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A B S T R A C T   

A spectral dynamic stiffness (SDS) model for plate assemblies stiffened by beams is proposed. The theory is 
sufficiently general where the plate assemblies can be subjected to any arbitrary boundary conditions (BCs), but 
importantly, the beam stiffeners can be of open or closed cross-sections, and maybe connected to plates with or 
without eccentricity. First, by using modified Fourier series, the SDS formulations for different beam stiffeners 
are developed based on their equations of motion for the most general case. Then, the beam stiffeners’ SDS 
matrices are superposed directly onto those of the plate assemblies. Next, the reliable, efficient and robust 
Wittrick-Williams algorithm is applied for the modal analysis of the overall structure. Representative examples 
are provided to illustrate the accuracy and versatility of the method, where the proposed theory is extensively 
validated by the software ANSYS. The proposed method inherits all advantages of the previously developed SDS 
theory for plate structures, including high computational efficiency, accuracy, robustness in eigenvalue calcu-
lation and the versatility in modelling arbitrary BCs. The proposed theory extends the existing SDS theory 
substantially to cover a wide class of beam stiffened plate structures used in train bodies, ship hulls, aircraft 
fuselage and wings and many others.   

1. Introduction 

In rail transportation, mechanical, civil, aerospace, marine and other 
engineering fields, plate structures are widely used in their design. In 
order to improve the vibration performance and to enhance the load 
carrying capacity and also at the same time, achieving a lighter struc-
ture, stiffeners are often used to reinforce plate structures. The stiffeners 
in a plate structures are generally modelled as beams whose cross- 
sections can vary widely, e.g. angle, channel, Tee, I, L, hat, etc. In the 
design of the lightweight structure of stiffened plate structures, there are 
many design parameters such as the spatial arrangements of the stiff-
eners, the cross-sectional dimensions (e.g. beam depth and width) and 
geometries (e.g. closed or open sections). In particular, the free vibration 
analysis of beam stiffened plate structures, especially in the mid and 
high frequency range is of considerable importance. This is mainly 
because such structures generally exhibit the coexistence of both long- 
wavelength and short-wavelength characteristics which can be 

difficult to handle and thus can become a challenging problem. The 
long-wavelength vibrating beam stiffeners can be modelled relatively 
easily by using the Finite Element (FE) method [1] whereas the 
short-wavelength vibrating plates may require Statistical Energy Anal-
ysis (SEA) [2,3] models. However, in most of the commercial FE soft-
ware that are numerically based, the modelling and remodeling 
processes are quite tedious and often time consuming, mainly because of 
the remeshment in the optimization process. The whole procedure 
therefore, may become inadequate and inefficient. 

Researches on the analytical modeling for dynamic analysis of beam 
stiffened plate structures have been carried out to a great measure by 
many researchers and notably, they have made tremendous progress and 
achieved significant results over the years. However, there is still a long 
way to go because the existing design is conservative and generous and 
there are some deficiencies in the current research that need to be 
addressed. Some selected pertinent literature is reviewed here. Eli-
shakoff and Sternberg [4] reformulated the eigenfrequency problem by 
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determining the wavenumber of stiffened plates subject to 
simply-supported edges with three different forms of the eigenfrequency 
wavenumber. However, their research was confined to an individual 
isotropic rectangular thin plate stiffened along two parallel sides and 
simply supported along the other two sides. Mace [5,6] proposed a 
method for the dynamic vibration analysis of plates with two sets of 
parallel stiffeners when subjected to point excitations on the stiffeners. 
In their research, stiffened plates were used as the bulkheads and in-
termediate frames of a hull structure. Fourier wavenumber transform 
was used to obtain the steady-state response of the plate and the cor-
responding phase, but the effect of the beam stiffener was not studied 
which of course, may lead to unacceptably bad results. Mead [7] 
expanded the response expression of the stiffener in terms of discrete 
wave harmonics of the plate, and essentially he solved the vibration 
problem of an infinite plate reinforced by periodic stiffeners. The solu-
tion of the plate vibration and associated pressure field were effectively 
represented by the motion of the wave. When compared with Mace’s 
approach [5,6], Mead’s method simplifies the calculation process and 
improves the calculation efficiency. Yin et al. [8] studied the dynamic 
response of composite laminates periodically reinforced by stiffeners 
based on the previous work of Mace [6]. The reaction force was 
expressed as a function of the stiffener’s dynamic stiffness and vibration 
velocity, but the effect caused by the eccentric beam connection was not 
taken into consideration. Siddiqi and Kukreti [9] considered the in-plane 
force of the plate, the axial stiffness of the stiffener, the interaction be-
tween the beam and the plate due to eccentricity, and the torsional and 
shear stiffnesses of the beam, and they proposed a differential quadra-
ture method for eccentric stiffened plates under a single lateral load. 
Mittelstedt [10] devoted to the analysis of orthotropic plates under 
uniaxial uniform compressive load. The plates under consideration were 
stiffened by open-section stiffeners in the longitudinal direction. How-
ever, their analysis was limited to certain boundary conditions. Li and 
his coauthors [11,12] proposed an analytical method for the vibration 
analysis of plates stiffened by any number of beams with any length and 
any arrangement angle. This method represents each displacement 
function as a modified version of Fourier series, which consists of a 
standard Fourier cosine series and several supplementary functions. In 
this method, both the beam and plate are modelled by the Rayleigh-Ritz 
method, which is applicable to a range of stiffened plates vibration 
problem with different boundary conditions, but the modeling of extra 
stiffeners would no-doubt become extremely tedious. Lin [13] proposed 
an analytical method for solving the vibration response of ribbed plates 
with clamped boundaries by using traveling wave solutions. The de-
pendency of the dynamic response of the ribbed plate was studied 
through experiments by the same author [13]. Later, Lin and Zhang [14] 
analyzed the vibration response of ribbed plates with free boundary 
conditions. They used the double cosine integral transformation tech-
nique to arrive at the analytical solution when investigating the free and 
forced vibration of ribbed plates. However, in their work neither 
different types of cross-sections nor the eccentricity of the stiffening 
beam to the connecting plate was considered. Also, the investigators 
focused only on an individual plate with special boundary conditions 
rather than as assembly of plates. Golkaram and Aghdam [15] proposed 
a solution for free transverse vibration of a rectangular thin plate sus-
pended locally on a deformable beam by using generalized differential 
quadrature method. The plate was completely free at all edges except for 
the local area connected to a beam with a rectangular cross-section. 
However, this investigation considered only lateral vibration and the 
beam structure was relatively simple. On another hand, Gorman [16] 
used the superposition method to obtain the analytical solution for the 
free vibration analysis of an individual plate whose edges are stiffened 
by, however, non-eccentric beam stiffeners. Zheng and Wei [17] carried 
out a vibration analysis of a bidirectional stiffened thin plate with 
non-uniform discrete elastic boundary constraints. They applied energy 
method to derive governing equation of motion of the stiffened plate, 
and then they used a series of simple polynomials and boundary 

