis of rectangular plates.

6.1.1. The first type of solutions
The first type of solutions have the following series form

Wðx; yÞ ¼ XðxÞYðyÞ ¼
X1

m;n¼1

CmnXmðxÞYnðyÞ: ð46Þ

In Eq. (46), both of the basis functions XmðxÞ and YnðyÞ should form a
complete set for the 1D functions XðxÞ and YðyÞ within the corre-
sponding intervals. The series solution of Eq. (46) therefore form a
complete series expansion in the defined domain, according to the
statement on page 56 of Ref. [71]. The coefficients Cmn are deter-
mined by the GDE and/or the BC. The above type of series is identi-
cal if the x and y are interchanged in the expressions. Alternatively,
it can be said that the expressions of the series of Eq. (46) are
symmetric in terms of the variables x and y. This also includes four
subtypes.

(i) Both XmðxÞ and YnðyÞ are obtained by solving 1D functions
XðxÞ and YðyÞ with the corresponding BC of an appropriate
equivalent beam. The unknown coefficients Cmn are deter-
mined from the GDE and BC either in strong or weak form.
For example, Ritz [3] ingeniously made the assumption that
the eigenmodes of a completely free plate is described in the
form of Eq. (46), where XmðxÞ and YnðyÞ are the characteristic
functions of the corresponding elastic beams with free
edges. Similar idea was used later by Warburton [14], Leissa
[15] and Ding [72] covering plates with various BC.

(ii) There are also orthogonal series satisfying all the geometric
BC of the plate [16,19,23], whose coefficients are determined
by satisfying the GDE. For example, Bhat [16] proposed a set
of orthogonal polynomials obtained from Gram-Schmidt
process, which is modified by Liew et al. into pb-2 polynomi-
als and applied to various plate problems [19–22]. Beslin
and Nicolas [23] proposed a hierarchical trigonometric set
applicable to medium frequency range which was then used
by Dozio [24] when applying Ritz method.

(iii) Sakata and Hosokawa [38] used double trigonometric series.
The series satisfies the GDE and part of the BC, and the rest of
the BC are then transferred into an infinite set of simultane-
ous equations.

(iv) Li et al. [11] used a complete 2D Fourier cosine series supple-
mented with several 1D Fourier series which can be applied
to plates with various BC. Satisfying first the BC and then the
GDE in strong form leads to the final eigenvalue problem.
Monterrubio and Ilanko [29] used a complete set which is
combined by trigonometric functions and polynomials, and
the constraints were modelled by using the penalty method.

However, all of the above methods based on Eq. (46) are not
very computationally efficient. Ifm 2 ½1;M+ and n 2 ½1;N+ are taken,
there will be M ! N number of Cmn involved in the computation.
Besides, subtypes (i) and (ii) above are essentially suitable for
plates with uniformly prescribed BC on each edge and subtype
(iii) was only applied to fully clamped case. In terms of numerical
stability, almost all of the solutions of subtype (i) [14,15,72] and
some of subtype (ii) [16,19–22] generally experience numerical
singularity when evaluated at higher orders. The subtype (iv) solu-
tions may also lead to numerical singularity either arising from
modelling general BC as elastic constraints [11] or from the artifi-
cial penalty values which may introduce round-off errors [29]. The
singularity might become more severe under certain specific BC.

Table 7
Dimensionless nonzero natural frequencies for the SFFF and CCCF cases with different aspect ratios. The results of the current S-DSM are compared with those obtained by three
Ritz methods [15,19,29] and extended Kantorovich method [32].

b=a Method k ¼ 4xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qh=D

p

SFFF
2 3 4 5 6 7 8 9

0.5 S-DSM 13.0387 14.8448 42.8417 48.5443 82.9967 91.8028 103.169 122.651
1 S-DSM 6.64372 14.9015 25.3757 26.0005 48.4495 50.5785 58.7420 65.1796

Ritz (t-p) [29] 6.644 14.902 25.376 26.001 48.450 50.579 – –
Ritz (beam) [15] 6.6480 15.023 25.492 26.126 48.711 50.849 – –

