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This paper focuses on the coupling between the high fidelity aerodynamic model for the flow field and

the modal analysis of a typical wing section to carry out flutter analysis. This coupled aeroelastic model is

implemented in one of the most widely used open source CFD codes called OpenFOAM. The model is de-

signed to calculate the structural displacement in the time domain based on the free vibration modes of

the structure by constructing the numerical model directly from the modal analysis. Essentially a second

order ordinary differential equation is solved for each mode as a function of the generalised coordinates.

A density based solver using central difference scheme of Kurganov and Tadmor is used to model the

flow field. Two main cases of transonic flow over NACA 64A010 are modelled for a forced pitching oscil-

lation airfoil and a self-sustained aerofoil respectively. The self-sustained two degrees of freedom case is

modelled for three different possibilities covering damped, neutral and divergent oscillations. Predicted

results show very good agreement with the numerical and experimental data available in the literature.

© 2016 Elsevier Ltd. All rights reserved.
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. Introduction

Aeroelasticity is the science of studying the interaction between

hree main forces namely: elastic, inertia and aerodynamics. There-

ore aeroelasticity is an interdisciplinary field combining: fluid me-

hanics, solid mechanics and structural dynamics. In general, the

nteraction between these two or three areas is classified as aeroe-

astic problems. Aeroelastic research started in the late 1920’s and

he subject matter has matured enormously over the years and

ow there are many excellent texts on the subject [1–4]. Insuffi-

ient or inaccurate prediction of aeroelastic characteristics of air-

raft during the design process can lead to catastrophic incidents.

One of the most dangerous aeroelastic instabilities is, of course

utter. It is a self-excited oscillation of elastic body in fluid stream.

his condition is usually defined by two important parameters

amely the flutter speed and the flutter frequency. Flutter speed

efines the speed beyond which the aircraft becomes unstable. It

eans that if the aircraft flies at this speed it will have steady har-

onic oscillation of constant amplitude. This self-excited oscilla-

ion will have a frequency which is called the flutter frequency.

his point is the most critical point because if for any reason, free

tream velocity exceeds the flutter speed, the system will have

ivergent oscillation and will eventually vibrate in a violent way
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hich could lead to the destruction of the aircraft. The aeroelastic

henomenon, flutter is caused by all three types of forces, namely

lastic, inertia and aerodynamics. The fluid flow instead of playing

ts natural role to damp the structural vibration, it will feed the

ystem instead with more and more energy until divergent oscilla-

ion occurs. The complexity of flutter analysis arises from the fact

hat flutter involves very strong coupling between fluid mechanics

nd structural dynamics. Therefore an accurate description of the

ow field as well as structural dynamic behaviour together with a

echanism of coupling between the two are essential for flutter

nalysis.

Avoiding flutter is a mandatory requirement in any aircraft de-

ign process. Although flutter analysis is a relatively old problem in

viation, it is still challenging, particularly with the advent of com-

osite materials and requirement of high speeds. The main chal-

enge for this problem is at the transonic flow region. The transonic

utter limit appears to be low in any flight range. Therefore for

n aircraft the most critical flutter point generally arises when the

ow is transonic. The phenomenon is called transonic dip which

as featured in the literature many times [5,6]. The transonic flow

eld is a transition between subsonic flow and supersonic flow ex-

ibiting shock waves and highly non-linear behaviour.

The transonic flow being non-linear poses a great challenge

ver traditional linear theories [7] which fail to predict accurately

he aerodynamic properties. Therefore solving the non-linear gov-

rning equations of fluid flow using numerical techniques has be-

ome essential [3,8–10]. Despite the computational cost of using
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CFD, it is appropriately being used in the aeroelasticity field for

greater accuracy and better flutter prediction. This has given birth

to a new field in aeroelasticity called computational aeroelasticity

which couples computational fluid dynamics (CFD) with computa-

tional structural dynamics (CSD) [11].

In the next section a concise theoretical background is given fo-

cusing on the governing equations of the aeroelastic system. Then

the numerical methods and the implemented code are explained.