constraints that meet the Rayleigh-Ritz convergence criterion to dis-
cretize the governing equation. However, they did not consider different 
cross-sections of the beam stiffeners. Aksogan et al. [18] used the 
continuous connection method (CCM) and Vlasov’s thin-walled beam 
theory to solve the stiffness matrix of the structure, and performed a 
dynamic analysis of the non-planar asymmetric coupled shear wall on a 
rigid foundation. Of course, there are other analytical work on the 
buckling and vibration of thin-walled structures such as membranes [19, 
20], plates [21–23] and shells [24–26], where stiffener is absent. 

As reviewed above, most of the research either focuses only on a 
simple plate structure with simple boundary condition or relies on using 
many DOFs to model the structure which makes the method computa-
tionally inefficient. The dynamic stiffness method (DSM) is a powerful 
and robust method suitable for analysis of beam-stiffened-plate struc-
tures using very few DOFs, while preserving very high accuracy of the 
results. The DSM adopts exact shape functions ensuring its accuracy 
within all frequency ranges by using very few DOFs. The individual el-
ements in DSM are frequency dependent, having both mass and stiffness 
properties, and thus the method allows a straightforward assembling 
procedure for complex structures, even for multibody systems [27]. 
Wittrick and Williams [28] are probably the first to develop the DSM for 
plated structures with an opposite pair of edges simply supported 
(Levy-type plates). Boscolo and Banerjee [29] derived the dynamic 
stiffness matrix of Levy-type plates and their assemblies by enhancing 
the work of Wittrick and Williams [28]. Tounsi et al. [30] and Fazzolari 
[31] proposed dynamic stiffness solutions for the bending vibration of 
axisymmetric stiffened shells and doubly curved laminated shells, 
respectively. Li et al. [32] used the projection method to project the 
forces on the plate nodes and their corresponding displacements onto a 
set of orthogonal functions, overcoming the known space-dependent 
difficulties, and thereby establishing a formula for calculating the dy-
namic stiffness of the plate in bending vibration of with simply sup-
ported boundary conditions. More recently, Liu et al. [33] proposed the 
DS formulations for membranes and their assemblies with general 
classical boundary conditions. In a recently published paper, Liu et al. 
[34] further developed the DS formulations for plate assemblies with a 
pair of opposite edges having all possible combinations of simple sup-
ports and guided supports. 

The DSM has been used to model beam-stiffened plate structures 
rather sporadically. For instance, Langley [35] established a formula for 
calculating the dynamic response of plates with transversely added 
beams and subjected to longitudinally simply supported boundary 
conditions, but he ignored the in-plane motion of the beam stiffened 
plate. Later, in a different context, Langley [36] took the in-plane motion 
into consideration, and analyzed the dynamic response of stiffened shell 
structure. Watson et al. [37] used Lagrangian multipliers to model point 
supports of Levy-type plates based on exact strip method, and thus they 
performed vibration and buckling analysis of stiffened panels. Yin et al. 
[38] proposed a dynamic stiffness model for eccentrically 
beam-stiffened plates. However, it is apparent that most of the above 
studies are restricted to plate structures with at least one pair of opposite 
edges of the plate being simply supported, and the elements can be 
assembled only in one direction. This is indeed a serious limitation for 
the application of the theory to practical structures. 

In order to remove the above restrictions in the literature, many 
researchers have proposed different dynamic stiffness models in recent 
years [39–51]. Some of these models are applicable to plate elements 
with more general boundary conditions, and the elements can be 
assembled in two directions. Amongst these contributions, Liu, Banerjee 
and their coauthors [33,34,39–47,51] proposed the spectral dynamic 
stiffness method (SDSM) for both the transverse [33,34,39–42,51] and 
inplane [43] vibration problem of the plate by combining the spectral 
method with the classical dynamic stiffness method for plate with 
classical boundary conditions (BCs) and non-classical BCs [44,45]. The 
method has also been extended to buckling analysis of plates [46,47]. 
Nefovska-Danilovic and her coauthors proposed dynamic stiffness 
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matrices for plate elements with general boundary conditions for the 
in-plane vibrations [48] and transverse vibrations based on the 
first-order deformation theory [49] and higher-order deformation the-
ory [50]. Although the above researches have removed previous re-
strictions to a great extent, but still, there is no reported research for DS 
models of plate assemblies with general boundary conditions, particu-
larly stiffened by beams with complex open and closed sections. 

The main purpose of this paper is to extend the Spectral Dynamic 
Stiffness (SDS) [26,29] theory to beam stiffened plate structures with 
general boundary conditions beam stiffeners having complex 
cross-sections. First, the general framework of the SDS method is 
reviewed. Then, the governing differential equations which represent 
the free vibration behaviour of both open-section and closed-section 
beam stiffeners are formulated. Subsequently, the SDS formulation of 
different beam stiffeners are developed by using the modified Fourier 
series. The beam stiffeners’ SDS matrices are then superposed directly to 
those of the plate assemblies without resorting to other rather cumber-
some techniques such as penalty method or Lagrangian Multipler 
method. The efficient and robust algorithm of Wittrick and Williams 
[28] is invoked and the so-called J0 count has already been resolved in 
this paper when computing the natural frequencies [26,29]. The pro-
posed method retains all advantages of the SDSM [26,29] and it extends 
the application scope by covering more general beam stiffened plate 
structures. 

This paper is organized as follows. First, the general framework and 
some properties of SDSM are briefly reviewed in Section 2.1, and then 
the SDS matrices of open-section beam stiffener and closed-section beam 
stiffener are derived in Section 2.2. Next, Section 2.3 describes the as-
sembly procedure of the SDS formulations of beam stiffeners and plate 
structures. This is followed by Section 3 in which the proposed SDSM is 
validated with the help of the commercial FE software ANSYS and 
computing a range of representative beam stiffened plate structures. 
Finally, significant conclusions are drawn in Section 4. 

