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For the vibro-acoustic system with interval and random uncertainties, polynomial chaos expansions have received broad and
persistent attention. Nevertheless, the cost of the computation process increases sharply with the increasing number of uncertain
parameters. *is study presents a novel interval and random polynomial expansion method, called Sparse Grids’ Sequential
Sampling-based Interval and Random Arbitrary Polynomial Chaos (SGS-IRAPC) method, to obtain the response of a vibro-
acoustic system with interval and random uncertainties. *e proposed SGS-IRAPC retains the accuracy and the simplicity of the
traditional arbitrary polynomial chaos method, while avoiding its inefficiency. In the SGS-IRAPC, the response is approximated
by the moment-based arbitrary polynomial chaos expansion and the expansion coefficient is determined by the least squares
approximation method. A new sparse sampling scheme combined the sparse grids’ scheme with the sequential sampling scheme
which is employed to generate the sampling points used to calculate the expansion coefficient to decrease the computational cost.
*e efficiency of the proposed surrogate method is demonstrated using a typical mathematical problem and an
engineering application.

1. Introduction

*e vibro-acoustic analysis is fundamental for the vibration
and noise control of a vibro-acoustic system in vehicles such
as cars, high-speed trains, and airplanes in the early stages of
the design [1].*e traditional numerical methods used for the
vibro-acoustic analysis are generally based on the assump-
tions of deterministic parameters. Nevertheless, the uncer-
tainties related to the vibro-acoustic system, such as the
material properties, the boundary conditions, and the ag-
gressive environment factors, are inevitable in the practical
engineering applications due to the inevitable manufacturing
errors and incomplete knowledge. *e response of the vibro-
acoustic system is highly sensitive to the uncertain parame-
ters, and the results obtained from the traditional numerical
methods based on deterministic hypothesis may be unreliable
without considering these uncertainties. As a result, there is
an increasing demand for the development of an uncertainty
analysis method in the vibro-acoustic analysis.

Random uncertainty and epistemic uncertainty are two
typical types commonly employed in uncertainty analysis.
*e probabilistic methods are widely used for problems with
random uncertainty and generally consist of Monte Carlo
(MC)method [2–4], stochastic perturbation approach [5–8],
and polynomial chaos expansion (PCE) approach [9, 10],
and so on. *e uncertain parameters of the probabilistic
method are always defined by random variables with suf-
ficient probabilistic characteristics. *e epistemic uncer-
tainty is another type of uncertainty with lacking
probabilistic information. *e probabilistic methods are not
suitable for the epistemic uncertainty model when the
probabilistic characteristic of the uncertain parameters is
insufficient to get. Nonprobabilistic methods have been
became an efficient alternative to effectively model the ep-
istemic uncertainty. *e typical nonprobabilistic method
includes the interval analysis [11–13], the fuzzy theory
[14, 15], the evidence theory [16–18], and the p-box set
[19, 20]. Among these methods, the interval method has
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gained widespread attention because of its conceptual
simplicity [21]. Various methods have been established in
the previous studies conducted on the uncertainty quanti-
fication of the interval model, such as the interval pertur-
bation approach [22, 23], the interval Chebyshev approach
[24–27], the interval collocation approach [28], and the
optimization-based approach [29].

As explained earlier, the probabilistic method or the
interval method is employed to solve problems with random
uncertainty or epistemic uncertainty, respectively. Never-
theless, in the complex vibro-acoustic system, random and
epistemic uncertainty exist simultaneously [30–33]. *e
interval and random mixed model [34] has been proposed
for problems related to both random and epistemic un-
certainty. *e hybrid interval and random analysis is much
more complex and time consuming when compared to the
pure interval or random analysis. *e perturbation method
is commonly used for the interval and randommixed model
[28, 29]. *e hybrid perturbation method can reach great
precision for the uncertain analysis of interval and random
mixed uncertain model. However, it is only restricted to the
uncertain problem with a small uncertainty level [24]. *e
PCE method exhibits more excellent accuracy for the hybrid
uncertain problem with a large uncertainty level, when
compared to the perturbation method. Yin et al. [35]
employed the Gegenbauer polynomial in the framework of
the Gegenbauer polynomial chaos to propose a unified PCE
method and applied it to the uncertain analysis of the vibro-
acoustic system. However, it is only suitable for uncertain
problems which the probability density functions (PDFs) of
uncertain parameters are exact and continuous. Yin et al.
[36] proposed a unified arbitrary polynomial expansion
method. *e computational accuracy of hybrid uncertain
analysis for the vibro-acoustic problem with arbitrary PDFs
has been improved effectively. *e arbitrary polynomial
chaos expansion method presents better accuracy than the
Gegenbauer polynomial chaos expansion method for the
uncertain problem with arbitrary PDFs. *is method is
feasible depending on the availability of the PDFs of the
random variables. However, in some cases, the given sta-
tistical data lacks probabilistic information [9], resulting in
errors in the estimation of the probability distributions.
Chen et al. [37] proposed a unified Interval and Random
Moment-based Arbitrary Polynomial Chaos (IRMAPC)
method to resolve this issue. *is method constructs the
polynomial basis corresponding to the random variable
according to the moment of the random variable. It effec-
tively avoids the generation of errors in the PDF assumption
process. *e Moment-based Arbitrary Polynomial Chaos
(MAPC) presents better accuracy than the arbitrary poly-
nomial chaos for the interval and random mixed uncertain
model when only the statistical data of the random variable
is available.

Despite the effectiveness of the MAPC expansion
method in the interval and random uncertain analysis, an
important problem still remains unresolved. For multivar-
iable problems, the sampling points, which are used to
calculate the expansion coefficient of this method, are the
tensor product of the Gaussian integration points. *e

multidimensional uncertainties are usually included in the
complex vibro-acoustic system [38]. *is makes the com-
puting cost of the MAPC method tremendous when
obtaining the response of the vibro-acoustic system. *e
traditional arbitrary polynomial expansion method involves
a substantial computing cost when is used to analyze the
complex vibro-acoustic problems. *erefore, it is important
to decrease the computing cost involved in the calculation of
the expansion coefficient.

To improve the computing efficiency, various sampling
methods with fewer sampling times have been developed to
determine the coefficient of the PCE method. Traditional
sampling methods can be considered as “one-shot” sampling
methods, such as the Latin Hypercube Sampling (LHS) [39]
and Orthogonal Sampling [40] and the Central Composite
Design [41]. Since the sampling points in the “one-shot”
sampling method are chosen only once, the “one-shot”
sampling method is inflexible and incomplete during the
analysis of the response surface. A sequential sampling
method [42, 43] has been recently proposed to improve the
flexibility and to provide complete sampling. *e sequential
sampling method improves on the “one-shot” sampling
methods. In this method, the required sampling points are
selected from the candidate points, which are the tensor
product of the Gaussian integration points for a multivar-
iable problem. In the sequential sampling method, the
number of integration points in the candidate set increases
sharply as the number of variables increases. *is phe-
nomenon leads to excessive computational costs.