2 S-DSM 3.36705 8.70022 15.2733 17.3163 19.2929 26.3651 32.8673 38.2112

CCCF
1 3 4 5 6 7 8

0.5 S-DSM 31.1010 70.1452 103.398 128.860 144.088 204.755 207.237 259.661
Ext. Kant. [32] 31.703 70.520 104.234 129.023 144.964 205.222 205.222 259.867

1 S-DSM 23.9184 39.9953 63.2159 76.7082 80.5661 116.650 122.225 134.427
Ext. Kant. [32] 24.013 40.200 63.319 76.890 80.698 116.84 122.32 –
Ritz (t-p) [29] 23.921 39.999 63.224 76.713 80.576 116.665 – –
Ritz (pb-2) [19] 23.97 40.12 63.43 76.72 – – – –
Ritz (beam) [15] 24.020 40.039 63.493 76.761 80.713 116.80 – –

2 S-DSM 22.6318 26.0188 33.7543 46.7023 61.8658 65.0787 65.9093 74.1859
Ext. Kant. [32] 22.672 26.057 33.806 – 61.915 – 65.947 74.227
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This may prevent these method from computing highly accurate
results, particularly within higher frequency range. To sum up,
the above four subtypes of series solutions appear to have no speci-
fic mathematical significance with respect to the convergence and
accuracy of their results.

6.1.2. The second type of solutions
The second type of solutions take the form:

Wðx; yÞ ¼ X(ðxÞbY ðyÞ; ð47Þ

where the solution component X(ðxÞ is the pre-assumed solution in
the x direction whereas bY ðyÞ is deduced analytically from the GDE
based on X(ðxÞ. (Of course, Eq. (47) is also a representative of
Wðx; yÞ ¼ Y(ðyÞbXðxÞ by just interchanging the variables x and y.)
Notice that the type of solutions described in Eq. (47) also include
the solutions in which the X(ðxÞ is expressed in terms of a complete
series (spectral method). In this case, X(ðxÞ ¼

P1
mCmX

(
mðxÞ and thus

Wðx; yÞ ¼
P1

mCmX(
mðxÞbYmðyÞ, where bYmðyÞ are derived analytically

from the GDE based on X(
mðxÞ.

However, the type of solutions based on Eq. (47) are incapable
of giving exact solution with the only exception for Levy-type
plates. This is because this type of solutions are based on a
problematic assumption that the solution component in only one
direction is chosen a priori [6,32]. This is obviously not a ‘fully
physical’ assumption for the general case. Actually, the solution
components in both x and y directions should be obtained
simultaneously when solving the original eigen-boundary value
problem. To look at it from another aspect, the assumption of
Eq. (47) is equivalent to enforcing the nodal lines of the mode
shapes of rectangular plates to be parallel to the plate edges, which
is not a ‘physical’ assumption for the general case. The type of
solutions of Eq. (47) have been used in the Kantorovich method
[6] and its derivatives like the extended Kantorovich method
[31–33] which only led to approximate solutions due to the afore-
mentioned reasons. For example, Eq. (7) in Ref. [32] is obviously an
approximate assumption by taking dW ¼ XdY þ YdX ¼ YdX, and
that is why it only gave approximate results. Consequently, as
can be seen from Tables 5 and 7 (non-Levy type cases), all of the
results by Kantorovich-type methods [31–33] are not sufficiently
accurate which cannot be further improved, no matter whether
the reduction procedure is realised iteratively [31,32] or analyti-
cally [33]. Also, as pointed out in Refs. [38,32], the Kantorovich-
type methods are incapable of predicting mode shapes for plates
whose nodal lines are not parallel to the x and y axes. Notice that
this statement does not necessarily imply that the methods based
on the assumption of Eq. (47) will always give accurate solution for
the natural modes whose nodal lines are parallel to both axes. The
appearance of nodal lines parallel to axes can also occur because of
the symmetry of the boundary conditions for non-Levy cases
(e.g., for fully clamped or completely free plates), whose natural
frequencies cannot be predicted accurately by the method based
on Eq. (47). It should be noted that the expression of Eq. (47) does
not remain identical when interchanging the variables x and y: the
expression of Eq. (47) is not symmetric in terms of the variables
x and y.