2. Theory 

An important feature of this paper is to extend the generality as well 
as the versatility of the SDSM when applied to stiffened plate structures. 
This section summarizes the framework and characteristics of SDSM, 
derives the SDS matrices of beam stiffeners with complex cross-section 
and describes the assembly procedure of the overall SDS matrix of the 
beam stiffened plates structures. 

2.1. Framework of the spectral dynamic stiffness method 

One of the key points of SDSM used here is the application of 
modified Fourier series [35,42]. For any displacement or force boundary 
condition, the modified Fourier series along a plate edge is given by 

h(ξ)=
∑

s∈N
l∈{0,1}

Hls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√ , Hls =

∫ L

− L
h(ξ)

T l(γlsξ)̅̅̅̅̅̅̅̅
ζlsL

√ dξ (1)  

where N = {0,1,2,…} is the non-negative integer set, and ’l’ takes the 
value of either ‘0’ or ‘1’ to represent the corresponding symmetric or 
antisymmetric functions. The constant ζls is given as 

ζls =

{
2 l = 0 ​ and ​ s = 0
1 l = 1 ​ or ​ s⩾1 (2) 

The definition of the Fourier series T l(γlsξ) in Eq. (1) is defined as 

T l(γlsξ)=

⎧
⎪⎪⎨

⎪⎪⎩

cos
(sπ

l
ξ
)

l = 0,

sin
((

s +
1
2

)
π
l

ξ
)

l = 1
, ξ ∈ [ − L, L], s ∈ N (3) 

By using the modified Fourier series, the general solution of the 

governing differential equations (GDE) of a plate element in the fre-
quency domain can be developed within the spectral dynamic stiffness 
framework. After considerable algebraic operations, the dynamic stiff-
ness matrix of a plate for general BC can be derived with the help of the 
modified Fourier series defined above. The final matrix expressions are 
available in the Appendix, but interested readers are referred to Refs. 
[26,29] for further details. With the above pretext, the theory is briefly 
explained as follows. 

The force f(ξ) and displacement d(ξ) boundary conditions on the ith 
line node take the following form 

f i = [Fi00,Fi01,Fi02,…,Fi10,Fi11,Fi12,…]
T

di = [Di00,Di01,Di02,…,Di0,Di11,Di12,…]
T  

where Fils and Dils are respectively the modified Fourier (MF) coefficients 
of the corresponding force and displacement boundary condition 
applied on the ith line nodes, obtained by applying Eq. (1) onto f(ξ) and 
d(ξ). 

The relationship between overall force and displacement is expressed 
as 

f =Kd  

where K is the SDS matrix of the plate element, which links the modified 
Fourier coefficient vector of force f(ξ) to the displacement d(ξ) at all line 
nodes (plate boundaries). For the ith line node, the relationship between 
the MF coefficients of force and displacement boundary condition can be 
defined as 

f i =Kiidi  

2.2. Spectral dynamic stiffness formulations for beam stiffeners 

For the vibration analysis of plate structures stiffened by beam 
stiffeners, several factors need to be addressed. For instance: different 
cross-sections of beam stiffeners, different shapes, with or without ec-
centricity, etc. The current research considers the combination of plates 
with beams of different cross-sections, shapes and eccentricity. 

2.2.1. SDSM of the open-section beam stiffener 
Fig. 1(a) shows a schematic view of a plate stiffened by an open- 

section beam stiffener. The analysis of the structure shown includes 
the effect of a force (prestress) T acting along the stiffener. Note that T is 
positive when tensile. The beam section is connected to the plate at point 
P, while C and S represent the centroid and shear center respectively at 
the beam stiffener. The connection point P and shear center S are on the 
same vertical plane. Parameters c0 , c1 and c2 are the offsets among 
points S, P and C as shown in Fig. 1(a). The rotation angle of the stiffener 
is denoted by parameter ψ , and the displacements of points S, P and C 
are written as (w0,μ0), (w, μ) and (wc, μc) respectively. The forces acting 
on various points of the stiffener are shown in Fig. 1(b) EΓ represents 
warping constant and GJ is torsion constant, EI1 ,EI2 and EI12 are the 
bending stiffness of the structure; ρA and I are the mass and polar 
moment of inertia per unit length. Q, H and M are the reaction forces on 
the plate boundary. The relationship between the displacements and 
rotation angles of those points can be expressed as μ0 = μ − c0ψ , w0 = w, 
μc = μ+ c1ψand wc = w+ c2ψ. Under this premise, considering the 
balance of forces and moments with respect to the shear center, and 
making μ = 0(assuming that the plate is an effective rigid plane within 
the frequency range considered, without plane motion), one may arrive 
at the following governing differential equations for the beam stiffener, 

EΓψiv −
[
GJ + T

(
c1

2 + c2
2 + c1c0

)]
ψ ′′ +

[
I + ρA

(
c1

2 + c2
2 + c1c0

)]
ψ̈

− c2Tw′′ + c2ρAẅ − M − Hc0 = 0
(4)  

EI1wiv − Tw′′ + ρAẅ − EI12c0ψiv − c2Tψ ′′ + c2ρAψ̈ − Q = 0 (5)  
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EI12wiv − EI2c0ψiv − c1Tψ̈ + c1ρAψ̈ − H = 0 (6) 

Combining Eqs. (4) and (6) and eliminating H, we have 

(EΓ +EI12)ψiv − EI12c0wiv −
[
GJ + T

(
c1

2 + c2
2)]ψ ′′ +

[
I + ρA

(
c1

2 + c2
2)]ψ̈

− c2Tw′′ + c2ρAẅ − M = 0
(7) 

Transforming Eqs. (5) and (7) from time domain to frequency 
domain gives 

EI1wiv − Tw′′ − ρAw2 − EI12c0ψiv − c2Tψ ′′ − c2ρAw2ψ − Q = 0 (8)  

(EΓ+EI12)ψiv − EI12c0wiv −
[
GJ+T

(
c1

2 + c2
2)]ψ ′′ −

[
I+ρA

(
c1

2 +c2
2)]w2ψ

− c2Tw′′ − c2ρAw2 − M=0
(9) 