Finally, the results of the two validation cases are discussed in de-

tail. This paper is based on an earlier paper [12] but with some

enhancement. The essential improvement in this paper appears in

the results of the first case study which is improved considerably

compared to the previous work. This improvement is mainly due

to some refinement in the convergence criteria and better bound-

ary condition for the slip moving wall.

Following the publication of the conference paper by the au-

thors [12], an updated version of the software OpenFOAM-2.3 has

now been used [13]. The newer version introduced many improve-

ments, particularly in parallel running performance and the imple-

mentation of a new dynamic mesh solver. Also another important

improvement in this release is the inclusion of an enhanced ordi-

nary differential equation solver library which is directly relevant

to the present work [14]. Due to these modifications some of the

implemented features by the authors have been updated in this

paper.

2. Theoretical background

2.1. Aerodynamic model

The governing equations of the flow are the complete Euler

equations [15–17]. If ρ , u, p and E are density, velocity, pressure

and total energy respectively, the Euler equations in vector nota-

tion will then have the following form;

• Conservation of mass:

∂ρ

∂t
+ ∇ · [uρ] = 0 (1)

• Conservation of momentum:

∂(ρu)

∂t
+ ∇ · [u(ρu)] + ∇p = 0 (2)

• Conservation of total energy:

∂(ρE)

∂t
+ ∇ · [u(ρE)] + ∇ · [up] = 0 (3)

where ∇ is the nabla vector operator, ∇ ≡ ∂i ≡ ∂
∂xi

≡
( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

). Thus for any vector a, ∇ · a is the divergence

defined by ∇ · a ≡ ∂a1
∂x1

+ ∂a2
∂x2

+ ∂a3
∂x3

. Also for any scalar s, the

gradient is ∇s ≡ ( ∂s
∂x1

, ∂s
∂x2

, ∂s
∂x3

). In Eq. (3), E = e + |u|2
2 with e the

specific internal energy.

2.2. Aeroelastic model

The typical wing section using two-dimensional model [1,3,4]

is well established for studying two degrees of freedom wing dy-

namical system. This model considers the plunging (h) and pitch-

ing (α) motions about the elastic axis of the wing. The governing

equations of undamped motion are [18]:

mḧ + Sαα̈ + Khh = −L (4)

Sα ḧ + Iαα̈ + Kαα = Mea (5)

where m, Iα and Sα are aerofoil mass per unit length, polar mass

moment of inertia about the elastic axis per unit length and static
ass imbalance respectively. Kh and Kα are bending and torsional

pring stiffness whereas L and Mea are the lift force (positive up)

nd moment about the elastic axis (positive nose up). The plung-

ng displacement h is positive down and the angle of attack α is

ositive nose up and is in radians. Non-dimensionalising the lin-

ar displacement by the aerofoil semichord (b) in Eqs. (4) and (5)

nd the time by the uncoupled natural frequency of the torsional

pring (ωα) so that the dimensionless time is τ = ωαt . The gov-

rning Eqs. (4) and (5) can now be reformulated in the following

atrix form

M]{q̈} + [K]{q} = {F} (6)

here

M] =
[

1 xα

xα r2
α

]
; [K] =

[
( ωh

ωα
)2 0

0 r2
α

]
(7)

F} = U2
∞

πμω2
αb2

{
−Cl

Cm

}
; {q} =

{
h
b
α

}
(8)

In Eq. (6), [M] and [K] are the mass and stiffness matrices,

nd {F} and {q} are the force and displacement vectors. The non-

imensional aerofoil mass ratio is μ = m
πρb2 with xα and rα being

he static unbalance and the radius of gyration respectively. The

ncoupled natural frequencies in plunging and pitching motion are

h and ωα , respectively. Cl and Cm represent the lift and moment

oefficients which have the same sign convention as the aerody-

amic forces and moment L and M.

