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A B S T R A C T   

The dynamic stiffness matrix of a coupled axial-bending Timoshenko beam is developed to investigate the free 
vibration behaviour of such beams and their assemblies. Applying Hamilton’s principle, the governing differ-
ential equations of motion of a Timoshenko beam in free vibration is derived by considering the axial-bending 
coupling effect arising from the mass axis eccentricity with the elastic axis of the beam cross-section. The dif-
ferential equations are then solved in an exact sense, giving expressions for the axial and bending displacements 
as well as the bending rotation. The expressions for axial force, shear force and bending moment are formed 
using the natural boundary conditions which resulted from the Hamiltonian formulation. Next, the frequency- 
dependent dynamic stiffness matrix of the coupled axial-bending Timoshenko beam is derived by relating the 
amplitudes of the axial force, shear force and bending moment to the corresponding amplitudes of axial 
displacement, bending displacement and bending rotation. The resulting dynamic stiffness matrix is effectively 
applied to investigate the free vibration behaviour of axial-bending coupled Timoshenko beams by making use of 
the Wittrick-Williams algorithm as solution technique. The results with emphasis on the axial-bending coupling 
effects and the importance of the shear deformation and rotatory inertia in free vibration behaviour of coupled 
axial-bending Timoshenko beams and frameworks are discussed with significant conclusions drawn.   

1. Introduction 

There are many engineering structures that can be modelled as 
beams for the analysis of their dynamic behaviour by using classical 
Bernoulli-Euler or Timoshenko theories, but some of these structures 
which have mass axis eccentricity relative to the elastic axis cannot be 
modelled satisfactorily by these conventional theories because the 
coupling effect arising from different modes of deformations due to the 
non-coincident mass and elastic axes is ignored in these theories. In this 
respect, considerable amount of research has been carried out for dy-
namic analysis of coupled bending-torsion beams for well over three 
decades [1–4]. The underlying motivation which stimulated these ini-
tiatives is by and large due to their aeronautical applications where a 
high aspect aircraft wing such as that of a transport airliner or a sailplane 
can be modelled quite accurately as an assembly of bending-torsion 
coupled beams to carry out their free vibration [5], aeroelastic [6] 
and optimisation studies [7]. By contrast, the axial-bending coupling 
arising from the non-coincident mass and elastic axes has not been 

apparently given enough attention and thus, has not featured widely in 
the literature. The purpose of this paper is to redress this imbalance. One 
of the reasons why the bending-torsion coupling dominates the litera-
ture as opposed to axial-bending coupling is that unlike bending-torsion 
coupling, the coupling between the axial and bending deformation does 
not generally occur in aircraft wings and therefore, such coupling is 
considered inconsequential when investigating their dynamic 
characteristics. 

With the above pretext, it should be recognised that there is a variety 
of wide-ranging structures used in civil, offshore and marine engineer-
ing applications, amongst others for which the axial-bending coupling 
contrary to bending-torsion coupling is of greater significance. As 
mentioned above, the literature in this area is unfortunately lacking, and 
a survey shows that only a handful of papers have been published [8–15] 
which deal with the free vibration problem of axial-bending coupled 
beams. These are briefly reviewed next. 