Overall, the arbitrary Polynomial Chaos expansion
method is unsuitable for the vibro-acoustic system involving
multidimensional problems of interval and random un-
certainties, despite its significant contribution to the hybrid
uncertainty analysis. *e sequential sampling method [43]
has been used to decrease the computing cost of the mul-
tivariable problem. However, the existing sequential sam-
pling scheme has a poor sampling efficiency. *erefore, it is
necessary to propose a new method which can reach the
same level of precision as the MAPC method, while pro-
viding better computational efficiency.

*is study focuses on the development of a new interval
and random polynomial expansion method exhibiting high
computational efficiency for a vibro-acoustic system with
interval and random uncertainties, called the Sparse Grids’
Sequential Sampling-based Interval and Random Arbitrary
Polynomial Chaos (SGS-IRAPC). First, the unified IRMAPC
method is introduced for the vibro-acoustic analysis. Sec-
ond, the sparse grids’ sequential sampling scheme, which
combines the sequential sampling method with the sparse
grids’ method, is proposed to decrease the computing cost in
the surrogate method construction. In this sampling
method, the sampling points, which are used to calculate the
coefficient of the PCE method, are selected form integration
points in the candidate set. A sparse grids’ method based on
the Smolyak algorithm is adopted to select the integration
points of the candidate set to greatly enhance the computing
efficiency. *e proposed method is compared with the
IRMAPC and the Sequential Sampling Scheme-based In-
terval and Random Arbitrary Polynomial Chaos (SSS-

2 Shock and Vibration



IRAPC). *e effective property of the proposed surrogate
modeling method is demonstrated using two numerical
examples.

2. Basic Theory of Interval and Random
Moment-Based Arbitrary Polynomial Chaos

*e Interval and Random Moment-based Arbitrary Poly-
nomial Chaos (IRMAPC) method [37, 44, 45] is briefly
summarized in this section.

According to the basic concept of the Moment-based
Arbitrary Polynomial Chaos (MAPC) expansion method, a
function, F(x), can be approximated by the MAPC as

F(x) � 􏽘
N

i�0
fiGi(x), (1)

in which N represents the retained order, the expansion
coefficient, and the polynomial basis and Gi(x) is obtained
from the moment of the random variable. *e detailed
procedure to determine the polynomial basis, Gi(x), is
provided in [37, 45].

In [37], the MAPC method is applied to the interval and
random analysis in a unified form. *e random vector, xR,
and the interval vector, xI, are defined as follows:

xR
� x

R
1 , x

R
2 , . . . , x

R
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� x
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where xR
i (i � 1, 2, . . . , L1) is the ith random variable, xI

i (i �

1, 2, . . . , L2) denotes the ith interval variable, and L1 and L2
are the number of random variables and interval variables,
respectively. All the uncertain parameters are then denoted
by a vector, x � [xR, xI]. *e total number of variables is
denoted as L, L � L1 + L2.

For multivariate problems, a straightforward approach
to extend the interpolation function from one variable
problem to multivariable problems is to use the tensor
product method [46]. Based on the MAPC expansion, F(x)

of the interval and random variables can be approximated by
the following formula:
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(4)

In the above equation, Gik
(xR

k ) and Gik
(xI

k) denote the ik
order polynomial basis related to the kth random variable
and the kth interval variable, respectively. For the random
variable, Gik

(xR
k ) is determined by the moment of the kth

random variable. For the interval variable, Gik
(xI

k) is or-
thogonal to the weight function of the Chebyshev polyno-
mial. From the application of the MAPC for random
analysis, it is observed that when the moment is set as
μk � 􏽒

1
− 1 xkρ(x), the polynomial is orthogonal and is

denoted by ρ(x). It indicates that the polynomial basis is
orthogonal to the weight function of the Chebyshev poly-
nomial if the moment is determined by

μk � 􏽚
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(5)

where wC(x) � 1/(π
�����
1 − x2

√
) is the weight function of the

Chebyshev polynomial. After the moment is determined, the
polynomial basis for interval analysis can be calculated by
using equations (4) and (5).

*e expansion coefficient, fi1 ,...,iL
, is calculated by the

Gauss integration rule [37, 45]. Normally, the number of the
Gaussion integration points related to ith variable is set as
Mi � Ni + 1. Furthermore, the sampling points, which are
used to calculate the expansion coefficient of this method,
are also the tensor product of the Gaussian integration
points. For multivariable problems, the total number of the
integration points required to determine fi1 ,...,iL

is shown as
follows:

Ntot � N1 + 1( 􏼁 × N2 + 1( 􏼁 × · · · × NL + 1( 􏼁. (6)

For multivariable problems, the IRMAPC expansion
method as equation (3) is truncated by the tensor order
expansion. And, the number of the expansion coefficient of
the IRMAPC expansion method is as equation (6).

It is observed from the above equation that the total
number of the integration points and the expansion coef-
ficientfi1,...,iL

are exponentially increased with the increase in
both retained order and number of variables. *erefore, the
IRMAPC expansion method involves considerable com-
putational cost for an uncertain problem when either the
number of uncertain variables or the retained order of
polynomial basis is relatively large. In order to solve this
problem and improve the efficiency of the traditional ar-
bitrary polynomial expansion method, a new surrogate
method is proposed in the next section.

3. SGS-IRAPC Method

*e sequential sampling scheme has been widely used to
calculate the coefficient of a polynomial expansion [42, 43].
Generally, the candidates and the selection scheme of the
sampling points greatly influence the accuracy and the ef-
ficiency of the sequential sampling scheme-based polyno-
mial expansion method. *is section presents the sparse
grids’ sequential sampling scheme to calculate the coefficient
of the IRMAPC expansion. In the proposed sequential
sampling scheme, the integration points of sparse grids’
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quadrature [46–48] are used as the candidates of the sam-
pling method, while the sequential sampling scheme, used in
[49], is used to select the sampling points from the candi-
dates. A new method called the SGS-IRAPC method is
proposed based on the developed sequential sampling
scheme.