6.1.3. The third type of solutions
The third type of solutions can be seen as a combination of two

sets of the second type of solutions in Eq. (47), namely,

Wðx; yÞ ¼
X1

m¼1

X(
mðxÞbYmðyÞ þ

X1

n¼1

Y(
nðyÞbXnðxÞ: ð48Þ

In Eq. (48), the series X(
mðxÞ and Y(

nðyÞ are complete sets for 1D func-

tions with arbitrary boundary conditions, whereas bYmðyÞ and bXnðxÞ

are determined analytically based on the GDE. Obviously, each com-
ponent X(

mðxÞbYmðyÞ or Y(
nðyÞbXnðxÞ and thus their sum in the form of

Eq. (48) satisfy the GDE exactly. Moreover, it can be proved mathe-
matically that the series solution of Eq. (48) form a complete set for
the solution space of the GDE (within the defined region) with all of
the BC remaining unspecified. Also, the evaluation of such a series
solution on the boundaries form a complete set for any arbitrary
BC. Apparently, this type of series solution of Eq. (48) is physically
more reasonable. It is understandable that the solutions based on
Eq. (48) have the superiority to approach the exact solutions over
the previous two types of solutions. Besides, this type of series
is very computationally economic. When m 2 ½1;M+ and n 2 ½1;N+
for a GDE with the highest derivative order (HDE), only
HDE! ðM þ NÞ unknowns are involved. This is a much smaller num-
ber compared with that of Eq. (46). It is clear from the formulation
in Sections 2 and 3 that the current S-DSM belongs to the third type.
It is worth pointing out that Gorman’s superposition method [7,8]
(GSM) is quite similar with the series solution used in the current
S-DSM. The difference is that the series solution of GSM is a repre-
sentation of the solution space corresponding to the GDE with
specific BC whereas that of the S-DSM is a representation of the
solution space of GDE with BC unspecified. Therefore, the solution
space of GSM can be regarded as a subspace of that of the current
S-DSM.

6.1.4. Completeness of series solutions
Apart from the above three types of series, there have been some

other discussions in the literature [11,66,73] on the completeness
of the series solutions for free vibration of plates. Hurlebaus et al.
[73] used a Fourier cosine series solution whose completeness is
questioned by Rosales and Filipich [66]. Rosales and Filipich
[61,66] used a variation-based whole element method (WEM)
based on a complete set of trigonometric functions in L2. Although
these series solutions were claimed to be capable of calculating the
exact natural frequencies and mode shapes, it later appeared to be
untrue and the problemwas due to the very slow convergence rate.
As pointed out by Li et al. [11], this is maybe because their series is
smooth for only the first- and second-order derivative which pre-
vented the method to compute the natural frequencies and mode
shapes to any arbitrary accuracy. Referring to Gorman’s superposi-
tion method [65] (GSM), the arguments by Rosales and Filipich [66]
appear to be a misunderstanding as mentioned earlier in Section 5.
In fact, the series function used in GSM [65] does form a complete
set for the studied problems with specific boundary conditions.
Consequently, it exhibits a much faster convergence rate than that
of the WEM [66], as evident in Table 4.

Besides, sufficient number of terms to be used in the series solu-
tion is indeed a crucial factor. Here two examples are worth
mentioning.

(i) Due to the non-existence of computers in 1909, Ritz [3] used
only the dominant terms XmðxÞYnðyÞ ' XnðxÞYmðyÞ of the first
type series in Eq. (46) and therefore, the results deteriorated
for the modes higher than, say, the tenth one, see Table 3.
This is because the role played by non-dominant terms
becomes important for higher modes.