According to the theory of SDSM, we can express w,ψ ,Q,M as the 
modified Fourier series form shown in Eq. (1), 
{

w(ξ) =
∑

wls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√ , ψ(ξ) =

∑
ψls

T l(γlsξ)̅̅̅̅̅̅̅̅
ζlsL

√
s ∈ N
l ∈ {0, 1}

s ∈ N
l ∈ {0, 1}

(10a)  
{

Q(ξ) =
∑

Qtr
T t(γtrξ)̅̅̅̅̅̅̅̅

ζtrL
√ , M(ξ) =

∑
Mtr

T t(γtrξ)̅̅̅̅̅̅̅̅
ζtrL

√
r ∈ N
t ∈ {0, 1}

r ∈ N
t ∈ {0, 1}

(10b) 

By expressing the generalized displacements w(ξ), ψ(ξ) in terms of 
the MFs of Eq. (10a), considering the properties of the MFs of Eq. (3), 
and combining Eqs. (8)–(10), we can arrive at 

(
Q(ξ)
M(ξ)

)

=
∑
(

d11;ls d12;ls
d21;ls d22;ls

)

⎛

⎜
⎜
⎜
⎝

wls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√

ψls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√

⎞

⎟
⎟
⎟
⎠

s ∈ N
l ∈ {0, 1} (11)  

in which 

d11;ls =EI1γls
4 +Tγls

2 − ρAω2

d12;ls = d21;ls = − EI12c0γls
4 +Tc2γls

2 − ρAc2ω2

d22;ls =
(
EΓ+EI2c0

2)γls
4 +GJγls

2 +T
(
c1

2 + c2
2)γls

2 −
[
I+ρA

(
c1

2 +c2
2)]ω2

(12) 

Next, expanding both sides of Eq. (11) by using the modified Fourier 
series as in Eq. (10b), we have 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Qtr =

∫ L

− L

∑
[
(
d11;lswls + d12;lsψls

)T l(γlsξ)̅̅̅̅̅̅̅̅
ζlsL

√

]
T t(γtrξ)̅̅̅̅̅̅̅̅

ζtrL
√ dξ

s ∈ N

l ∈ {0, 1}

Mtr =

∫ L

− L

∑
[
(
d21;lswls + d22;lsψls

)T l(γlsξ)̅̅̅̅̅̅̅̅
ζlsL

√

]
T t(γtrξ)̅̅̅̅̅̅̅̅

ζtrL
√ dξ

s ∈ N

l ∈ {0, 1}
(13) 

Eq. (13) illustrates the relationship between the modified Fourier 
series coefficients of force and displacement of the beam stiffener which 
can be expressed in the following matrix form 

f b =

(
Qb

Mb

)

=

(
Kb

11 Kb
12

Kb
21 Kb

22

)(
wb

ψb

)

= Kbd (14)  

where Kb is the SDS matrix of the beam stiffener. The concise analytical 
expression of the each sub-matrix Kb

ij of the SDS matrix can be written in 
the form of 2 × 2 block matrix as 

Kb
ij =

⎡

⎣
Kb

ij;00 Kb
ij;01

Kb
ij;10 Kb

ij;11

⎤

⎦ i, j ∈ {1, 2} (15) 

The concise analytical expression of Kb
ij;lt is as follows, 

Kb
ij;lt(s, r)=

1
̅̅̅̅̅̅̅̅̅̅
ζlsζtr

√
L

∫ L

− L
dij;lsT l(γlsξ)T t(γtrξ)dξ l, t∈{0, 1}; s, r ∈ N

(16)  

which leads to analytical expressions for Kb
ij;lt once the analytical ex-

Fig. 1. An open-section beam stiffener.  
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pressions for the functions of cross section parameters (such as EI1(x), 
ρA(x), EI12(x).etc.) of dij;ls in Eq. (12) of the beam stiffener in frequency 
domain are provided. It should be mentioned in passing that in Kb

ij;lt , l 
and t take either 0 or 1 while s and r take 0,1, …,N-1, therefore the 
matrix size of Kb

ij;lt is 2N× 2N. In particular, if dij;ls is a constant with 

respect to x, then from Eq. (16) we know that Kb
ij;lt becomes a 2N× 2N 

identity matrix multiplied by the constant dij;ls. 
So far we have provided the SDS formulation of an open-section 

beam stiffener. The formulation considers the warpage of the open- 
section beam, the eccentricity of the centroid (mass axis), shear center 
(elastic axis), as well as the connection point. In essence, there are a wide 
range of beam-stiffened plates can be modelled by the model discussed 
above, which provides a wide practical application scope. 

2.2.2. SDSM of beam stiffeners with different closed-sections 
Next, the SDS matrices of several closed-section beams will be 

developed following similar procedure as in Section 2.2.1, to expand its 
applicability range. 

As shown in Fig. 2, a closed-section beam connected to the plate 
along the projection of the beam’s centre line where point P is located on 
its bottom surface, and the centre point coincides with the shear centre. 
As shown in Fig. 3, another closed-section beam connected to the plate 
where the beam’s centre line, connecting line and shear coincide with 
each other. In the above two different beam sections, point C is the 
centroid of the section, c1 and c2 are the offsets of points C and P in the z 
and x directions, w is the displacement of the point P in the z direction, 
parameters H and Q are the forces applied to the point P in the x and z 
directions respectively, and M is the torsional moment. The stretching of 
the structure caused by the bending motion, and the warping effect due 
to the closed section can be ignored. Therefore, based on the classical 
beam theory, the vibration of the beam stiffener can be expressed as 
⎡

⎢
⎢
⎢
⎢
⎣

∂2

∂y2

(

EI1
∂2wr

∂y2

)

− mrω2w − mrω2c2ψ = Q

GJ
∂2ψ
∂y2 +

[
I + mr

(
c2

1 + c2
2

)]
ω2ψ − mrω2c2w = M

(17)  

where I1 is the main moment of inertia of the beam section on the x axis. 
E is the elastic modulus of the material, mr is the mass per unit length of 
the beam, G and J are the shear modulus of the material and the mass 
moment of inertia with respect to the shear center respectively, and I is 
the torsional section factor. Following similar procedure as in Section 
2.2.1, the following equations can be derived from Eq. (17) 