By means of the assumed modes method, Yigit and Christoforou [8] 
investigated the transverse vibration of an oil-well drill string by 
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modelling it as a slender axial-bending coupled beam with the inclusion 
of non-linear coupling terms and considering the lower portion of the 
beam simply-supported in the analysis. Han and Benaroya [9] studied 
the coupled transverse-axial vibration of a compliant tower which they 
also modelled as a beam, but with a concentrated mass at the free end, 
and with the other end hinged. Although they formulated the problem 
by using nonlinear coupled theory, they eventually concluded that the 
linear theory was adequate even when the axial motion was no longer 
negligible. Trindade et al. [10] published their research on the 
non-linear vibration of a drill-string idealised by a vertical slender cyl-
inder which was clamped at its upper extreme but pinned at its lower 
extreme. They applied constrain inside the outer cylinder in its lower 
portion and used Karhunen-Loeve decomposition to simulate the dy-
namics of the system. Notably, they emphasized the importance of 
including the axial-bending coupling terms when investigating the vi-
bration characteristics of drill-strings. Later, Sampaio et al. [11] used a 
geometrically non-linear model to study the axial-torsional coupled vi-
bration of drill-strings. Ginsberg [12] used a different approach when he 
investigated the axial-transverse vibration of a beam by introducing 
different amounts of coupling between the axial and transverse dis-
placements through suitable choice of the boundary conditions. He 
manipulated the boundary conditions by using a simple support at one 
end of the beam and a tilted roller support at the other when computing 
the natural frequencies, mode shapes and the forced response of the 
beam. Lenci and Rega [13] on the other hand used an asymptotic 
method to study the axial-transverse coupled vibration of Timoshenko 
beams with arbitrary slenderness ratios and boundary conditions. They 
illustrated both the nonlinear and linear behaviour of axial-transverse 
coupled Timoshenko beams. Lei et al. [14] investigated the free and 
forced vibration behaviour of a two-layered axial-bending coupled 
Timoshenko beam for which the mass and stiffness distributions through 
the thickness of the beam cross-section were non-uniform. Subse-
quently, Ni and Hua [15] advanced the work of Lei et al. [14] by 
including multi-layered beams with arbitrary boundary conditions in 
their theory when investigating the coupled axial-bending vibration. 
(Note that research in the area of axial-bending coupled beams in the 
context of multi-body dynamics is outside the scope of the current paper, 
but interested readers are referred to a recent paper [16] which gives 
necessary information and cross references on the subject.) Recently the 
first two authors of this paper contributed to the existing literature by 
developing the dynamic stiffness method (DSM) of a coupled 
axial-bending beam [17] in order to investigate its free vibration char-
acteristics. Their dynamic stiffness theory included the axial-bending 
coupling effects arising from the non-coincident mass and elastic axes 
of the beam cross-section, and they found significant differences in the 
results when compared with the corresponding results obtained from the 
classical Bernoulli-Euler theory. Their investigation appears to be the 
first of its kind in the development of the dynamic stiffness method for 
coupled axial-bending vibration of beams. However, their work signif-
icant though it was, had a deficiency in that it excluded the effects of 
shear deformation and rotatory inertia which can be significant for short 
and stubby beams. Nevertheless, their work was a significant step for-
ward to develop the dynamic stiffness theory for a coupled axial-bending 
Timoshenko beam which includes the effects of shear deformation and 
rotatory inertia. This is essentially the central theme of this paper. This 
new development is quite difficult because the level of complexity of the 
problem increases considerably and it necessitated considerable time 
and efforts. The authors have undertaken this research to first develop 
and then apply the DSM to study the free vibration characteristics of 
coupled axial-bending Timoshenko beams and their assemblies in order 
to demonstrate the effects of shear deformation and rotatory inertia on 
results. The DSM is well known for its accuracy and computational ef-
ficiency [1,2,17–19]. A subsidiary, but important contribution made in 
this paper is to show that the entire analysis can be carried out in the real 
domain by using explicit algebraic stiffness expressions instead of using 
the complex domain analysis reported in the literature [14,15] which 

relied rather needlessly on unwarranted complex matrix operations. 
Furthermore, some unintentional misconceptions reported in the liter-
ature regarding the number of constants needed for the solution to 
describe the axial and bending deformations of a coupled axial-bending 
beam are addressed in this paper. The authors have managed to provide 
an alternative, but improved solution for the problem. The paper is 
organised as follows. First, the theory begins with the derivation of the 
governing differential equations of motion of a coupled axial-bending 
Timoshenko beam in free vibration by applying Hamilton’s principle. 
For harmonic oscillation, the equations are solved in explicit analytical 
form, providing expressions for the amplitudes of axial displacement, 
bending displacement, bending rotation as well as axial force, shear 
force and bending moment. The frequency dependent dynamic stiffness 
is then formulated by relating the amplitudes of the forces to those of the 
displacements at the ends of the axial-bending coupled Timoshenko 
beam. The resulting dynamic stiffness matrix is operated by the 
Wittrick-Williams algorithm [20] as solution technique when computing 
the natural frequencies and mode shapes of some illustrative examples. 
Finally, some conclusions are drawn. 

2. Theory 

In what follows, the dynamic stiffness matrix of a freely vibrating 
Timoshenko beam when its free vibratory motion is coupled between 
axial and bending deformations is derived using linear small deflection 
theory. 