(ii) It is worth noting that the so-called novel separation of vari-
ablemethod (NSV) proposed by Xing and Liu [40] is not really
an exact method for non-Levy plates as claimed by the
authors. It can be seen from Table 5 that their solutions are
smaller than the accurate results and have only two digit pre-
cision. Bahrami et al. [42] have given a clear explanation for
why their method [40] is not exact. Here an interpretation
from another angle is given. The solutions in Ref. [40] can
be regarded as using only one but dominant term in the series
of Eq. (48) which is not a complete series solution for
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non-Levy type plates. Therefore, their results in Ref. [40] can
be regarded as approximate solutions. This is at best similar
to the current S-DSM with only one term in the series. It
becomes evident by recalling the aforementioned bounded-
ness analysis for the CCCC case in Section 5.1. For example,
when M ¼ N ¼ 2 as in Table 1, the results of the current S-
DSM are smaller than the converged results but more accu-
rate than those of Ref. [40]. As M ¼ Nð Þ increases, the results
converge frombelow. Similar reasons apply to the symplectic
elasticity method [43–45] which gives exact solutions only
for Levy-type plates but not so for non-Levy-type plates.

To conclude, the results of the above two cases are not accurate
due to the insufficiency of the series terms used.

6.2. Discussion on the closed-form exact solution

As mentioned earlier, the exact solution without resorting to
series solution for free vibration of rectangular plates is only lim-
ited to Levy type plates with simple [4] and/or guided supports
[5] on two opposite edges. (Navier solution is a special case when
all edges of the plate are simply supported.) This has been univer-
sally acknowledged, but not sufficiently explained. This section
aims to provide physical and mathematical insights into this issue.

Itwill be instructive to look at this problem fromawavepropaga-
tion point of view (physically) in conjunction with spectral concept
(mathematically). Physically, a natural mode shape of a structure is
essentially a standing wave with the natural frequency propagating
on the structure. It can be seen as a superposition of a series ofwaves
with different wavenumbers travelling forward and backward with
the same frequency. These waves reflect back when they reach the
boundaries. Mathematically, the separation of variables used in Eq.
(5) leads to the characteristic equation of Eq. (6), which defines the
relationship amongst the wave parameters q; p and the natural fre-
quencyx. Considering both the physical and mathematical aspects
together will make physical meaning of the characteristic equation
more clear: a wave with parameter q and natural frequencyx trav-
elling in the x direction will lead to pairs of forward and backward
waves with parameters p in the y direction which are the roots of
the characteristic equation of Eq. (6) and vice versa.

For Levy-type plates, when transverse waves are propagating
between a pair of simple or guided constraints, theywill reflect back
in such away that all harmonicwaves in this direction can be decou-
pled into sine or cosine waves. As a results, the deformation ampli-
tude in the corresponding direction can be exactly represented by
sinusoidal functions and the deformation amplitude in the other
direction can be derived analytically. This is the only case in which
the solution component in one direction can be assumed a priori and
the solutions in the form of Eq. (47) can lead to closed-form exact
solutions. Also, the nodal lines of the mode shape of Levy-type
plates are always parallel to the axes. For non-Levy-type plates,
the solution components in x or y direction cannot be assumed a pri-
ori alone and should be calculated simultaneously. Furthermore, as
discussed in the previous section, the solution should be general
enough to form a complete solution space of the GDE with the cor-
responding BC. Therefore, one can come to the conclusion that the
Levy-type cases are the only special cases where the solution com-
ponent in one direction XðxÞ can be assumed a priori (e.g., see Eq.
(47)) which allows exact solutions. The exact solutions for non-
Levy type cases are only available in series form.

6.3. Conclusions on analytical methods for free vibration of
rectangular plates

Based on the above discussion, the following observations can
be made on the analytical methods for free vibration analysis of

plates regardless of the fact whether the method is based on
strong- or weak-form.

(i) The exact solutions for non-Levy plate are available only in
series form constituting a complete set for the complete
solution space of the GDE.

(ii) The expression of the series should be identical if the vari-
ables x and y are interchanged in the expression, i.e., the ser-
ies expression should be symmetric with respect to the
variables x and y.

(iii) The convergence rate of the series solution depends on how
the GDE and BC are satisfied. More precisely, the better the
series solution satisfies the GDE and all BC (both geometric
and natural BC), the higher convergence rate it will behave.
Also, smoothness with respect to the highest derivative in
the GDE should be guaranteed.