.3. Modal analysis

The main objective now is to solve Eq. (6) which represents the

erofoil motion in two degrees of freedom namely the heave and

itch. In order to solve the equations the modal analysis methodol-

gy is used. The main concept is representing the system displace-

ents as a linear combination of the free vibration mode shapes

hrough the use of generalised coordinates. In general, if a combi-

ation of the first few modes of free vibration say N is used, then

ccording to modal approach the displacement vector can be rep-

esented as

q} = [φ]{η} (9)

here [φ] is the modal matrix in which each column is an eigen-

ector of the free vibration analysis eigen-problem and {η} is the

eneralised coordinates. Premultiplying Eq. (6) by [φ]T and substi-

uting using (9) and applying the eigenvectors orthogonality lead

o a set of second order ordinary differential equations in gener-

lised coordinates. Each equation is represented by its mode, say

th mode [18,19] to give

¨i + 2ζiωiη̇ + ω2
i ηi = Qi; i = 1, 2, . . . , N (10)

here

i = {φ}T
i {F} (11)

2
i = {φ}T

i [K]{φ}i (12)

= {φ}T
i [M]{φ}i (13)

nd ζ i in Eq. (10) is modal damping which is not considered in

6). The modes are normalised in a way such that the generalised

ass matrix became an identity matrix. In this paper the struc-

ural system is considered as an undamped system. However, the

amping is shown in Eq. (10) just for reference and showing how

he system damping can be considered in the future work.

It is clear from the above equations that to calculate the system

isplacement vector from Eq. (9), modal matrix [φ] and the gener-

lised coordinates vector {η} should be obtained first. Determining
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he first N modes to formulate the modal matrix [φ] can be ac-

omplished by solving the eigen-problem for the free vibration sys-

em. This particular case has only two modes because the system

s discrete with two degrees of freedom only. Then to get the gen-

ralised displacement vector {η}, Eq. (10) should be solved. It is a

econd order ordinary differential equation (ODE) in time. Here, it

ill be solved using numerical integration in time by Runge–Kutta

cheme. In order to solve it, Eq. (10) should be reduced to two

rst order (ODE) in y1i and y2i using the transformation y1i = ηi

nd y2i = η̇i which leads to

˙ 1i = y2i (14)

˙ 2i = Qi − 2ζiωiy2i − ω2
i y1i (15)

The system of Eqs. (14) and (15) should be solved for each

ode i. It is an initial value problem and therefore the initial con-

itions for y1i, y2i, ẏ1i and ẏ2i will be specified from the initial val-

es of the generalised coordinates.

The general initial conditions are:

(0) = h0; α(0) = α0 (16)

˙ (0) = ḣ0; α̇(0) = α̇0 (17)

η0} = [φ]−1{q0} (18)

η̇0} = [φ]−1{q̇0} (19)

.4. Fluid structure coupling

As mentioned before, closely coupled interaction is considered

n this study. Two levels of coupling are required for which the

rst one is essentially time coupling carried out by integrating the

erodynamic forces over the aerofoil at every time step to calcu-

ate the force vector {F}. The second level of interaction is coupling

etween the structural displacements and the fluid solver. For the

ase in hand where the aerofoil cross section is considered to be

igid (non-deformable), the aerofoil position will be updated at ev-

ry time step according to the calculated Cl and Cm. By knowing h

nd α from Eq. (9) the new location P1 for point P0 on the aerofoil

s obtained from

P1} = [R]{P0} + {h} (20)

here {h} is the displacement vector in the plunging direction and

R] is the rotation matrix involving an angle α around the elastic

xis. For an aerofoil in the xy-plane, the rotation matrix by an an-

le α in radian around a unit vector in the z direction through the

lastic axis is

R] =
[

cosα −sinα 0
sinα cosα 0

0 0 1

]
(21)

. Numerical scheme and background information

The previous section was essentially a general introduction

bout the mathematical foundation of the aeroelastic problem of

typical aerofoil section. This model is well established in the lit-

rature as a representative model for studying the stability and re-

ponse problem of wings [1,3]. In this section, the current imple-

entation and the other implemented models for aeroelastic study

ill be introduced and discussed. This section will also highlight

he main challenges of modelling fluid-structure interaction.