2.1. Derivation of the governing differential equations of motion and 
natural boundary conditions for a coupled axial-bending Timoshenko 
beam 

Fig. 1 shows a uniform coupled axial-bending Timoshenko beam of 
length L in a right-handed Cartesian coordinate system with the Y-axis 
coinciding with the beam elastic axis. The coupling between axial and 
bending displacements in such a beam will occur because of the ec-
centricity of the centroid (Gc) and shear centre (Es) of the beam cross- 
section, as shown. There are many practical cross-sections for which 
the centroid and shear centre are non-coincident (see Fig. 2 of [17]), but 
the inverted T section is shown in Fig. 1 only for convenience. The mass 
axis and the elastic axis of the beam which are respectively the loci of the 
centroid and shear centre of the beam cross-section are separated by a 

Fig. 1. Coordinate system and notation for a coupled axial-bending Timo-
shenko beam. 
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distance zα as shown. 
If v, w and θ are axial displacement, bending displacement and 

bending rotation of a point at a distance y from the origin and at a height 
z from the elastic axis, i.e. the point (y, z) in the coordinate system 
(Fig. 1), one can write 

v= v0 − zθ, w = w0 (1)  

where v0 and w0 are the corresponding displacement components of the 
point (y, 0) on the Y-axis (i.e. on the elastic axis). 

Using linear, small deflection elasticity theory, the expression for the 
normal strain εy and shearing strain (γyz) can be expressed as 

εy = v′

0 − zθ
′

, γyz = w0
′

− θ (2)  

where a prime denotes differentiation with respect to y. 
The potential or strain energy of the beam due to normal and shear 

strains is given by 

U =
1
2

∫L

0

∫

A

Eε2
ydAdy +

1
2

∫L

0

∫

A

kGγ2
yzdAdy (3)  

where E and G are the Young’s modulus and shear modulus of the beam 
material, respectively and k is shear correction or shape factor, and the 
integrations are carried out over the beam cross-sectional area A and 
length L. 

Substituting εy and γyz from Eq. (2) into Eq. (3), and integrating over 
the beam cross-section, we obtain 

U =
1
2

∫L

0

{
EA

(
v′

0

)2
− 2EAzαv′

0θ
′

+EIe(θ
′

)
2
+ kAG

(
w′

0 − θ
)2
}

dy (4)  

where A and Ie are the area of cross-section and second moment of area 
about the elastic axis so that EA and EIe are the extensional and bending 
stiffnesses of the beam, respectively. 

The kinetic energy of the beam is given by 

T =
1
2

∫L

0

∫

A

ρ
{
(v̇)2

+(ẇ)2}dy (5)  

where ρ is the density of the beam material and an over dot represents 
differentiation with respect to time t. 

Equation (5) with the help of Eq. (1) becomes 

T =
1
2

∫L

0

{

ρA
(
v̇0
)2

− 2ρAzαv̇0θ̇+ ρIe(θ̇)2
+ ρA

(
ẇ0

)2
}

dy (6) 

Hamilton’s principle states 

δ
∫t2

t1

(T − U)dt= 0 (7)  

where t1 and t2 are the time interval in the dynamic trajectory, and δ is 
the usual variational operator. 

The governing differential equations of motion for the coupled axial- 
bending Timoshenko beam and the associated boundary condition in 
free vibration can now be derived by substituting the potential (U) and 
kinetic (T) energy expressions of Eqs. (4) and (6) into Eq. (7), using the δ 
operator, integrating by parts and then collecting terms. In an earlier 
publication, the entire procedure to generate the governing differential 
equations of motion and natural boundary conditions for bar or beam 
type structures was automated by Banerjee et al. [21] by applying 
symbolic computation. In this way, the governing differential equations 
of motion of the axial-bending coupled beam and the associated natural 
boundary conditions are obtained as follows. 

Governing differential equations: 

EAv′′0 − EAzαθ′′ − ρAv̈0 + ρAzαθ̈ = 0 (8)  

EIeθ′′ − ρIeθ̈+ ρAzαv̈0 − EAzαv′′0 + kAG
(
w

′

0 − θ
)
= 0 (9)  

kAG
(
w′′

0 − θ
′)
− ρAẅ0 = 0 (10) 

Natural boundary conditions: 

Axial force: F = − EAv′

0 + EAzαθ
′ (11)  

Bending moment: M = − EIeθ
′

+ EAzαv′

0 (12)  

Shear force: S= − kAG
(
w′

0 − θ
)

(13) 

Assuming harmonic oscillation with circular or angular frequency ω 
rad/s, one can write 

v0 =Veiωt; w0 = Weiωt; θ = Θeiωt (14)  

where V, W and Θ are the amplitudes of the axial displacement, bending 
displacement and bending rotation, respectively. 