[ (
EI1k4

n − mrω2)w − mrω2c2ψ = Q
[
− GJk2

n +
[
I + mr

(
c2

1 + c2
2

)]
ω2]ψ − mrω2c2w = M

(18) 

The above equations can be rewritten in the following matrix form 

(
Q(ξ)
M(ξ)

)

=
∑
(

d11;ls d12;ls
d21;ls d22;ls

)

⎛

⎜
⎜
⎜
⎝

wls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√

ψls
T l(γlsξ)̅̅̅̅̅̅̅̅

ζlsL
√

⎞

⎟
⎟
⎟
⎠

s ∈ N
l ∈ {0, 1}

When the cross-sectional shape of the beam is as shown in Fig. 2, c2 =

0. It can be obtained according to Eq. (12), 

d11;ls = EI1γls
4 − mrω2

d12;ls = d21;ls = 0
d22;ls = − GJγls

2 +
(
I + mrc2

1

)
ω2

(19) 

When the cross-sectional shape of the beam is as shown in Fig. 3, c1 =

0.So the parameters in Eq. (12) can be simplified to 

d11;ls = EI1γls
4 − mrω2

d12;ls = d21;ls = − mrω2c2

d22;ls = − GJγls
2 +

(
I + mrc2

2

)
ω2

(20) 

So far, the SDS formulation of two types of closed-section beam 
stiffeners have been developed. 

2.3. Assembly procedure of global spectral dynamic stiffness matrix 

Now we can assemble the SDS matrices of both plates and beam 
stiffeners. To explain the assembly process in a simple manner, but 
without loss of generality, we adopt the example shown in Fig. 4, in 
which a plate structure is connected to a beam along the beam’s bottom 
center line along the first line nodes (w(1)

p ,ψ(1)
p ) (Notice that the plate has 

8 line nodes and the beam has 2 line nodes). Superimposing the beam 
SDS matrix Kb in Eq. (14) to the rows and columns corresponding to the 
first and second line nodes of the plate SDS matrix Kp like Fig. 5. If a 
beam stiffer is superimposed onto the ith and (i+1)th line nodes of a 
plate, the overall SDS matrix can be assembled from the SDS matrices of 
both the plate and the beam stiffener as given in Eq. (21) and illustrated 
in Fig. 5. 

It is worth noting that the materials properties of both the beam 
stiffener and the plate can be either frequency independent or frequency 
dependent (such as honeycomb sandwich panels [52–55]). It is due to 
the SDS matrices are in frequency domain which can model both 
situations. 

Fig. 2. A closed-section beam stiffened plate with eccentricity.  
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2.4. Applying boundary conditions and Wittrick-Williams algorithm for 
modal analysis 

In proposed method described above, any prescribed boundary 
conditions can be applied following similar procedure generally used in 
the finite element method. For the assembly procedure and application 
of boundary conditions to arrive at the solution of the final SDS matrix of 
the structure, interested readers are referred to Refs. [30,42]. 

The algorithm of Wittrick and Williams (WW) with the so-called J0 
count problem resolved properly can be applied to compute the natural 
frequencies. (Bandgap analysis [56–58] of periodic beam-stiffened 
plates can also be performed by using extended WW algorithm [59]). 
The procedure is described in detail in Refs. [26,29]. It is worth noting 
that since the DOFs of beam stiffeners in the form of spectra (i.e. coef-
ficient of modified Fourier series) are superposed directly to those of the 
plate element boundaries, where no extra DOFs has been introduced in 
the SDS formulation. It is therefore understandable that the J0 count of 
beam is not needed to be added to the J0 count of the plate. That is to 
say, only the J0 count from the plate elements are required for the WW 
algorithm for modal analysis for the beam stiffened plate. 

The complete procedure of the dynamic stiffness development and its 
implementation are illustrated in Fig. 6. 

3. Numerical examples 

In order to verify the accuracy and efficiency of the proposed SDSM 
for beam stiffened plates, we adopt several beam-stiffened-plate models 
and perform numerical analysis based on MATLAB code. We also take a 
rigorous recourse to finite element models by using the software ANSYS, 
for a direct comparison of results. The natural frequencies and mode 
shapes computed by our theory and those computed using ANSYS are 
critically examined. To demonstrate the versatility of our method, we 
use different plate structures stiffened by different stiffeners and with 
different boundary conditions as illustrations. 

Unless otherwise specified, in all example models, the size of the 
rectangular plate is 2a× 2b, in which 2a = 2b = 1m, thickness: h =

5mm.The material properties of the plate and the beam are as follows: 
Young’s modulus E1 = 7.1× 1010Pa, Poisson’s ratio ν = 0.3, density 
ρ1 = 2660kg/m3. All the computations in this paper are performed on 
the same computer with an AMD A6-3420 M CPU with 6GB RAM. For 

Fig. 3. A closed-section beam stiffened plate without eccentricity.  

Fig. 4. Line nodes of a closed-section-beam stiffened plate.  

Fig. 5. Assembly procedure of the overall SDS matrixes of a plate stiffened by a 
beam stiffener. 

Ki,i = Kp
i,i + Kb

11, Ki,i+1 = Kp
i,i+1 + Kb

12

Ki+1,i = Kp
i+1,i + Kb

21, Ki+1,i+1 = Kp
i+1,i+1 + Kb

22

(21)    
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the plate boundary conditions, clamped or built-in support is repre-
sented by C, simple support is represented by S, and free or supportless is 
represented by F. 

3.1. Example 1: closed-section beam stiffened plates 

In this section, the natural frequencies of the closed-section beam 
stiffened plates are computed to verify the accuracy of the SDSM. Fig. 7 
(a) shows the finite element model of a plate stiffened by closed-section 
beam without eccentricity, where the four sides of the plate are 
completely free. In the finite element model, the general shell element 
and beam element are selected as the element type of the structure based 
on the classic thin plate theory and beam theory. The length of the beam 
is 1m, and the cross-section size is 0.05m× 0.05m. Fig. 7(b) is the 
numbering of the four sides of the structure to indicate the boundary 
conditions (for example, from 1 to 4 sides are ‘S’, ‘G’, ‘F’ and ‘C’, then it 
is denoted as SGFC). 