3.1. (e Expansion of the SGS-IRAPC. In order to improve
the precision of the IRMAPC expansion method, a simple
format is adopted in the IRMAPC expansion method to
reduce the number of the expansion coefficients [49, 50].
Equation (3) can be rewritten as

F � F x
I
, x

R
􏼐 􏼑

� 􏽘
0≤i1+···+iL1+···+iL≤n

fi1 ,...,iL
Gi1 ,...,iL1

x
I

􏼐 􏼑GiL1+1,...,iL2
x

R
􏼐 􏼑, (7)

where L is the total number of variables, L � L1 + L2. L1 and
L2 are the number of random variables and interval vari-
ables, respectively. *erefore, the number of the expansion
coefficients can be evinced as the following formula:

Nc(n, L) �
(n + L)!

L!n!
. (8)

Consequently, the number of the expansion coefficients
to be calculated is reduced from N � (N1 + 1) × (N2 + 1) ×

· · · × (NL + 1) to a small amount, NC, and the computa-
tional efficiency of the IRMAPC expansion method for the
multidimensional uncertain problems is improved.

fi1 ,...,iL
of the IRMAPC expansion method can be cal-

culated by using the least squares approach (LSA) [25].
Equation (3) is simplified as

F(x) � βTα,

β � β1 . . . βs􏼂 􏼃
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T
.

(9)

In the above equation, β is a coefficient vector, α is a
polynomial basis vector, and s represents the number of the
expansion coefficients of the IRMAPC expansion method
and is equal to the number of the polynomial basis of the
IRMAPC expansion method, s � Nc. *e coefficient vector,
β, which is calculated by the LSA, is expressed by the fol-
lowing formula:

β � ATA􏼐 􏼑
− 1
ATY, (10)
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where the element of the vector, Y, constitutes the values of
the function, y(x), which are calculated at the sampling
points; the matrix, A, consists of the polynomial basis of the
IRMAPC expansion at the integration points;
(xI

1, xR
1 ), . . . , (xI

s , xR
s ) denotes the integration points.

Moreover, the matrix, A, in (9) must be a full column rank
matrix.

3.2. Candidates of the Sparse Grids’ Sequential Sampling
Scheme. *e LHS is generally used to determine the can-
didates of the sampling method. However, the LHS-based
method might not present a stable convergence as the
candidates are generated randomly. Subsequently, the in-
tegration points of the Gaussian quadrature have been
employed as the candidate points to improve the stabili-
zation for the sampled method. *e Gaussian quadrature-
based sampling method can generally stabilize the conver-
gence with the increase in the sampling points. However, the
number of integration points of the Gaussian quadrature
increases rapidly as the number of uncertain parameters
increases. Essentially, there will be a large number of can-
didates for the numerical analysis when the number of
uncertain parameter is relatively large. Consequently, the
optimal selection of the sampling points from the candidates
becomes tedious.

*e sparse grids’ quadrature is an alternative inte-
gration technique used to calculate the expansion co-
efficient. *e integration points of the sparse grids’
quadrature are used as the candidates of the proposed
sparse sampling scheme to reduce the candidates of
sampling. *e sparse grids’ quadrature uses a special
linear combination of the tensor product operations of
the one-dimensional Gaussian integration points to
construct a multidimensional discrete sample space [51].
*is section presents the procedure used to select the
integration points by the sparse grids’ scheme.

*e arbitrarily continuous function can be approximated
as Q1

k(f), k � 0, 1, . . . , l, by (1), in which l is the retained
order of the IRMAPC expansion method.

Based on the nested hierarchical principle of the Smo-
lyak algorithm [51], the difference format of the approxi-
mated function is

Δ1k(f) � Q
1
k − Q

1
k− 1􏼐 􏼑(f), Q

1
0(f) � 0. (13)

In addition, according to the Smolyak algorithm, the
approximated function with the dimension d and retained
order l can be contrasted as

Q
d
1(f) � 􏽘

|k|≤l+d− 1
Δ1k1 ⊗ · · · ⊗Δ1kd

􏼐 􏼑(f), (14)

where ⊗ denotes the operation of the tensor product and
|k| denotes the sum of the multidimensional indicators
(|k| � 􏽐

d
i�1 ki, ki � 0, 1, . . . , l). *rough the operation of

the tensor product, (14) can be expressed as
[46, 47, 52, 53]
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Q
d
1(f) � 􏽘

l+1≤|k|≤l+d

(− 1)
l+d− |k|

d − 1

l + d − |k|
􏼠 􏼡 Q

1
k1
⊗ · · · ⊗Q

1
kd

􏼐 􏼑(f). (15)

*erefore, the integration points of the multidimen-
sional problem in the sparse grids’ sampling scheme can be
defined as [47]

U
d
1 � ∪

l+1≤|k|≤l+d
U

1
k1
⊗ · · · ⊗U

1
kd

􏼐 􏼑. (16)

From equation (16), we can state that the correlation
between the dimension d and the order l is l + 1≤ |k|≤ l + d

[46, 47]. *e integration points in the sparse grids can be
selected between the Gaussian points of order, (l + 1), and
lower than order, (l + d). *e number of integration points
in the sparse grids’ sampling scheme is reasonably controlled
within a specific range when compared to the integration
points in the full factor grids. *e sparse grids’ sampling
scheme can be used to avoid problems of the large number of
integration points in the candidate set used to calculate the
coefficient of the IRMAPC expansion method.

For example, considering the case d � 2 and l � 2, the
process of construction is as Figure 1(a). According to the
relationship of the inequality l + 1≤ |k|≤ l + d, all index
combinations of ki can be expressed as
[k1, k2] � [1, 2], [2, 1], [1, 3], [3, 1], [2, 2]{ }. To clearly illus-
trate the sparse grids’ sampling scheme, the integration
points in the sparse grids’ sampling scheme are shown as the
red points in Figure 1(b). Finally, the number of integration
points in the sparse grids’ sampling scheme is 13, when the
repetitive integration points have been removed.

*e number of integration points in the sparse grids and
the full factor mesh is listed in Table 1, from which it is
observed that the advantages of the sparse grids’ scheme
become increasingly evident with the number of variables
increases.

3.3. Sequential Sampling Scheme. In [49], the sequential
sampling scheme-based on the maximin principle has been
used in the multidimensional problem with interval and
random uncertainties to improve the approximation
efficiency.

3.3.1. (e Homogenization of the Candidate Set. *e inte-
gration points produced by the sparse grids’ sampling
scheme are used as the candidate set for the sampling se-
quential scheme. *e candidate set generated according to
(13)–(16) is shown in Figure 1. Essentially, the sequential
sampling scheme is only suitable for the symmetric and
uniformly distributed candidate set. However, as shown in
Figure 1, the candidate set in the x space produced by the
sparse grids’ sampling scheme is not uniformly distributed.
*erefore, a β space is introduced, which is distributed
uniformly, where both βi and xi denote the ith integration
point in the candidate set. Figure 2 shows the distribution
map of the x space and the β space for a case with
n � 4 andL � 2.