There are three main elements of the current problem. First,

olving the governing equations of the fluid flow using the finite
olume method. The governing equations will be solved numeri-

ally for a finite number of control volumes representing the flow

omain (discretisation). Computational fluid dynamics techniques

nvolve preprocessing stage for creating a mesh and defining the

oundary and initial conditions, which is followed by the solving

tage when iterative numerical algorithms are used and finally the

ost-processing of the result takes place. The second element in

his problem is the structural model which has already been men-

ioned in detail in Section 2.2. The third element is coupling be-

ween structure and fluid which was outlined in Section 2.4. In

his section, the main aspects of these elements will be discussed

n greater details including a description of the developed code.

.1. The fluid solver “rhoCentralFoam”

The main purpose of this work is to predict the transonic flut-

er. In this regime the flow is highly non-linear and unsteady. Mov-

ng and oscillating shock waves are the dominant features of tran-

onic flow field. In order to predict such complex flow field with

igh fidelity, a special technique should be applied to solve the

overning equations outlined in Section 2.1. In general, there are

wo main approaches to solve these equations in CFD. These are

ssentially either pressure based solver or density based solver.

he main difference between them is that the latter solves the

ontinuity equation as a function of density, directly coupled with

he rest of governing equations. This is in contrast to the pressure

ased solver which solves a pressure correction equation which is

erived from the momentum and continuity equations [16]. This

ressure correction works as a constraint on the velocity field to

atisfy the continuity equation. Therefore it is called segregated

olver.

Both approaches are available in OpenFOAM for high speed

ompressible flow. The pressure based solver is called sonicFoam

nd the density based solver called rhoCenteralFoam. The advan-

ages and disadvantages of each method are well known amongst

he CFD community [15,16]. The main advantage for pressure based

olver is that it requires less computational resources than the

ensity based solver due to the segregation between the govern-

ng equations. The obvious advantage of density based solver is

he coupling between the governing equations which leads to bet-

er non-oscillating solution, especially when discontinuities are in-

olved due to shock waves. In this paper only rhoCentralFoam

olver is used because of its advantages over sonicFoam for tran-

onic flow under consideration. The implementation of rhoCentral-

oam reveals some of the advantages of Riemann solver [17]. A full

omparison between the implemented two methods in OpenFOAM

howed better results of rhoCentralFoam solver over sonicFoam

n different high speed compressible flow cases [20]. The den-

ity based solver, rhoCentralFoam uses central difference schemes

ased on Kurganov and Tadmor formulation introduced in 2000

21]. It was implemented in OpenFOAM by Greenshields et al. in

009 [17]. It is a semi-discrete, non-staggered central scheme.

.2. Dynamic mesh

Solving a particular case involves a moving solid object requir-

ng some special strategy to include this movement. In this respect,

nite volume methods are usually used for solving fluid dynam-

cs governing equations at fixed cells in space (control volumes).

hen the solid objects start to move there will be a relative ve-

ocity between the boundaries and the mesh cells. There are two

pproaches to solve this problem. The first approach relies on cal-

ulating the movement of the mesh according to its boundary dis-

lacement but maintaining the same number of grid cells. The sec-

nd approach is to calculate the new position of each grid cell with

he possibility of removing or adding new cells as required. These
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Table 1

Characteristics of test case A.

Description Variable Value

Aerofoil NACA 64A010

Mean angle of attack αm 0°
Angle of attack amplitude αA ±1.01°
Free stream Mach number M∞ 0.8

Reynolds number Re 1.256 × 107

Reduced frequency k 0.202

Pitch axis from leading edge xp 25% of chord

Fig. 1. C-mesh type around NACA 64A010.

Fig. 2. Mesh around NACA 64A010 tail.
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Fig. 3. Instantaneous lift Coefficient.
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two techniques already implemented in OpenFOAM are particularly

useful [22,23].

In this study, the first approach is used which basically solves

Laplace equation for the grid displacement at every time step

[22,23]. A diffusion coefficient for the mesh movement is the only

parameter that should be specified by the user. Before describing

the governing equation of moving grid it is useful to examine the

main differences between static and dynamic mesh. Basically it

is the relative speed between the boundary and the mesh which

has a direct relation with the flux through each finite volume cell.