Substituting Eq. (14) into Eqs. (8)–(10) and introducing the non- 
dimensional length ξ = y/L and the differential operator D = d

dξ, yield 
the following ordinary differential equations in V, W and Θ 
(

ω2ρA+
EA
L2 D2

)

V −

(

ω2ρAzα +
EAzα

L2 D2
)

Θ= 0 (15)  

−

(

ω2ρAzα +
EAzα

L2 D2
)

V +

(
kAG

L
D
)

W +

(
EIe

L2 D2 + ω2ρIe − kAG
)

Θ= 0

(16)  
(

kAG
L2 D2 +ω2ρA

)

W −

(
kAG

L
D
)

Θ= 0 (17) 

We introduce the following non-dimensional parameter to recast 
Eqs. (15)–(17) in a different, but more favourable form 

a2 =
ω2ρAL2

EA
, b2 =

ω2ρAL4

EIe
,

r2 =
EIe

EAL2 =
Ie

AL2 =
a2

b2,

s2 =
EIe

kAGL2, μ2 =
z2

α

L2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18) 

Substituting Eq. (18) into Eqs. (15)–(17) gives 
(
D2 + a2)V = zα

(
D2 + a2)Θ (19)  

Lr2

s2 DW +L2
(

r2D2 + a2r2 −
r2

s2

)

Θ= zα
(
D2 + a2)V (20)  

(
D2 + b2s2)W =LDΘ (21) 

By eliminating V from Eq. (20) with the help of Eq. (19) and then 
after some mathematical manipulation, a fourth order ordinary differ-
ential equation can be obtained from Eqs. (20) and (21) as follows, 
which is identically satisfied by both W and Θ. 
[

D4 +
(
a2 + b2s2)D2 − b2

(
r2

r2 − μ2 − a2s2
)]

H = 0 (22)  

where 

H = W or Θ (23) 

The differential equation, Eq. (22) can be solved for H and hence for 
W and Θ, using standard procedure to give 
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W(ξ)=A1 cosh αξ + A2 sinh αξ + A3 cos βξ + A4 sin βξ (24)  

Θ(ξ)=B1 sinh αξ + B2 cosh αξ + B3 sin βξ + B4 cos βξ (25)  

where A1 − A4 and B1 − B4 are two different sets of constants and α and β 
are given by 

α2 = −

(
a2 + b2s2

)

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2s2

)2
+ 4b2

(
r2

r2 − μ2 − a2s2

)√

2
(26)  

β2 =

(
a2 + b2s2

)

2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
a2 + b2s2

)2
+ 4b2

(
r2

r2 − μ2 − a2s2

)√

2
(27) 

It can be shown with the help of Eq. (21) that the constants A1 − A4 
and B1 − B4 appearing in Eqs. (24) and (25) are related as follows. 

B1 =(kα /L)A1, B2 =(kα /L)A2, B3 =(kβ /L)A3, B4 = − (kβ / L)A4

(28)  

where kα and kβ are given by 

kα =
b2s2 + α2

α , kβ =
b2s2 − β2

β
(29) 

The solution for the axial displacement V can be obtained from Eq. 
(19) by introducing a new variable U where 

U =V − zαΘ (30) 

Substituting Eq. (30) into (19) gives 
(
D2 + a2)U = 0 (31) 

The solution of Eq. (31) is given by 

U(ξ)=A5 cos γξ + A6 sin γξ (32)  

where 

γ = a (33) 

Now, by making use of Eq. (30), the solution for V can be obtained 
from the solution of U in Eq. (32) which with the help of Eqs. (25) and 
(28) give 

V(ξ) = μkαA1 sinh αξ + μkαA2 cosh αξ + μkβA3 sin βξ−
μkβA4 cos βξ + A5 sin γξ + A6 cos γξ (34) 

At this stage, an important comment is in order. Clearly, the solutions 
for the bending displacement (W) and bending rotation (Θ) consist of 
four constants each (see Eqs. (24) and (25)) whereas the solution for the 
axial displacement V in Eq. (34) requires six constants. This is a note-
worthy and important finding because in all previous investigations [14, 
15] of free vibration analysis for axial-bending coupled beams, it was 
decided that six constants are needed to describe each of the three 
displacement components V, W and Θ. As it turned out, this was an 
inadvertent oversight by earlier investigators. Admittedly, the first two 
authors of this paper were also in this category [17] until this recent 
work. Understandably, research is constantly evolving, and progress 
made often replaces or improves earlier findings by later findings. It is 
also worth noting that in earlier works [14,15], the solutions of the 
governing differential equations (Eqs. (15)–(17)) were sought in the 
complex domain unlike the much-simplified real domain solutions given 
here, see Eqs. (24), (25) and (34). 