3.3.2. (e Initial Sampled Set. *e initial sampled set greatly
affects the sampling precision. Usually the points in the
initial sampled set distributed uniformly are helpful to
improve the sampling precision. According to [54], Xia and
Yu adopted the maximin metric measure to assess the
uniformity of the candidate set produced by the sparse grids’
sampling scheme. *e scalar-valued criterion function [55]
shown in (17) is mainly used to rank the set of competing
sampling:

Φq(β) � 􏽘

z0

i�1
􏽘

z0

j�i+1
d β(i)

, β(j)
􏼐 􏼑

− q
⎛⎝ ⎞⎠

1/q

, (17)

where q is a relative large integer which is set as 100 in this
study, z0 denotes the number of integration points in the
candidate set, and β(i) denotes the ith integration point in the
β space; the Euclidean distance, d(β(i), β(j)), can be
expressed as follows [49]:

d β(i)
, β(j)

􏼐 􏼑 � 􏽘
L

k�1
β(i)

k − β(j)

k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠

1/2

. (18)

In equation (17), k is the number of variables, β(i)
k (k �

1, 2, . . . , L; i � 1, 2, . . . , mk) is the ith sampling points of
the kth variable; and 2 is the Euclidean norm in this
study. *e smaller the value of Φq, the greater the uni-
formity of the sampled set. To ensure the uniformity of
the initial sampling set, the sampling points should be
located in all levels in each variable. *e initial sampled
set can be expressed as a matrix with a size of L × ml,
where the row denotes the sequence of the initial sam-
pling point and the column denotes the sequence of the
variables. To simplify the notation, we use the levels
(from 1 to m) to denote the location of sampling points.
*e number of sampling points in the initial sampling set
is ml � m × L where m is the number of the integration
points when the sparse sampling scheme is adopted for
one-dimensional problems and is set as
m � 1 + 2 + · · · + N, where N is the retained order of the
polynomial. *e first row is defined as the reference row.
To ensure uniformity, the firstm elements of the first row
are designed as 1, 2, . . . , m. *is definition ensures that all
alternative integration points of the first variable have
been included in the initial sampling set. *e sampling
point, whose sequence of the sampling points for the first
variable is 1, is defined as the first sampling point. For
instance, in a case with N � 3, L � 4, andm � 10, the
matrix as the initial sampling set is given in Table 2. In
this case, the first sampling point is set as [1, 4–5]. *e
remaining elements in the initial sampled set are ob-
tained by the minimum value of the maximin metric, Φq.
*e sampled set is represented by c, and the candidate set
is represented by β. According to [49, 50], Φq(β, β(j)

1 ) can
be simplified as follows:
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Φq β, β(h)
1􏼐 􏼑 � 􏽘

s0

i�1
d β(i)

, β(h)
1􏼐 􏼑

− q
⎛⎝ ⎞⎠

1/q

, (19)
where (β, β(h)

1 ) represents new sampled set which includes the
old sampling point β(i) ∈ c and the new sampling point,
β(h)
1 ∈ β and s0 represents the number of the sampling points in
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Figure 1: Integration points of sparse grids’ sampling points at d � 2 and l � 2.

Table 1: Number of integration points in sparse grids or full factor mesh.

No. of variables Order of MAPC expansion No. of integration points (sparse grids) No. of integration points (full factor mesh)

5

1 11 32
2 66 243
3 286 1024
4 1001 3125

6

1 13 64
2 89 729
3 433 4096
4 1689 15625

1

0.5

0

-0.5

-1
-1 -0.5 0 0.5 1

(a)

15

10

5

0
0 5 10 15

(b)

Figure 2: Candidate set in x space and β space for n � 4 andL � 2. (a)x space; (b)β space.

Table 2: *e initial sampled set in β space for N � 3, L � 4, andm � 10.

No. of variables
No. of sampling points

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 5 5 7 5 3 5 5 7 5 5
3 6 6 3 6 3 3 6 6 8 6
4 5 8 5 5 8 5 5 8 5 5
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sampled set c.*e new sampling point with theminimumΦq is
then included in the sampled set, c. Each time a new sampling
point is selected, the sampled set and candidate set must be
updated to calculate Φq and to select the next sampling
point. *e process is repeated until the all elements from
the second column to the mth column are determined. To
clearly demonstrate the sampling points in the initial sampled
set, the results of the top m column are presented in Table 2.

To calculate the second sampling point, the second el-
ement in the second column should be determined
according to (19) at first. In this case, when Φq gets the
minimum value in a two-dimensional space constructed by
the first and second variables, the level of the second value is
5, which means the second element in the second column is
5. Similarly, the third element in the second column is
obtained by minimizing in a three-dimensional space, which
is 6. When the second column is obtained, a new sampling
point is selected from the candidate set to the initial sam-
pling set. *en, update the initial sampling set, β , and the
candidate set, c. Repeat this operation until the other ele-
ments of the top column have been obtained.

To ensure the uniformity, the sampling points for each
variable should distribute as uniformly as possible. To seek that
the uniformity is guaranteed along each variable, the sampling
points should be located in all alternative levels in each di-
mension. However, only the first row (the elements of the first
variable) is uniform in Table 2.*e first row is moved to the last,
and the other rows aremoved forward to solve this problem.*e
second row is then denoted as the reference row. *e previous
process is repeated to obtain the elements from the 11-th to the
20-th columns. m new sampling points are obtained for each
row moving operation. Furthermore, the operation of the row
movement ensures that the initial sampling set obtains all al-
ternative levels in every variable at least once. *e row moving
operation is carried out until the levels of each variable are
distributed with sufficient uniformity in the initial sampled set
after which the initial sampled set is obtained.

3.3.3. Avoiding Matrix Singularity. According to (10)–(12),
fi1 ,...,iL

is calculated by using the LSA. *e matrix, A, of the
polynomial basis used in the LSAmust be a full column rank
matrix. *e singular value decomposition (SVD) is used to
determine the rank of the matrix, A. *e SVD of the matrix,
A ∈ Rm×n, is as follows [41]:

A � USVT
. (20)

In equation (20), U ∈ Rm×m and V ∈ Rn×n are orthog-
onal. *e diagonal matrix, S, is as follows:

S � diag σ1, . . . , σL( 􏼁 ∈ Rm×n
, (21)

where L denotes the rank of the matrix, A, σi(i � 1, . . . , L) is
the singular value of A, and σ1 ≥ σ2 ≥ · · · ≥ σL ≥ 0. *e rank
of matrix,A, is equal to the number of singular values greater
than a certain numerical tol cutoff. *e tol can be deter-
mined as follows:

tol � max(size(A)) ×|max(S)|. (22)

When the rank of the matrix,A, is equal to n,A is known
as a full column rankmatrix. Each new sampling point needs
to calculate the rank of thematrix,A. IfA is not a full column
rank matrix, the new sampling point is removed and the
sampled set and candidate set are updated. To achieve the
highest accuracy, the operation of sampling must be re-
peated until the number of retained sampling points in the
sampled set is greater than the number of expansion coef-
ficients. Generally, the number of sampling points is 1.0–1.3
times of Nc. *e new sampling points can still be selected by
minimizing Φq.