(iv) The numerical stability is indeed another important issue
when the series is evaluated at higher orders. This is closely
related to the orthogonal properties of the chosen series. The
numerical stability is usually the main obstacle for most of
the other analytical methods pursuing exact results in the
literature, because the orthogonality of the series terms
may becomes weaker for higher orders and therefore leads
to ill-conditioning matrices. Also, the involvement of penalty
method may also lead to ill-conditioning matrices.

(v) With truncated series function, the weak-formmethods nor-
mally give upper bound solution for the natural frequencies,
while the boundedness of strong-form methods is case
dependent.

The current S-DSM belongs to strong-form method and satisfies
the above (i)–(iv) points. Consequently, its results converge to
exact results with a very fast convergence rate. The numerical sta-
bility for any high order series in the current S-DSM is guaranteed
by the strong orthogonality of the modified Fourier series on the
boundaries. This is evident from the diagonal structure of the coef-
ficient matrices as shown by Eq. (C.1) in Appendix C. Moreover, the
application of the enhanced WW algorithm serves as an efficient
and highly reliable solution technique for the ensuing transcen-
dental eigenvalue problem. Consequently, any required natural
frequencies can be computed within any desired accuracy. There-
fore, it is completely justifiable to consider the current S-DSM as
an exact method. In addition, it should be emphasised that unlike
the other existing methods, the present method is a much more
versatile method providing a unified S-DS matrix to deal with arbi-
trarily prescribed boundary conditions.

7. Conclusions

An exact spectral dynamic stiffness method (S-DSM) has been
developed for free vibration analysis of rectangular plates with
arbitrary boundary conditions. This has been achieved based on a
general solution satisfying the governing differential equation
exactly. The S-DSM has been formulated in a systematic way
making use of symbolic calculation. The method provides a unified
solution to obtain the natural frequencies for any arbitrary
boundary conditions. By means of the modified Fourier series, any
prescribed boundary conditions can be transformed into displace-
ment or force vectors which are related by the spectral-dynamic
stiffnessmatrix. Themodified Fourier series was introduced to keep
the symplecticity of the formulation, so as to facilitate the applica-
tion of the Wittrick–Williams algorithm. As the solution technique,
the Wittrick–Williams algorithm has been enhanced with several
elegant and efficient techniques. The S-DSM solutions have been
validated by and compared with a wide range of existing exact
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and analytical solutions. The computed S-DSM results are accurate
to all figures presented, which can serve as benchmark solutions.
The superiority of the proposed S-DSM has been demonstrated in
terms of its excellent computational efficiency, accuracy and
robustness. It has been shown that the proposed S-DSM has as
much as 100-fold advantage in computational speed over the con-
ventional finite element method. Based on the comparison, a com-
prehensive discussion has been made for a wide range of analytical
methods for free vibration analysis of plateswhere significant phys-
ical and mathematical insights have been gained. Some instructive
conclusions have been drawn for general series-based analytical
(and exact) solutions. The proposed method has recently been
extended by the authors to complex composite plate assemblies
[74,75] with non-classical boundary conditions which include uni-
form or non-uniform elastic constraints [76], point or partial sup-
ports or a mixture of them in any combination.
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Appendix A. Modified Fourier basis function and the
corresponding modified Fourier series

The general solution of the GDE with unspecified boundary con-
ditions is pursued by using the spectral method [77]. Any arbitrary
one-dimensional function f ðnÞ; n 2 ½%L; L+ can be represented by the
following modified Fourier basis function.

T lðclsnÞ ¼
cos sp

L n
! "

l ¼ 0
sin sþ 1

2

! " p
L n

! "
l ¼ 1

(
; n 2 ½%L; L+; s 2 N; ðA:1Þ

where N ¼ f0;1;2; . . .g is the non-negative integers set. It can be
proved mathematically that the above basis functions form a com-
plete orthogonal set.