Ignoring this relative speed could lead to numerical error in the

solution. Preventing this numerical problem requires applying the

space conservation law (SCL) which states [15,22]

d

dt

∫
dV −

∮
n · vsdS = 0 (22)
V S
here V is an arbitrary moving volume, n is the unit vector nor-

al to the surface and vs is the surface speed. The above condition

pplied in OpenFOAM solvers by a function called makeRelative. In

penFOAM the name of the solvers which are capable of handling

ynamic meshes includes “DyM”. For example the variant of rho-

entralFoam solver which is used in this study for dynamic mesh

s rhoCentralDyMFoam. Now attention is turned to the Laplace dis-

lacement mesh motion solver in OpenFOAM, which solves for in-

ependent displacement vector d defined by

(t + �t) = r(t) + d (23)

here r is the point position vector. Thus Laplace equation for

esh motions with k as diffusion coefficient is

· (k∇d) = 0 (24)

qs. (22) and (24) illustrate the main difference between static

esh solvers and dynamic mesh solvers in OpenFOAM. Also a spe-

ial boundary condition for moving walls velocity associated with

ynamic mesh solver has to be used. It is called movingWallVeloc-

ty which makes the normal flux to the wall equal to zero. Also

here are other dynamic mesh solvers in OpenFOAM which solve

or the grid points velocity [22,24].

In order to couple the structural dynamics with the fluid flow

olver, a new boundary condition is developed called elasticDis-

lacement. The main function of elasticDisplacement boundary

ondition is to calculate the force coefficients over the aerofoil and

alculate the corresponding displacement according to the free vi-

ration natural modes of the system.

. Results and discussion

In this section two different cases will be investigated to test

he source code. A wide range of operating conditions is modelled

o display the potential of the method presented in this study.

.1. Case A: pitching NACA 64A010 aerofoil

The first test case (case A) is a pitching aerofoil about the quar-

er chord in transonic flow free stream. The aerofoil section is

ACA 64A010. This particular case is one of the widely used cases

o validate transonic CFD codes. The experimental work was car-

ied out by Davis [25], Alonso et al. [18] as well as by Chen et al.

26] in order to validate their CFD codes. Table 1 gives the operat-

ng conditions for this case.

In this case GMSH has been used [27] instead of using one of

penFOAM meshing utilities. GMSH has a graphical user interface

hich gives more control, and thus accelerates the mesh genera-

ion process. Figs. 1 and 2 show the complete mesh and the mesh
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Fig. 4. Mach Contours at α = 1.01◦ .

Table 2

Characteristics of test case B.

Description Variable Value

Aerofoil NACA 64A010

Mean angle of attack αm 0°
Angle of attack amplitude αA ±1.01°
Free stream Mach number M∞ 0.85, 0.825, 0.875

Speed Index V ∗ = U∞
ωα b

√
μ

0.439, 0.612, 1.420

Aerofoil mass ratio μ 60

Reynolds number Re 1.256 × 107

Static unbalance xα 1.8

Squared radius of gyration r2
α 3.48

uncoupled natural freq. in plunge ωh 100 rad/s

uncoupled natural freq. in pitch ωα 100 rad/s

Pitch axis from leading edge xp −50% of chord

Fig. 5. Damped response. M∞ = 0.85, V ∗ = 0.439.

Fig. 6. Damped response. M∞ = 0.825, V ∗ = 0.612.
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round the sharp trailing edge respectively. The computational do-

ain is 15c × 10c with 39, 006 grid cells, where c is the aerofoil

hord.

Fig. 3 shows the lift coefficient versus the angle of attack. The

esults from this work are in good agreement with the experimen-

al results [25]. Although this figure shows an excellent agreement

long the pitching cycle, it also shows that the model did not pre-

ict very well the peak points. In general these results are com-

arable with the results reported in literature [18,26]. McMullen

t al. [28] modelled this case with a grid independent study and

lso reported under and over predictions for the lift coefficients.

bviously, increasing the grid quality will increase the accuracy but

t is not the main reason for these differences. It is probably due

o ignoring the viscous effect for a streamed-line objects like aero-

oils. In such cases the forces arising from shear stress may have

noticeable contribution. More investigations using different grids

nd turbulence models may clarify and pin-point the reason. Fig. 4

hows the Mach contours at the maximum angle of attack.