3.4. Procedure of the SGS-IRAPC Method. *is study pro-
poses a new surrogate model which combined the IRMAPC
expansion method with a novel sequential sampling scheme.
*e proposed method can improve the computational ef-
ficiency for multidimensional problems with interval and
random uncertain variables by reducing the number of
sampling points used to determine the expansion coefficient
of the IRMAPC expansion method. *e proposed method is
called the SGS-IRAPC expansion method. As summarized,
the detailed procedures of the SGS-IRAPC expansion
method are as follows:

Step 1. Calculate the polynomial basis, Gaussian inte-
gration points, and Gaussian weights for each
variable according to [37, 45]

Step 2. Obtain the integration points in the sparse grids’
quadrature by (13)–(16)

Step 3. Obtain the candidate set through (16) and ho-
mogenize the candidate set

Step 4. Determine the first sampling point and rank the
sampling points of the candidate set through (17)
and (18)

Step 5. Determine the initial sampled set uniformly
Step 6. Select more sampling points from the candidate

set by minimizing (19), and delete the points in
the sampling set that cause the matrix, A, in (10)
to be not a full column rank matrix

Step 7. Repeated Step 6 until the number of the sam-
pling points is denoted as 1.0–1.3 times of Nc

Step 8. Calculate the expansion coefficient through
(10)–(12)

Step 9. Calculate the function, F(x), with multidi-
mensional variables through (7)

4. SGS-IRAPC for Vibro-Acoustic Analysis with
Interval and Random Uncertainties

4.1. Vibro-Acoustic Systems with Interval and Random
Uncertainties. *e acoustic finite element analysis [28] is
used to establish the dynamic equilibrium equation of the
vibro-acoustic system [28]. Under the time harmonic ex-
citation, the dynamic equilibrium equation of the vibro-
acoustic system can be given as the following matrix form:
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Kvs − ω2Mvs − H

ρω2HT Kac − ω2Mac

⎡⎣ ⎤⎦
uvs

P
􏼨 􏼩 �

Fvs

Fac

􏼨 􏼩, (23)

where ω represents the angular frequency of the time harmonic,
ρ represents the density of the acoustic fluid, Kvs and Mvs

represent the structural stiffness matrix and the mass matrix,
respectively,Kac andMac represent the acoustic stiffness matrix
and the mass matrix, respectively,H denotes the spatial coupled
matrix, uvs is the structure displacement vector, P denotes the
sound pressure vector in the acoustic cavity, and Fvs and Faf

denote the generalized force vectors acting on the vibrating
structure and the acoustic cavity, respectively.

By simplifying, dynamic equilibrium equation (23) can
be denoted as the following formula:

ZR � F. (24)

In (24),

Z �
Kv − ω2

Mvs − H

ρω2HT Kac − ω2Mac

⎡⎣ ⎤⎦,

R �
uvs

P
􏼨 􏼩,

F �
Fvs

Fac

􏼨 􏼩,

(25)

where F represents the external excitation vector of the
vibro-acoustic system, Ζ represents the vibro-acoustic dy-
namic stiffness matrix, and R represents the vibro-acoustic
response vector.

*e uncertainties widely exist in the practical vibro-
acoustic system due to the effect of the multipurpose
characteristics of materials and the unpredictability of the
environment. *e vibro-acoustic system dynamic equilib-
rium equation can be given by representing the uncertain
parameters by a vector, x, as follows:

Z(x)R(x) � F(x). (26)

In this study, the uncertain parameters, whose random
moments or PDFs are available, are considered as random
variables and are represented by a vector, xR. On the contrary,
the uncertain parameters with incomplete random data are
considered as interval variables and are represented by a vector,
xI. As the applications of practical engineering applications are
complex, the interval and random uncertain parameters may be
included simultaneously. In the complex vibro-acoustic system,
some uncertain parameters are considered as random variables,
and the other uncertain part is considered as interval variables.
*us, all the uncertain parameters of the vibro-acoustic system
can be denoted as x � [xR, xI].

4.2. (e Interval and Random Analysis of Uncertain
Vibro-Acoustic System. *e uncertain problems with in-
terval and random variables calculated by the SGS-IRAPC
can be expressed as equation (3). *e interval and random
analysis of an uncertain vibro-acoustic system requires two
steps. Primary, the interval variable is assumed as constant
parameters. Based on this assumption, equation (3) can be
represented as follows:

F(x) � 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1...iL

Gi1...iL1
xI

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠Gi1 ,...,iL2
xR

􏼐 􏼑,

F(x) � 􏽘

NLR

i1�0
. . . 􏽘

NLR

iL�0
zi1...iLR

Gi1...iLR
xR

􏼐 􏼑,

(27)

where

ziL1...iLR
� 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1 ,...,iL

Gi1 ,...,iL1
xI

􏼐 􏼑. (28)

Based on the orthogonality of the SGS-IRAPC, the ex-
pectation is represented as

μ � E 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
zi1 ···iL2

Gi1 ···iL2
xR

􏼐 􏼑
⎡⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎦

� z0,...,0.

(29)

In equation (29), ωj(xR
j )(j � 1 . . . LR) is the weight

function of the polynomial basis related to xR
j .

Similarly, E[F(x)2] can be expressed as

E F(x)
2

􏽨 􏽩 � E 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
zi1...iL2

Gi1...iL2
xR

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

� 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
zi1...iL2

􏼒 􏼓
2
.

(30)

According to equations (29) and (30), the variance of the
response can be expressed as follows:

σ2(x) � E 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
zi1...iL2

Gi1...iL2
xR

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦ − z0,...,0􏼐 􏼑
2
.