Table 1 shows the natural frequencies of an SFFF plate stiffened by 
non-eccentric closed-section beams (Fig. 7) with different FE mesh size 
and Fourier series of the SDSM. It can be seen that the DSM results 
converge up to the fifth significant figures or digits when N is 20; the 
DOFs adopted in the DSM is only 280 of that in the FEM; the compu-
tational time for the DSM is less than 1% of that by the FEM (0.003m×

0.003m) yet the FEM results have only four significant digit accuracy. 
Under the premise of ensuring representativeness, in all subsequent 
examples, the FE mesh size is set to 0.003m × 0.003m and SDSM uses 25 
Fourier series in all cases. 

Next, we revisit two cases previously studied in Ref. [4] by using the 
current method. It is a plate with one edge stiffened for varying values of 
stiffener’s depth. The size of the square plate is a× a, thickness: hp =

0.04in.. The material properties of the plate and the stiffener are as 

follows: Young’s modulus E4 = 10.5× 106lb/in2, density ρ4 =

0.101lb ​ sec 2/in4, Poisson’s ratio ν = 0.3. The dimensions of the stiff-
eners were related to stiffener depth. I-beam horizontal size at both ends 
b4 = h4/2, thin-wall thickness tw = tf = h4/25. The nondimensional 
frequency parameter λ = ω2a

̅̅̅̅̅̅̅̅̅̅̅
ρ4/D

√
. D is the flexural rigidity. Tables 1 

and 2 in Ref. [4] the results of computation for the lowest frequency 
coefficient are presented. Table 1 in Ref. [4] is associated with S–S–S–F 
plates. Table 2 in Ref. [4] is associated with S–C–S–F plates. The edge 
with F boundary condition is stiffened. 

In Table 2, we used SDSM to calculate the first few eigenvalues of the 
two cases, it can be seen that all the values agree very well with those in 
Ref. [4]. 

Table 3 shows the representative natural frequencies of a beam 
stiffened plate with eight different sets of boundary conditions. Fig. 8 
shows some representative mode shapes of a stiffened plate with SFCF 
boundary conditions. 

Table 1 shows the convergence of SDSM and FEM for SFFF, Table 2 is 
in agreement with the results of Ref. [4], and it can be seen from Table 3 
that the results from SDSM and FEM with various boundary conditions 
are very close to each other. (The small difference indicates a good 
consistency between the two methods.) It can also be ascertained from 
Fig. 8 that the modes computed from the two methods match very well. 
Clearly, the accuracy of the SDSM is verified. It should be noted that the 
SDSM has taken only 25 Fourier series to compute the modes, and the 
calculation speed is quite impressive. On the question of accuracy, the 
SDSM has significant advantage when compared with the finite element 
solution which requires much finer mesh. 

3.2. Example 2: An L-cross-section beam stiffened plate 

In this section, the L-cross-section beam stiffened plates is used to 

Fig. 6. Flowchart showing the procedure for the DSM development and its implementation.  

Fig. 7. The FE model of a plate stiffened by closed-section beam without eccentricity and the numbering of the plate boundaries.  
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further investigate the effect of the beam stiffeners on the plate vibration 
and to verify the accuracy of the method. As shown in Fig. 9(a), it is a 
finite element model of an L-cross-section-beam stiffened plate. The 
cross-sectional dimensions are shown in Fig. 9(b), where c0 = 0.035m,

c1 = 0.027m, c2 = 0.077m, and the remaining parameters are the same 

as Example 1. Table 4 shows the natural frequencies of a beam stiffened 
plate with four sets of boundary conditions. Fig. 10 shows some repre-
sentative mode shapes by SDSM and FEM for the SFFF plate. 

It can be seen from Table 4 that when the structure is essentially L- 
cross-section beam stiffened plates, there are little discrepancies in the 
natural frequencies between the SDSM and the FEM. Also, Fig. 10 in-
dicates that the two sets of mode shapes match well. 

3.3. Example 3: A T-beam stiffened plate 

In this section, an example with a T-beam stiffened plate is analyzed. 
The structure is shown in Fig. 11(a). Side by side to the application of the 
current SDSM theory, a finite element model of this structure is also 
created. The cross-sectional dimensions are shown in Fig. 11(b), and the 
remaining parameters are the same as Example 1. Fig. 12 gives the 
boundary conditions of the structure. Table 5 shows the comparison of 
the natural frequencies of 1st to 6th modes obtained by the SDSM and 
the finite element model under different cross-sectional area. Fig. 13 

Table 1 
Natural frequencies (Hz) of an SFFF plate stiffened by non-eccentric closed-section (0.05m×0.05m) beams (Fig. 7) with different FE mesh size and Fourier series of the 
SDSM.  

Mode SDSM FEM 

N = 10 N = 15 N = 20 N = 25 0.005m× 0.005m  0.004m× 0.004m  0.003m× 0.003m  0.002m× 0.002m  

Time(s) 1.76 2.29 3.42 4.83 87 161 579 9854 
DOFs 140 210 280 350 243,627 380,337 670,794 1509006 
1 10.537 10.538 10.539 10.539 10.529 10.528 10.527 10.526 
2 18.572 18.572 18.572 18.572 18.569 18.569 18.569 18.569 
3 33.370 33.370 33.371 33.371 33.347 33.345 33.342 33.341 
4 38.314 38.317 38.320 38.320 38.283 38.278 38.274 38.272 
5 60.849 60.849 60.849 60.849 60.837 60.834 60.831 60.830 
6 67.561 67.563 67.566 67.566 67.467 67.456 67.447 67.442  

Table 2 
The comparison results of the SDSM with the data of Tables 1 and 2 in Ref. [4].  

Mode (λ)  h4 = 0  h4 = 0.3  

Table 1 in Ref. [4] Table 2 in Ref. [4] Table 1 in Ref. [4] Table 2 in Ref. [4] 

SDSM Ref. [4] SDSM Ref [.4] SDSM Ref [.4] SDSM Ref [.4] 

1 11.5622 11.6845 19.3427 19.5098 12.5732 12.6874 23.0132 23.1040 
2 27.4648 – 49.2071 – 33.0124 – 51.1325 – 
3 41.0322 – 49.3021 – 41.4378 – 58.2113 – 
4 59.0165 – 78.0213 – 63.0153 – 85.8932 – 
5 61.4213 – 98.2154 – 72.1075 – 99.8523 –  

Table 3 
Representative natural frequencies (Hz) of a beam stiffened plate with eight sets 
of boundary conditions.  