The amplitudes of the axial force (F), shear force (S) and bending 
moment (M) are obtained as follows by using Eqs. (11)–(13) and the 

Fig. 2. Sign convention for positive axial force F, shear force S and bending moment M.  

Fig. 3. Boundary condition for displacements and forces for a coupled axial-bending Timoshenko beam.  
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explicit solutions for V, W and Θ given above. 

F(ξ)= −
EA
L

(
dV
dξ

− μ dΘ
dξ

)

= −
EA
L

γ(A5 cos γξ − A6 sin γξ) (35)  

S(ξ) = − kAG
(

1
L

dW
dξ

− Θ
)

=
EIe

L3

1
s2

(

ΘL −
dW
dξ

)

=
EIe

L3 (A1gα sinh αξ + A2gα cosh αξ + A3gβ sin βξ − A4gβ cos βξ)

(36)    

where 

gα =
kα − α

s2 , gβ =
kβ + β

s2 (38)  

hα = αkα

(

1 −
μ2

r2

)

, hβ = βkβ

(

1 −
μ2

r2

)

, hγ =
γμ
r2 (39)  

2.2. Derivation of the dynamic stiffness matrix 

The expressions for the axial displacement (V), bending displace-
ment (W) and bending rotation (Θ) together with the expressions for 
axial force (F), shear force (S) and bending moment (M) given above can 
now be used to derive the dynamic stiffness matrix of the coupled axial- 
bending Timoshenko beam by applying the boundary conditions at the 
two ends of the elastic axis of the beam. Referring to the sign convention 
for positive axial force, shear force and bending moment shown in Fig. 2, 
the following boundary conditions for displacements and forces as 
shown in Fig. 3 are applied: 

At ξ = 0 :

V = V1 ; W = W1; Θ = Θ1; F = F1; S = S1; M = M1
(40)  

At ξ = 1 :

V = V2 ; W = W2; Θ = Θ2; F = − F2; S = − S2; M = − M2
(41) 

The displacement vector δ and the force vector P of the beam con-
necting the ends 1 and 2, see Fig. 3, can be expressed as: 

δ= [V1 W1 Θ1 V2 W2 Θ2]
T P= [F1 S1 M1 F2 S2 M2]

T (42)  

where the upper suffix T denotes a transpose. 
The displacement vector δ and the constant vector A (with Ai, i = 1,2, 

…6) can now be related using Eqs. (24), (25), (34) and Eqs. (40), (41) to 
give 

δ= Q A (43)  

where 

Q=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 μkα 0 − μkβ 0 1
1 0 1 0 0 0
0 kα/L 0 − kβ/L 0 0

μkαShα μkαChα μkβSβ − μkβCβ Sγ Cγ
Chα Shα Cβ Sβ 0 0

kαShα/L kαChα/L kβSβ/L − kβCβ/L 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(44)  

with 

Shα = sinh α, Chα = cosh α, Sβ = sin β,
Cβ = cos β, Sγ = sin γ, Cγ = cos γ

(45) 

In a similar manner, the relationship between the force vector P and 
the constant vector A is established by using Eqs. (35)–(37) and Eqs. 
(40), (41) to give 

P=R A (46)  

where 

R=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 −
EA
L

γ 0

0
EIe

L3 gα 0 −
EIe

L3 gβ 0 0

−
EIe

L2 hα 0 −
EIe

L2 hβ 0
EIe

L2 hγ 0

0 0 0 0
EA
L

γCγ −
EA
L

γSγ

−
EIe

L3 gαShα −
EIe

L3 gαChα −
EIe

L3 gβSβ
EIe

L3 gβCβ 0 0

EIe

L2 hαChα
EIe

L2 hαShα
EIe

L2 hβCβ
EIe

L2 hβSβ −
EIe

L2 hγCγ
EIe

L2 hγSγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47) 

By eliminating the constant vector, A from Eqs. (43) and (46), P and δ 
can now be related to give the dynamic stiffness matrix relationship of 
the axial-bending coupled Timoshenko beam as 

P=K δ (48)  

where 

K=R Q− 1 (49)  

is the resulting frequency-dependent dynamic stiffness matrix. It is to be 
noted that the dynamic stiffness matrix K of Eq. (49) will be always 
symmetric. The dynamic stiffness matrix in expanded form, giving the 
relationship between the amplitudes of the forces to those of the dis-
placements at the two nodes of the beam can now be expressed as. 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F1
S1
M1
F2
S2
M2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

k11 k12 k13 k14 k15 k16
k12 k22 k23 k24 k25 k26
k13 k23 k33 k34 k35 k36
k14 k24 k34 k44 k45 k46
k15 k25 k35 k45 k55 k56
k16 k26 k36 k46 k56 k66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1
W1
Θ1
V2
W2
Θ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(50)  