.2. Case B: self-sustained NACA 64A010

In this case, the modal analysis was used to calculate the aero-

oil displacement. Again the NACA 64A010 was used as in case A.

owever, three different operating conditions are modelled for this

ase [18]. The elasticDisplacement boundary condition was used.

able 2 shows the selected operating conditions. The structural

odel follows the one which was introduced by Isogai [5,6]. The

odelling for each condition was done using three stages, namely,

xed aerofoil, pitching aerofoil around the elastic axis and finally

elf-sustained aerofoil. The same mesh from case A was used to

ave computational time. A fifth-order Runge–Kutta with adaptive

ime step developed by Cash and Karp [29] was selected. It is one

f the OpenFOAM ODE solvers for non-stiff systems.
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Fig. 7. Divergent response. M∞ = 0.875, V ∗ = 1.420.

R

[

[

[

[

[

[

Figs. 5–7 show the responses and the forces for the three op-

erating conditions. It is clear that Fig. 5 represents a damped re-

sponse, whereas Fig. 7 shows a divergent response. Both are in

very good agreement with [18,26]. It was expected that Fig. 6

would predict the flutter point as reported by Alonso et al. [18],

but as it turned out the flutter point was missed only by a small

margin. Nevertheless, the trend to predict the flutter speed is suf-

ficiently clear.

5. Conclusions

In this paper the main aspects of computational aeroelasticity

are discussed. The newly implemented code in OpenFOAM for cou-

pling the fluid-structure interaction based on free vibration nat-

ural modes of an oscillating aerofoil is highlighted. One case for

forced pitching aerofoil has been investigated and the predicted

results are compared with experimental measurements from the

literature. A second case for self-sustained aerofoil based on the

newly developed code has also been studied. All these case stud-

ies are verified. Results from the implemented code showed good

agreement with experimental data and numerical predictions

found in the literature.
eferences

[1] Bisplinghoff R, Ashley H, Halfman R. Aeroelasticity. Dover books on aeronauti-

cal engineering series. Dover Publications; 1996.

[2] Fung YC. An introduction to the theory of aeroelasticity. Dover Publications;
2002.

[3] Clark R, Cox D, Curtiss H, Dowell E, Edwards J, Hall K, et al. A modern course
in aeroelasticity. Solid Mechanics and Its Applications. Kluwer Academic Pub-

lishers; 2006.
[4] Rodden W. Theoretical and computational aeroelasticity. Crest Publishing;

2011.

[5] Isogai K. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA
J 1979;17(7):793–5.

[6] Isogai K. Transonic dip mechanism of flutter of a sweptback wing. II. AIAA J
1981;19(9):1240–2.

[7] Bendiksen OO. Review of unsteady transonic aerodynamics: theory and appli-
cations. Prog. Aerospace Sci. 2011;47(2):135–67.

[8] Bendiksen OO, Seber G. Fluidstructure interactions with both structural and
fluid nonlinearities. J. Sound Vib. 2008;315(3):664–84.

[9] Bennett RM, Edwards JW. An overview of recent developments in computa-

tional aeroelasticity. In: AIAA paper 1998-2421, 29th AIAA, Fluid Dynamics
Conference, 1998. DOI: 10.2514/6.1998-2421.

[10] Guruswamy GP. A review of numerical fluids/structures interface methods for
computations using high-fidelity equations. Comput Struct 2002;80(1):31–41.

[11] Schuster DM, Liu DD, Huttsell LJ. Computational aeroelasticity: success,
progress, challenge. J Aircraft 2003;40(5):843–56.

[12] Kassem HI, Liu X, Banerjee JR. Flutter analysis using a fully coupled density

based solver for inviscid flow. In: Topping BHV, Iványi P, editors. Proceedings of
the Twelfth International Conference on Computational Structures Technology.

Stirlingshire, UK: Civil-Comp Press; 2014. Paper 146.
[13] OpenFOAM user guide. version 2.3, 2014.

[14] OpenFOAM release notes, version 2.3, 2014.
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