BC Mode SDSM FEM 

SFCF 1st 18.87 18.87 
SSCF 5th 94.93 94.83 
FCCC 4th 134.28 134.32 
FSSS 2nd 64.19 64.09 
FCSC 3rd 88.37 88.34 
FFFF 3rd 33.45 33.39 
SSSS 7th 165.95 165.65 
SCSC 6th 162.08 162.05  

Fig. 8. Mode shapes by FEM and SDSM for a stiffened plate subject to SFCF boundary conditions.  
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compares some representative mode shapes of a T-beam stiffened plate 
whose stiffener is of cross-section: t1 = t2 = 0.02m, w1 = w2 = 0.08m. 

It can be seen from Table 5 that the results of both the SDSM and the 
finite element method are in good agreement for a T-beam stiffened 

plate with stiffeners of different cross-sections. Fig. 13 shows the 1st, 
3rd, 5th and 6th mode shapes of a stiffened plate where the T-shaped 
stiffener’s cross-section is t1 = t2 = 0.02m, w1 = w2 = 0.08m by using 
both the FEM and the SDSM. It is obvious that the mode shapes 

Fig. 9. The finite element model of a plate stiffened by L-cross-section beam.  

Table 4 
The natural frequencies (Hz) of a beam stiffened plate in Fig. 9 with four different BCs.  

Mode SFCF SFFF FSFS SSCF 

SDSM FEM SDSM FEM SDSM FEM SDSM FEM 

1 18.88 18.87 9.67 9.64 15.07 15.07 22.58 22.41 
2 29.38 29.31 18.57 18.57 36.60 36.73 42.37 42.19 
3 53.28 53.14 33.20 33.15 51.68 51.67 65.49 65.21 
4 61.14 61.06 35.05 34.96 76.59 76.69 82.42 82.32 
5 75.45 75.31 60.98 60.91 78.42 79.27 91.12 90.69 
6 98.99 98.86 66.51 66.31 112.64 112.59 131.49 130.93  

Fig. 10. Mode shapes of a beam stiffened SFFF plate in Fig. 9 by FEM and SDSM.  

Fig. 11. The finite element model of a T-beam stiffened plate.  
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computed by both methods agree very well. 

3.4. Example 4: complex beam stiffened plates 

In this section, two complex beam stiffened plates structures are 
selected to further verify the accuracy and versatility. 

The first example as show in Fig. 14 is a rectangular plate stiffened by 
two stiffeners with cross-sections given therein, and the structure is 
subjected to the boundary conditions depicted in Fig. 15. For simplicity, 
the remaining parameters are the same as Example 1. Table 6 compares 
the natural frequencies computed by both the SDSM and the FEM and 

Fig. 16 gives the comparisons of some representative mode shapes. 
It can be seen from Table 6 that for the structure depicted in Fig. 14, 

the results of SDSM and FEM agree very well. At the same time, the mode 
shapes computed from two methods shown in Fig. 16 match well. 

The second example as show in Fig. 17(a) is an L-shaped plate 
stiffened by three beam stiffeners, and the structure is subjected to the 
boundary conditions depicted in Fig. 17(b). For simplicity, the remain-
ing parameters are the same as Example 1. Table 7 compares the natural 
frequencies by both SDSM and FEM and Fig. 18 shows some represen-
tative mode shapes. 

It can be seen from Table 7 and Fig. 18 that both the natural fre-
quencies and mode shapes of the stiffened L-shaped plate by using both 
the FEM and the SDSM match well with each other. This example further 
proves that the SDSM is an accurate and versatile tool for the dynamic 
analysis of complex beam-stiffened plates. 

4. Conclusions 

A novel spectral dynamic stiffness (SDS) theory has been proposed 
for plate structures stiffened by beam stiffeners with either open or close 
sections and with or without eccentricity. According to the relationship 
between the forces and the displacements at the common edge of the 
plate edges and the beam stiffener, the vibrational equation of the 
stiffeners with both open section and closed section are formulated 

Fig. 12. The boundary conditions of the T-beam stiffened plate.  

Table 5 
Natural frequencies (Hz) of the plate structure in Fig. 11 stiffened by beams with different cross-sections.  

Mode t1 = t2 = 0.01m
w1 = w2 = 0.04m  

t1 = t2 = 0.015m
w1 = w2 = 0.06m  

t1 = t2 = 0.02m
w1 = w2 = 0.08m  

t1 = t2 = 0.025m
w1 = w2 = 0.1m  

SDSM FEM SDSM FEM SDSM FEM SDSM FEM 

1 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32 
2 9.27 9.28 10.13 10.11 10.44 10.41 10.51 10.50 
3 10.58 10.57 10.58 10.57 10.58 10.57 10.58 10.57 
4 18.59 18.58 18.54 18.53 18.36 18.33 18.29 17.93 
5 26.48 26.47 26.48 26.47 26.48 26.47 26.48 26.47 
6 33.04 33.01 33.30 33.26 33.34 33.31 33.34 33.28  

Fig. 13. Mode shapes for a T-beam stiffened plate in Fig. 11 with t1 = t2 = 0.02m and w1 = w2 = 0.08m by using FEM and SDSM.  
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based on modified Fourier series. The SDS matrices of beam stiffeners 
with the inclusion of warping stiffness have been developed. The 
ensuing SDS matrices of beam stiffeners are superposed directly onto the 
overall SDS matrix of the plate assemblies to model the beam-stiffened 
plate structure accurately. By using the Wittrick-Williams algorithm, 

the natural frequencies and mode shapes are extracted. A wide ranging 
and well-thought-out number of examples are given to illustrate the 
versatility and accuracy of the proposed method. The research has 
broadened the scopes of recently proposed SDS theories for plate as-
semblies to a higher level by accounting for beam-stiffeners of complex 
cross-sections connected to the plate assemblies. The research carried 
out in this paper is of great significance when analysing stiffened plate 
structures which have applications in the transport [60], aeronautical, 
ship-building industries, amongst others. 
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Appendix: Spectral dynamic stiffness method of the plate with arbitrary boundary conditions 

This appendix record the spectral dynamic stiffness formulations [26,29] for a plate element with arbitrary boundary conditions as shown in 
Fig. 19. The size of the rectangular Kirchhoff plate is 2a× 2b, with a lateral displacement of W(x,y). The frequency-dependent GDE is expressed as 
follows, 