With the advent of the advances in symbolic computation, explicit 
algebraic expression for each of the independent element of the dynamic 
stiffness matrix K was derived by using the symbolic computation 
package REDUCE [21–23]. Thus, the matrix inversion and matrix 
multiplication steps of Eq. (49) were carried out with the help of sym-
bolic algebra. The expressions for the stiffness terms which define K (see 
Eqs. (49) and (50)) are given by 

M(ξ) = −
EI
L2

(

L
dΘ
dξ

−
μ
r2

dV
dξ

)

= −
EI
L2 (A1hα cosh αξ + A2hα sinh αξ + A3hβ cos βξ + A4hβ sin βξ − A5hγ cos γξ + A6hγ sin γξ)

(37)   

J.R. Banerjee et al.                                                                                                                                                                                                                             



Thin-Walled Structures 159 (2021) 107197

6

k11 = k44 =
EA
L

γ cot γ,

k12 = k15 = k21 = k24 = k42 = k45 = k51 = k54 = 0,

k13 = k31 = k46 = k64 = − zαk11,

k14 = k41 = −
EA
L

γcosecγ,

k16 = k61 = k34 = k43 = − zα k14,

k22 = k55 =
EIe

L3
σ2ζ2

Δ
,

k23 = k32 = − k56 = − k65 =
EIe

L2
(σ3τ1 + σ4τ3)

Δ

k25 = k52 = −
EIe

L3 (σ2ζ1/Δ),

k26 = k62 = − k35 = − k53 =
EIe

L2 (σ2τ2/Δ)

k33 = k66 =
EIe

L
(ε1 + ε3Cγ + ε4ζ3Sγ)

(SγΔ)

k36 = k63 = −
EIe

L
(ε2 + ε3 + ε4ζ4)

(SγΔ)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(51)  

where 

σ1 = k2
α − k2

β, σ2 = kαgβ − kβgα,

σ3 = kαgβ + kβgα, σ4 = kαgα − kβgβ
(52)  

τ1 = ChαCβ − 1, τ2 = Chα − Cβ,

τ3 = ShαSβ, τ4 = ShαSβCγ
(53)  

ε1 = μσ1τ4hγ, ε2 = μσ1τ3hγ ,

ε3 = 2μτ1kα kβhγ , ε4 = hα − hβ
(54)  

ζ1 = kαShα − kβSβ, ζ2 = kαShαCβ − kβChαSβ,

ζ3 = kαChαSβ + kβShαCβ, ζ4 = kαSβSγ + kβShαSγ
(55)  

and 

Δ= σ1τ3 + 2τ1kαkβ (56) 

The explicit stiffness expressions given above in Eq. (51) are sur-
prisingly concise and particularly useful when some, but not all the 
stiffness elements are needed, for example when carrying out sensitivity 
analysis required for optimisation problems. 

The dynamic stiffness matrix K developed above, can now be used to 
compute the natural frequencies and mode shapes of either an individ-
ual coupled axial-bending Timoshenko beam, or an assembly of them for 
different boundary conditions. A long-standing and dependable method 
to solve the eigenvalue problem accurately and with certainty is to apply 
the Wittrick-Williams algorithm [20] which has now become an indis-
pensable tool in applying the dynamic stiffness method. The algorithm 
makes use of the Sturm sequence property of the dynamic stiffness 
matrix and it ensures that none of the natural frequencies of the struc-
ture being analysed is missed. There are numerous papers in the liter-
ature with extensive coverage of the algorithm, but for a detailed 
insight, investigators are referred to the original publication of Wittrick 
and Williams [20]. 

3. Results and discussion 

The coupled axial-bending dynamic stiffness theory for a Timo-
shenko beam developed above is now applied to investigate the free 
vibration behaviour of some illustrative examples. It should be noted 
that when obtaining results, all support conditions at the ends (nodes) of 
the beam are applied at the shear centre of the cross-section. This is 
because the theory developed is based on the deformation of the elastic 
axis of the beam, which is essentially the locus of the shear centres of the 