(31)

Substituting equation (28) into equations (30) and (31),
the expectation and the variance of the response of the
uncertain vibro-acoustic system can be rewritten as
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μ xI
􏼐 􏼑 � 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1 ,...,iL1 ,0,...,0Gi1 ,...,iL1

xI
􏼐 􏼑,

σ2 xI
􏼐 􏼑 � 􏽘

N1

i1�0
. . . 􏽘

NL2

iL2�0
􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1,...,iL

Gi1 ,...,iL1
xI

􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2

− 􏽘

N1

i1�0
. . . 􏽘

NL1

iL1�0
fi1 ,...,iL1 ,0,...,0Gi1 ,...,iL1

xI
􏼐 􏼑⎛⎜⎝ ⎞⎟⎠

2

.

(32)

In the last step, the bounds of the expectation and the
variance of an uncertain vibro-acoustic analysis can be

calculated by the MC method, which can be expressed as
follows:

σ2 , σ2􏼔 􏼕� min
xI

j
∈ x,x[ ]

σ2 xI
􏼐 􏼑􏽮 􏽯, max

xI
j
∈ x,x[ ]

σ2 xI
􏼐 􏼑􏽮 􏽯⎡⎢⎣ ⎤⎥⎦, μ, μ􏽨 􏽩 � min

xI
j
∈ x,x[ ]

μ xI
􏼐 􏼑􏽮 􏽯, max

xI
j
∈ x,x[ ]

μ xI
􏼐 􏼑􏽮 􏽯⎡⎢⎣ ⎤⎥⎦. (33)

5. Numerical Examples

*e SGS-IRAPC is applied to a simple mathematical
function and a vibro-acoustic problem to analyze its per-
formance in this section. *e calculation results are com-
pared to those of the Sequential Sampling Scheme-based
Interval and Random Arbitrary Polynomial Chaos (SSS-
IRAPC) [43] and the IRMAPC [37].

5.1. Simple Mathematical Problem. In this numerical ex-
ample, a simple function with five random variables and one
interval variable is considered as follows:

y(x) � e
0.25 x1+x2+···+x6( ), (34)

where x6 represents the interval variable and
xi(i � 1, 2, . . . , 5) represents random variable. Only statis-
tical data is available for the random variable in this case.*e
range of each variable is [− 1, 1]. Figure 3 shows the fre-
quency distribution histogram of the random variables.

To analyze the accuracy of the SGS-IRAPC, the relative
error of expectation and variance is defined as follows:

erμ � max
μ − μref
μref

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
μ − μ

ref
μ
ref

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭, (35)

erσ � max
σ2 − σ2ref
σ2ref

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,
σ
2

− σ2ref
σ2ref

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (36)

In equations (35) and (36), σ2ref , σ
2
ref , μref , and μref denote

the reference results which are acquired from the MC
method. In the MC method, the number of sampling points
for the random variables is 5000, and for the interval var-
iable, it is 20. erμ and erσ of the different methods are shown
in Figure 4.

By comparing the results obtained from the SGS-IRAPC
and the SSS-IRAPC in Figure 4, it is observed that erσ and
erμ obtained from the SGS-IRAPC are smaller than those
obtained from the SSS-IRAPC. *is is due to the errors
introduced by the SSS-IRAPC in the estimation of PDFs of
random variables, while the MAPC method can construct

the polynomial basis from the moment of the random
variables. Essentially, the SGS-IRAPC and IRMAPC can
prevent the errors due to the estimation of PDFs. *erefore,
the SGS-IRAPC can achieve greater accuracy than the SSS-
IRAPC.

When comparing the convergence properties of the SGS-
IRAPC and the IRMAPC, it is observed from Figure 4 that
erσ and erμ obtained from the SGS-IRAPC are smaller than
those obtained from the IRMAPC with the same sampling
points. *is indicates that the IRMAPC requires more
sampling points to achieve the same level of precision. *e
main difference between the SGS-IRAPC and the IRMAPC
is that the coefficient of the SGS-IRAPC is calculated by
using the proposed sparse grids’ sequential sampling scheme
instead of the Gaussian quadrature in the IRMAPC. It
observed that the application of the sparse grids’ sequential
sampling scheme significantly decreases the computational
cost of the arbitrarily polynomial chaos method for the
interval and random analysis.

To compare the computational cost of SGS-IRAPC and
SSS-IRAPCmore clearly, the time periods for the calculation
of the expansion coefficients and the total computational
time of the SGS-IRAPC and SSS-IRAPC at the same orders
using Matlab R2018a on a 1.80GHz Intel(R) Core(TM) i7-
8565U CPU are listed in Table 3.

As illustrated in Table 3, the retained order is 5 and the
total computational time periods of the SGS-IRAPC and the
SSS-IRAPC are 84.1469 s and 736.2311 s, respectively. *is
indicates that the SGS-IRAPC presents a significant increase
of computing efficiency when compared to the SSS-IRAPC.
*is is because the number of integration points in the
candidate set used for the sequential sampling scheme of the
SGS-IRAPC is substantially reduced by the sparse grids’
scheme which is based on the Smolyak algorithm. *us, the
SGS-IRAPC exhibits superior accuracy and also achieves a
significant increase of computing efficiency for the interval
and random analysis.

5.2. Vibro-Acoustic System Related to Hybrid Interval and
Random Uncertainties. *e shell vibro-acoustic system re-
lated to hybrid interval and random uncertainties is analyzed
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Figure 3: Frequency distribution histogram of random variables.
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Table 3: Time periods to calculate the expansion coefficients, and the total execution time of SGS-IRAPC and SSS-IRAPC at the same orders.

Order Method Time for calculation of the expansion coefficient (s) Total computational time (s)

1 SSS-IRAPC 0.1872 0.2496
*e proposed SGS-IRAPC 1.9032 1.9500

2 SSS-IRAPC 0.8580 0.9672
*e proposed SGS-IRAPC 4.8828 4.9296

3 SSS-IRAPC 13.1041 13.2913
*e proposed SGS-IRAPC 11.9185 12.0589

4 SSS-IRAPC 295.1695 295.7155
*e proposed SGS-IRAPC 83.6009 84.0845

5 SSS-IRAPC 605.2875 736.2311
*e proposed SGS-IRAPC 83.8661 84.1469

Table 4: Uncertain parameters of the uncertain shell vibro-acoustic systems in this section.

Uncertain parameters Case
t(mm) 3 + 0.9xR

1
c(m/s) 340 + 17xR

2
E(GPa) 210 + 63xR

3
υ 0.3 + 0.09xR

4
ρs(kg/m3) 7850 + 2355xR

5
ρf(kg/m3) [0.96–1.44]
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Figure 5: Frequency distribution histogram of random variables.
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in this section using the finite element. *e shell is made of
steel, with the parameters ρs � 7850kg/m3, E � 2.1 × 105
MPa, and υ � 0.3. *e thickness of the shell is 3mm. *e
acoustic cavity in this study is filled with air
(ρf � 1.2kg/m3 and c � 340m/s). *e shell is located at the
top of the vibro-acoustic system, and all its shell are fixed,
while the walls of the acoustic cavity are rigid. *e load
vector in the Z-direction is loaded at the center point of the
shell, and its magnitude is 1N.