As pointed out by Bracewell [78], there are three versions of
Fourier series transformation formula in common use, in which
the third version provides the symmetry of the forward and
inverse Fourier transformation, and importantly, it can eliminate
the dependence of the length of the integral range. Therefore,
f ðnÞ can represented by the modified Fourier series as follows

f ðnÞ ¼
X

s2N
l2f0;1g

Fls
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; Fls ¼

Z L

%L
f ðnÞ T lðclsnÞffiffiffiffiffiffiffi

flsL
p dn; ðA:2Þ

where s 2 N and

fls ¼
2 l ¼ 0 and s ¼ 0
1 l ¼ 1 or s P 1

&
: ðA:3Þ

The hyperbolic functions HlðCnÞ with the definitions in Eq. (13) can
be transformed into Fourier series as follows based on Eq. (A.2):

HlðCnÞ ¼
X

s2N

2ð%1ÞsCH(
l ðCLÞffiffiffiffiffiffiffi

flsL
p

ðC2 þ c2lsÞ
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; ðA:4Þ

where H(
l ðCLÞ ¼ dHlðCnÞ=ðCdnÞjn¼L following the definition of Eq.

(15).

Appendix B. Infinite sets of algebraic equations based on Eq.
(20)

The expressions of Wkj
a and Wkj

b in Eq. (20a) yield the following
two equations respectively

Wkj
)))
x¼a

¼
X

m2N
ð%1Þm A1kmHjðp1kmyÞ þ A2kmHjðp2kmyÞ

$ %

þ
X

n2N
½B1jnHkðq1jnaÞ þ B2jnHkðq2jnaÞ+T jðbjnyÞ

¼
X

n2N
WajnT jðbjnyÞ=

ffiffiffiffiffiffiffiffi
fjnb

q
; ðB:1aÞ

Wkj
)))
y¼b

¼
X

n2N
ð%1Þn B1jnHkðq1jnxÞ þ B2jnHkðq2jnxÞ

$ %

þ
X

m2N
½A1kmHjðp1kmbÞ þ A2kmHjðp2kmbÞ+T kðakmxÞ

¼
X

m2N
WbkmT kðakmxÞ=

ffiffiffiffiffiffiffiffiffiffi
fkma

p
; ðB:1bÞ

The two infinite sets of algebraic equation can be obtained by first
substituting the expressions for A1km;A2km;B1jn and B2jn in Eqs. (24)
and (25) into Wkj

a and Wkj
a in Eq. (20) and then applying the Fourier

series formulae of Eq. (A.4) on the hyperbolic functions to give

Wajn ¼
X

m2N

2ð%1Þmþn Vbkm % ma2
km þ b2

jn

' (
/bkm=fkm

h i

ffiffiffiffiffiffi
ab

p
ðp2

1km þ b2
jnÞðp2

2km þ b2
jnÞ

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4j

p fjnVajn % mb2
jn % q2

1jn

' (
/ajn

h i THkðq1jnaÞ
q1jn

(

% fjnVajn % mb2
jn % q2

2jn

' (
/ajn

h i THkðq2jnaÞ
q2jn

)

ðB:2Þ

and

Wbkm ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 4j
p fkmVbkm % ma2

km % p2
1km

! "
/bkm

$ % THjðp1kmbÞ
p1km

&

% fkmVbkm % ma2
km % p2

2km

! "
/bkm

$ % THjðp2kmbÞ
p2km

.

þ
X

n2N

2ð%1Þmþn Vajn % a2
km þ mb2

jn

' (
/ajn=fjn

h i

ffiffiffiffiffiffi
ab

p
ðq2

1jn þ a2
kmÞðq2

2jn þ a2
kmÞ

; ðB:3Þ

where THlðNÞ ¼ HlðNÞ=H(
l ðNÞ. Another two infinite sets of algebraic

equations based on Mkj
a and Mkj

b can be arrived at following analo-
gous procedure as above. Finally these four infinite sets of equations
can be rewritten in matrix form as shown in Eq. (26).

Appendix C. Analytical expressions for the coefficient matrices
in Eq. (26)

The notations introduced earlier make the expressions for the
coefficient matrices of Eq. (26) highly symbolic and simplified
and thus easy to be implemented in a computer program.