cross-sections. However, in an investigation of this nature, the valida-
tion of the theory with the provision of satisfactory accuracy is essential. 
Unfortunately, no directly comparable results could be found in the 
literature. Therefore, in the absence of published results, the authors 
devised some alternative measures to confirm the validity of their theory 
in a convincing manner. In order to achieve this, they relied on nu-
merical simulation of results using a well-established space frame 
computer program called BUNVIS-RG [24,25] which is based on the 
dynamic stiffness method, but the program is underpinned by classical 
Bernoulli-Euler and Timoshenko beam theories. Although BUNVIS-RG 
[24,25] cannot account for the axial-bending coupling effects as in the 
present case, it has, however, useful capabilities to account for lumped 
or concentrated mass and/or inertia at a node of a structure and 
furthermore, it has a feature to connect a Bernoulli-Euler or Timoshenko 
beam eccentrically between nodes. These two important facilities of 
BUNVIS-RG [24,25], i.e. the capability to lump a mass and/or inertia at 
a node and also to connect a member which is offset from the nodes, are 
exploited here to obtain approximate, but sufficiently accurate 
comparative results to validate the present theory. The beam 
cross-section chosen is an inverted T as shown in Fig. 4. The BUNVIS-RG 
[24,25] model that has been used to validate the theory is illustrated in 
Fig. 5. In essence, the data file for BUNVIS-RG is appropriately adopted 
to idealise the elastic and mass axes of the coupled axial-bending Tim-
oshenko beam in a manner that the stiffness distribution of the beam is 
represented continuously whereas the mass and inertia distribution is 
represented discretely, as shown in Fig. 5. The coupled axial-bending 
Timoshenko beam is essentially divided into N uniform elements 
A1A2, A2A3, A3A4, ………ANAN+1, which all lie on the elastic axis of the 
beam. Now, each of the N uniform elements A1A2, A2A3, A3A4, ………… 
ANAN+1 is given the actual stiffness properties (EA, EI and kAG) of the 
beam, but negligibly small values of the mass and inertia properties (ρA 
and ρI). For a realistic coupled axial-bending Timoshenko beam and for 
the type of problems investigated, the negligibly small values for the 
distributed mass and inertia properties can be typically assigned to be of 
the order of 10− 6 or 10− 7. Next, the uniform elements A1A2, A2A3, A3A4, 
…………ANAN+1 are eccentrically connected to nodes 1, 2, 3, …….N+1 
of the beam which represent the lumped mass and inertia values of in-
dividual elements located at a distance zα from the elastic axis, as shown 
in Fig. 5. 

Through the above adaptation of BUNVIS-RG [24,25], a coupled 
axial-bending Timoshenko beam made of aluminium and with the 
inverted T cross-section of Fig. 4 is now analysed to validate the theory. 
The dimensions used for the cross-section (see Fig. 4) are b = 40 mm, t =
4 mm and the length of the beam L is taken as 1 m. The distance between 

Fig. 4. Cross-sectional details of a coupled axial-bending Timoshenko beam 
(mass axis (centroid): Gc, elastic axis (shear centre): Es). 
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the shear centre and the centroid of the cross-section is worked out to be 
zα = 9.474 mm. The material properties used in the analysis are the 
Young’s modulus E = 70 GPa, the shear modulus G = 26.92 GPa and the 
density ρ = 2700 kg/m3. The shear correction factor (also known as the 
shape factor) k is taken to be 2/3. Using the above data, the stiffness and 
mass properties of the section are calculated as follows: 

(i) Axial stiffness (EA) = 2.128 × 107 N, (ii) Bending stiffness (EIe) =
5135.57 Nm2, (iii) Shear stiffness (kAG) = 5.4564 × 106 N, (iv) Mass 
per unit length (ρA) = 0.8208 kg/m and (v) Rotatory inertia per unit 
length (ρIe) = 0.001981 kgm. 

The first five natural frequencies of the above axial-bending coupled 
Timoshenko beam with Free-Free (F-F), Clamped-Free (C-F), Pinned- 
Pinned (P-P) and Clamped-Clamped (C-C) boundary conditions using 
the present theory are shown in Table 1 alongside the results computed 
by BUNVIS-RG [24,25]. (Note that the zero frequencies corresponding 
to the rigid-body modes for the F-F case are discounted (disregarded) in 
the results shown in Table 1.) The number of elements N used in the 
BUNVIS-RG model was varied and with increasing values of N, the 
convergence of results was assured. The results shown in Table 1 were 
computed using N = 20 which was adequate. The agreement between 
the results computed from the present theory and the ones using 

BUNVIS-RG is excellent for all five natural frequencies and for all 
boundary conditions, as can be seen in Table 1. Given the complexity of 
the problem and the difficulty in obtaining comparative results, such 
surprisingly good agreement is reassuring and no-doubt a useful 
confirmation of the correctness of the theory. Particular attention should 
be given to the results for the F-F boundary condition shown in Table 1 
because the computation of natural frequencies for this case involved all 
dynamic stiffness expressions derived in this paper as there were no 
supports or constraints on the beam for this case. It can now be ascer-
tained from the results reported in Table 1 that the validity of the theory 
is confirmed both credibly and convincingly. 