Due to the unpredictability of the temperature of the
environment and errors in the manufacturing process of the
materials, υ, ρf, c, ρs, E, and thickness, t, are regarded as
independent uncertain parameters. All the uncertain pa-
rameters are assumed as the linear function of the uncertain
variables; the uncertainty information of this case is illus-
trated as Table 4.

*e range of the interval variable is [0.96, –1.44]. *e
statistical data for random variables is available, which
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Figure 6: Bounds of expectation and variance of the sound pressure distributing in the middle section for f � 200Hz obtained from the
SSS-IRAPC, IRMAPC, and SGS-IRAPC. (a) Expectation. (b) Variance.
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ranges from [− 1, 1]. For conciseness, the frequency distri-
bution histogram of the statistical data of random variables
is shown in Figure 5.

In this section, the SGS-IRAPC, the IRMAPC, and the
SSS-IRAPC are used to analyse the response analysis of the
vibro-acoustic problem. In this section, the orders of the
arbitrary polynomial chaos expansion are 3 for all the un-
certain variables (t, E, c, ρs, υ, and ρf). *e solution of the
MC method is considered as reference in this section, and
the number of sampling points for the random variable and
the interval variable is 50,000 and 20, respectively. *e
bounds of expectation and variance of the sound pressure
distributed in the middle section for f � 200Hz yielded by
the SGS-IRAPC, the IRMAPC, the SSS-IRAPC, and the MC
method are shown in Figure 6.

*e lower and upper bounds of the expectation and
variance of the sound pressure distributed in the middle
section obtained from the proposed methods and the other
arbitrarily polynomial chaos methods are plotted in Figure 6.
It can be obviously observed that the expectation and the
variance of the sound pressure yielded by the IRMAPC and
SGS-IRAPC are much closer to the reference results than
those obtained by the SSS-IRAPC. In other words, the
computing precision of the SGS-IRAPC is close to that of the
IRMAPC and much higher than that of the SSS-IRAPC.

*e computational time and the sampling time of the
IRMAPC, the SSS-IRAPC, and the SGS-IRAPC are obtained
using Matlab R2018a on a 3.30GHz Intel(R) Core(TM) i9-
10900k CPU, as shown in Table 5. It is observed that the
computational time obtained from the SGS-IRAPC is much
shorter than that of the IRMAPC and slightly shorter than
that of the SSS-IRAPC. *e SGS-IRAPC presents a much
higher efficiency when compared to the IRMAPC and the
SSS-IRAPC. It indicates that the SGS-IRAPC can greatly
improve the computing efficiency without affecting the
precision and it is more suitable than the IRMAPC and the
SSS-IRAPC for the interval and random analysis of an
uncertain vibro-acoustic system with multidimension
uncertainty.

6. Conclusion

A novel sparse polynomial expansion method is proposed in
this study to evaluate the interval and random uncertain
problems efficiently and effectively. *e method is called the
Sparse Grids’ Sequential Sampling-based Interval and
Random Arbitrary Polynomial Chaos (SGS-IRAPC). In the
SGS-IRAPC, the response of the interval and random mixed
uncertainties model is approximated by the MAPC method,
which can construct the polynomial basis for the random
variable without determined PDF of the random variable.
Additionally, a sparse sequential sampling scheme is pro-
posed in the SGS-IRAPC to decrease the computational cost

for the response of the uncertain vibro-acoustic system with
both interval and random variables.*e sparse grids’ scheme
is combined with the sequential sampling scheme in this
method.

*e following are the advantages provided by the
proposed method. For multidimensional problems, the
SGS-IRAPC greatly improves the computational effi-
ciency without affecting the precision. To improve the
computing efficiency, the SGS-IRAPC method selects a
part of the integration points in the candidate set, as the
required points with the help of the sequential sampling
scheme. In addition, to reduce the number of the inte-
gration points in the candidate set, the candidate set is
obtained from the sparse grids’ scheme which is based on
the Smolyak algorithm.*is process further improves the
computing efficiency. *us, the proposed SGS-IRAPC
method sharply improves the efficiency when compared
to the traditional arbitrarily polynomial chaos expansion
method.

A mathematical function and a vibro-acoustic problem
with both interval and random uncertainties are introduced
to embody the effectiveness of the SGS-IRAPC.*emerits of
the SGS-IRAPC are demonstrated by comparing it with the
SSS-IRAPC and the IRMAPC. *e numerical results dem-
onstrate that the SGS-IRAPC greatly improves the calcu-
lation efficiency without affecting the precision. *erefore,
the SGS-IRAPC can be considered as a convenient and
effective method for the response analysis of the vibro-
acoustic system related to both interval and random
uncertainties.

Data Availability

*e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

*e study was supported by the Natural Science Foundation
of Hunan Province, China (no. 2020JJ5686).

References

[1] D. J. Nefske, J. A. Wolf, and L. J. Howell, “Structural-acoustic
finite element analysis of the automobile passenger com-
partment: a review of current practice,” Journal of Sound and
Vibration, vol. 80, no. 2, pp. 247–266, 1982.

[2] A. Seçgin, J. F. Dunne, and L. Zoghaib, “Extreme-value-based
statistical bounding of low, mid, and high frequency responses

Table 5: Computational time of the IRMAPC, the SSS-IRAPC, and the SGS-IRAPC.

Uncertain models IRMAPC SSS-IRAPC *e proposed SGS-IRAPC
Computational time (s) 5.68 × 1011 6.72 × 109 3.25 × 109
Response time (s) 5.68 × 1011 6.64 × 109 2.97 × 109

Shock and Vibration 13



of a forced plate with random boundary conditions,” Journal
of Vibration and Acoustics, vol. 134, no. 2, 2012.

[3] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo
methods,” Acta Numerica, vol. 7, no. 2, pp. 1–49, 1998.

[4] M. N. Ichchou, F. Bouchoucha, M. A. S. Ben, O. Dessombz,
and M. Haddar, “Stochastic wave finite element for random
periodic media through first-order perturbation,” Computer
Methods in Applied Mechanics and Engineering, vol. 200,
no. 41-44, pp. 2805–2813, 2011.

[5] M. Kaminski, “Stochastic second-order perturbation ap-
proach to the stress-based finite element method,” Interna-
tional Journal of Solids and Structures, vol. 38, no. 21,
pp. 3831–3852, 2001.