If the numbers of terms in the series in x and y coordinates areM
and N respectively (i.e., m 2 ½0;M % 1+ and n 2 ½0;N % 1+), all of the
four matrices Akj

WU;A
kj
WV ;A

kj
MU and Akj

MV will be ðM þ NÞ ! ðM þ NÞ
matrices with the same structure as follows:

ðC:1Þ
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The entries of these four matrices can be expressed in a concise and
simplified form as

Akj
WUðn;nÞ¼%ðR1! 1%R2! 2Þ=! 0 Akj

WUðn;mÞ¼%R5R7

Akj
WUðm;nÞ¼%R6R8 Akj

WUðm;mÞ¼%ðR3! 3%R4! 4Þ=! 0

Akj
WV ðn;nÞ¼ ð! 1%! 2Þ=! 0 Akj

WV ðn;mÞ¼R7

Akj
WV ðm;nÞ¼R8 Akj

WV ðm;mÞ¼ ð! 3%! 4Þ=! 0

Akj
MUðn;nÞ¼%ðR2

1! 1%R2
2! 2Þ=! 0 Akj

MUðn;mÞ¼%R9R7

Akj
MUðm;nÞ¼%R9R8 Akj

MUðm;mÞ¼%ðR2
3! 3%R2

4! 4Þ=! 0

Akj
MV ðn;nÞ¼ ðR1! 1%R2! 2Þ=! 0 Akj

MV ðn;mÞ¼R6R7

Akj
MV ðm;nÞ¼R5R8 Akj

MV ðm;mÞ¼ ðR3! 3%R4! 4Þ=! 0

where

! 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4j

q
; R0 ¼ 2ð%1Þmþn;

! 1 ¼ THkðq1jnaÞ=q1jn; ! 2 ¼ THkðq2jnaÞ=q2jn;

! 3 ¼ THjðp1kmbÞ=p1km; ! 4 ¼ THjðp2kmbÞ=p2km;

R1 ¼ mb2
jn % q2

1jn; R2 ¼ mb2
jn % q2

2jn;

R3 ¼ ma2
km % p2

1km; R4 ¼ ma2
km % p2

2km;

R5 ¼ ma2
km þ b2

jn; R6 ¼ a2
km þ mb2

jn;

R7 ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fjnfkmab

q
ðp2

1km þ b2
jnÞðp

2
2km þ b2

jnÞ
h i.

;

R8 ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fjnfkmab

q
ðq2

1jn þ a2
kmÞðq

2
2jn þ a2

kmÞ
h i

;

R9 ¼ ð1% mÞ2a2
kmb

2
jn þ mjþ mða2

km þ b2
jnÞv;

where THlðNÞ ¼ HlðNÞ=H(
l ðNÞ. It should be highlighted that the

above expressions are applicable for the four symmetric/antisym-
metric component cases with the superscripts kj taking the values
‘00’,‘01’,‘10’ and ‘11’, respectively. Moreover, the above analytical
expressions have clear physical meanings. For example, v is the
rotatory inertia parameter which takes zero when the rotatory iner-
tia is not taken into account. Also, akm;bjn are wavenumbers and
p1km;p2km; q1jn; q2jn are frequency-dependent wave parameters. It is

clear that R7 ¼ R8 based on Eq. (18d). Therefore, Akj
WV and Akj

MU are

symmetric matrices, and Akj
WU ¼ %Akj

MV

T
. This is owing to the recipro-

cal principle and the Fourier series formula (A.2) adopted in the for-
mulation. In addition, the two sub-matrices for each symmetry
component case in the diagonal position corresponding to Aðn;nÞ
and Aðm;mÞ are diagonal matrices. This is due to the fact that all
of the frequency-wavenumber dependent DOFs in one direction
(for the corresponding displacement or force) are strictly orthogo-
nal to each other. The strict orthogonality of the formulation enable
the evaluation at any high values of M and N, which guarantees the
unconditionally numerical stability of the current method.

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.compstruc.2015.
11.005.
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