∂4W
∂x4 + 2

∂4W
∂x2∂y2 +

∂4W
∂y4 − κW = 0  

where 

κ =
ρhω2

D
,D=

Eh3

12(1 − v2)

in which, ω is the circular frequency, D is the bending stiffness of the plate, E is the Young’s modulus of the material, ν is the Poisson’s ratio, h and ρ are 
the thickness and mass density of the plate, respectively. The rotation, bending moment and shear force are as follows, 

ψx = −
∂W
∂x

; ψy = −
∂W
∂y

;

Mx = − D
(

∂2W
∂x2 + v

∂2W
∂y2

)

; My = − D
(

∂2W
∂y2 + v

∂3W
∂x2

)

;

Vx = − D
(

∂3W
∂x3 + Γ* ∂3W

∂x∂y2

)

;Vy = − D
(

∂3W
∂y3 + Γ* ∂3W

∂y∂x2

)

;

in which Γ∗ = 2 − ν, Mx, Vx, ψx are the bending moment, shear force and rotation respectively at x = ±a,and My, Vy, ψy are the bending moment, 
shear force and rotation angle respectively atx = ±b.

Fig. 19. Coordinate system and symbol of displacement and force of thin plate  

According to the SDSM, the wavenumbers αkm and βjn of the plate are as follows, 

αkm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mπ
a

k = 0
(

m +
1
2

)
π
a

k = 1
, βjn =

⎧
⎪⎪⎨

⎪⎪⎩

nπ
b

j = 0
(

n +
1
2

)
π
b

j = 1 

Based on the SDSM as described in Refs. [26,29], the SDS formula expression forkj components are 

f kj =Kkjdkj  

where kj ∈ {0,1} ​ , denoting the symmetry of the four kj components, and 

f kj = D

[
Vkj

Mkj

]

, dkj =

[
Wkj

Ψ kj

]

Kkj = D

⎡

⎣
Аkj

WN
− 1

− Аkj
WW

− 1
Аkj

WΦ

Аkj
MV Аkj

WV
− 1

Аkj
MΦ − Аkj

MV Аkj
WW

− 1
Аkj

Wφ

⎤

⎦

where А in the SDS component matrix Kkj has the following form, in which m ∈ [0,M − 1] ​ and ​ n ∈ [0,N − 1], 
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the terms of these four matrices can be expressed in a concise form as 

Aij
Wψ (n, n) = − (Σ1ϒ1 − Σ2ϒ2)

/
ϒ0Akj

Wψ (n,m) = − Σ5Σ7

Akj
Wψ (m, n) = − Σ6Σ8Akj

Wψ(m,m) = − (Σ3ϒ3 − Σ4ϒ4)
/

ϒ0

Akj
WV(n, n) = (ϒ1 − ϒ2)

/
ϒ0Akj

WV(n,m) = Σ7

Akj
WV(m, n) = Σ8Akj

WV(m,m) = (ϒ3 − ϒ4)
/

ϒ0

Akj
Mψ (n, n) = −

(
Σ2

1ϒ1 − Σ2
2ϒ2
)/

ϒ 0Akj
Mψ (n,m) = − Σ9Σ7

Akj
Mψ (m, n) = − Σ9Σ8 Akj

Mψ (m,m) = −
(
Σ2

3ϒ3 − Σ2
4ϒ4
)/

ϒ0

Akj
MV(n, n) = (Σ1ϒ1 − Σ2ϒ2)

/
ϒ0 Akj

MV(n,m) = Σ6Σ7

Akj
MV(m, n) = Σ5Σ8 Akj

MV(m,m) = (Σ3ϒ3 − Σ4ϒ4)
/

ϒ0  

where 

r0 = 2
̅̅̅
κ

√
, Σ0 = 2( − 1)m+n

ϒ1 = T H k
(
q1jna

)/
q1jn, ϒ2 = T H k

(
q2jna

)/
q2jn

ϒ3 = T H j(p1kmb)
/

p1km, ϒ4 = T H j(p2kmb)
/

p2km

Σ1 = νβ2
jn − q2

1jn, Σ2 = νβ2
jn − q2

2jn

Σ3 = να2
km − p2

1km, Σ4 = να2
km − p2

2km

Σ5 = να2
km + β2

jn, Σ6 = α2
km + νβ2

jn

Σ7 = Σ0

/[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ζjnζkmab

√ (
p2

1km + β2
jn

)(
p2

2km + β2
jn ​

)]

Σ8 = Σ0

/[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ζjnζkmab

√ (
q2

1jn + α2
km

)(
q2

2jn + α2
km

)]

Σ9 = (1 − ν)2α2
kmβ2

jn + νκ  

where 

TH l(Ξ)=H l(Ξ)
/

H
*
l (Ξ), H i(Γξ) =

{
cosh(Γξ), l = 0
sinh(Γξ), l = 1  

p1bm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
km −

̅̅̅
κ

√
,

√

p2km =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
km +

̅̅̅
κ

√
√

, q1jn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
jn −

̅̅̅
κ

√
,

√

q2jn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

β2
jn +

̅̅̅
κ

√√

Assembling thekjcomponent matrixKkjinto the SDS matrix of the plate element KPas follows, 

KP =
1
2

T

⎡

⎢
⎢
⎣

K00 0 0 0
0 K01 0 0
0 0 K10 0
0 0 0 K11

⎤

⎥
⎥
⎦TT  

where T is the total transfer matrix, the analytical formula is as follows, 
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T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

In O O O O O O O In O O O O O O O
O O O O In O O O O O O O In O O O
O In O O O O O O O In O O O O O O
O O O O O In O O O O O O O In O O
O O Im O O O Im O O O O O O O O O
O O O O O O O O O O Im O O O Im O
O O O Im O O O Im O O O O O O O O
O O O O O O O O O O O Im O O O Im
In O O O O O O O − In O O O O O O O
O O O O In O O O O O O O − In O O O
O − In O O O O O O O In O O O O O O
O O O O O − In O O O O O O O In O O
O O Im O O O − Im O O O O O O O O O
O O O O O O O O O O Im O O O − Im O
O O O − Im O O O Im O O O O O O O O
O O O O O O O O O O O − Im O O O Im

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Im and In are n-dimensional and m-dimensional identity matrices respectively, and O represents an empty matrix. 
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