[6] I. Doltsinis and Z. Kang, “Perturbation-based stochastic FE
analysis and robust design of inelastic deformation processes,”
Computer Methods in Applied Mechanics and Engineering,
vol. 195, no. 19-22, pp. 2231–2251, 2006.

[7] X. G. Hua, Y. Q. Ni, Z. Q. Chen, and J. M. Ko, “An improved
perturbation method for stochastic finite element model
updating,” International Journal for Numerical Methods in
Engineering, vol. 73, no. 13, pp. 1845–1864, 2008.

[8] R. G. Ghanem and P. Spanos, Stochastic Finite Elements: A
Spectral Approach, Springer-Verlag, New York, NY, USA,
1991.

[9] D. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow
simulations via generalized polynomial chaos,” Journal of
Computational Physics, vol. 187, no. 1, pp. 137–167, 2003.

[10] D. Xiu and G. E. Karniadakis, “*e wa polynomial chaos for
stochastic differential equations,” SIAM Journal on Scientific
Computing, vol. 24, no. 2, pp. 619–644, 2002.

[11] S. Rao and L. Berke, “Analysis of uncertain structural systems
using interval analysis,” AIAA Journal, vol. 35, no. 4,
pp. 727–735, 1997.

[12] Z. Qiu and I. Elishakoff, “Antioptimization of structures with
large uncertain-but-non-random parameters via interval
analysis,” Computer Methods in Applied Mechanics and En-
gineering, vol. 152, no. 3–4, pp. 361–372, 1998.

[13] I. P. Gavrilyuk, “Book review: introduction to interval anal-
ysis,” Mathematics of Computation, vol. 79, no. 269, p. 615,
2010.

[14] H. Yin, D. Yu, S. Yin, and B. Xia, “Fuzzy interval Finite El-
ement/Statistical Energy Analysis for mid-frequency analysis
of built-up systems with mixed fuzzy and interval parame-
ters,” Journal of Sound and Vibration, vol. 380, pp. 192–212,
2016.

[15] D. Moens and D. Vandepitte, “A fuzzy finite element pro-
cedure for the calculation of uncertain frequency-response
functions of damped structures: Part 1-Procedure,” Journal of
Sound and Vibration, vol. 288, no. 3, pp. 431–462, 2005.

[16] H.-R. Bae, R. V. Grandhi, and R. A. Canfield, “Epistemic
uncertainty quantification techniques including evidence
theory for large-scale structures,” Computers & Structures,
vol. 82, no. 13-14, pp. 1101–1112, 2004.

[17] C. Jiang, Z. Zhang, X. Han, and J. Liu, “A novel evidence-
theory-based reliability analysis method for structures with
epistemic uncertainty,” Computers & Structures, vol. 129,
pp. 1–12, 2013.

[18] S. Yin, D. Yu, H. Yin, and B. Xia, “A new evidence-theory-
based method for response analysis of acoustic system with
epistemic uncertainty by using Jacobi expansion,” Computer
Methods in AppliedMechanics and Engineering, vol. 322, no. 1,
pp. 419–440, 2017.

[19] N. Chen, D. Yu, B. Xia, andM. Beer, “Uncertainty analysis of a
structural-acoustic problem using imprecise probabilities

based on p-box representations,” Mechanical Systems and
Signal Processing, vol. 80, pp. 45–57, 2016.

[20] C. Simon and F. Bicking, “Hybrid computation of uncertainty
in reliability analysis with p-box and evidential networks,”
Reliability Engineering & System Safety, vol. 167, pp. 629–638,
2017.

[21] J. Wu, Y. Zhang, L. Chen, and Z. Luo, “A Chebyshev in-
terval method for nonlinear dynamic systems under un-
certainty,” Applied Mathematical Modelling, vol. 37, no. 6,
pp. 4578–4591, 2013.

[22] Z. Qiu, L. Ma, and X. Wang, “Non-probabilistic interval
analysis method for dynamic response analysis of nonlinear
systems with uncertainty,” Journal of Sound and Vibration,
vol. 319, no. 1-2, pp. 531–540, 2009.

[23] B. Xia and D. Yu, “Modified sub-interval perturbation finite
element method for 2D acoustic field prediction with large
uncertain-but-bounded parameters,” Journal of Sound and
Vibration, vol. 331, no. 16, pp. 3774–3790, 2012.

[24] J. Wu, Z. Luo, Y. Zhang, N. Zhang, and L. Chen, “Interval
uncertain method for multibody mechanical systems using
Chebyshev inclusion functions,” International Journal for Nu-
merical Methods in Engineering, vol. 95, no. 7, pp. 608–630, 2013.

[25] J. Wu, Z. Luo, N. Zhang, and Y. Zhang, “A new uncertain
analysis method and its application in vehicle dynamics,”
Mechanical Systems and Signal Processing, vol. 51,
pp. 659–675, 2015.

[26] B. Xia, Y. Qin, D. Yu, and C. Jiang, “Dynamic response
analysis of structure under time-variant interval process
model,” Journal of Sound and Vibration, vol. 381, pp. 121–138,
2016.

[27] C. Li, B. Chen, H. Peng, and S. Zhang, “Sparse regression
Chebyshev polynomial interval method for nonlinear dy-
namic systems under uncertainty,” Applied Mathematical
Modelling, vol. 51, pp. 505–525, 2017.

[28] W. Gao, “Interval natural frequency and mode shape analysis
for truss structures with interval parameters,” Finite Elements
in Analysis and Design, vol. 42, no. 6, pp. 471–477, 2006.

[29] Z. Qiu, Y. Xia, and J. Yang, “*e static displacement and the
stress analysis of structures with bounded uncertainties using
the vertex solution theorem,” Computer Methods in Applied
Mechanics and Engineering, vol. 196, no. 49-52, pp. 4965–
4984, 2007.

[30] S. Yin, D. Yu, Z. Ma, and B. Xia, “A unified model approach
for probability response analysis of structure-acoustic system
with random and epistemic uncertainties,” Mechanical Sys-
tems and Signal Processing, vol. 111, pp. 509–528, 2018.

[31] W. A. Lodwick and K. D. Jamison, “Interval-valued proba-
bility in the analysis of problems containing a mixture of
possibilistic, probabilistic, and interval uncertainty,” Fuzzy
Sets and Systems, vol. 159, no. 21, pp. 2845–2858, 2008.

[32] C. Wang and H. G. Matthies, “Hybrid evidence-and-fuzzy
uncertainty propagation under a dual-level analysis frame-
work,” Fuzzy Sets and Systems, vol. 367, pp. 51–67, 2019.
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