Now results are computed to demonstrate the effect of the slender-
ness ratio L/r0 where L is the length of the beam and r0 is radius of gy-

ration of the cross-section defined by r0 =

̅̅̅
Ie
A

√

=

̅̅̅̅̅
EIe
EA

√

on the natural 
frequencies of the beam. Note that L/r0 is the reciprocal of r in Eq. (18). 
Without changing the cross-section of the beam in the above example, its 
length (L) is varied from its original value of 1 m in order to alter the 
values of the slenderness ratio (L/r0). Using the present theory, Table 2 
shows the results for the first five natural frequencies of the beam with 
slenderness ratios 25, 50, 75 and 100 and for boundary conditions F-F, 
C-F, P-P and C-C, respectively, alongside the results computed by using 
the earlier coupled axial-bending Bernoulli-Euler theory [17]. As ex-
pected, the differences in results for lower values of the slenderness 
ratios (and higher natural frequencies) are quite pronounced. For 
instance, the discrepancies in the fifth natural frequency using the pre-
sent theory and the earlier theory [17] for F-F, C-F, P-P and C-C 
boundary conditions for slenderness ratio 25 are 20.9%, 20.8%, 21.4% 
and 37.4%, respectively. The mode shapes corresponding to the first five 
natural frequencies for the F-F, C-F, P-P and C-C boundary conditions for 
this slenderness ratio of 25 computed from the present theory are 
illustrated in Fig. 6. In the presentation of modes, the bending 
displacement is shown by solid lines whereas the axial displacement is 
shown by broken (dashed) lines. As can be seen, substantial coupling 
between the axial and bending deformation exists in many of the modes 
shown in Fig. 6. Such coupling cannot be captured by the classical 
Bernoulli-Euler or Timoshenko theories. Some discussion of mode 
shapes shown in Fig. 6 would be instructive. For F-F boundary condition, 
the first and fourth (elastic) modes are respectively bending and axial 
whereas the second, third and the fifth modes show some amount of 
coupling between bending and axial deformation. For the C-F case, the 
first mode shows some coupling between the bending and axial de-
formations whereas the second mode is predominantly bending. By 
contrast, the third mode is axial, leaving the fourth and fifth modes 
bending dominated. The mode shapes for the P-P case reveals a different 
picture. The first mode is primarily bending with a small amount of axial 
deformation whereas the second and third show substantial amount of 
coupling between bending and axial deformation. The fourth mode is 
axial dominated, but there is considerable amount of bending 

Fig. 5. Idealisation of a coupled axial-bending Timoshenko beam using lumped mass (inertia) and eccentrically connected members for approximate analysis using 
BUNVIS-RG [24,25]. 

Table 1 
Natural frequencies of a coupled axial-bending Timoshenko beam for Free-Free 
(F-F), Clamped-Free (C-F), Pinned-Pinned (P-P) and Clamped-Clamped (C-C) 
boundary conditions.  

Boundary 
condition 

Natural 
frequencies ωi 

(rad/s) 

Present 
theory ωi 

(rad/s) 

Approximate result 
using BUNVIS-RG 
[24,25] ωi (rad/s) 

% 
Difference 

F-F ω1 1392.3 1383.6 0.62 
ω2 3784.9 3770.6 0.38 
ω3 7274.3 7282.6 0.12 
ω4 11,727 11,859 1.12 
ω5 15,996 15,937 0.37 

C-F ω1 220.04 220.04 0.00 
ω2 1365.0 1370.5 0.41 
ω3 3761.8 3807.3 1.21 
ω4 7210.1 7367.8 2.19 
ω5 7998.1 8023.8 0.32 

P-P ω1 736.38 739.59 0.43 
ω2 2431.1 2454.2 0.95 
ω3 5510.5 5636.6 2.29 
ω4 9214.8 9508.1 3.18 
ω5 14,276 15,038 5.34 

C-C ω1 1381.2 1400.5 1.39 
ω2 3735.6 3844.7 2.92 
ω3 7147.6 7489.3 4.78 
ω4 11,478 12,271 6.91 
ω5 15,996 15,976 0.12  

J.R. Banerjee et al.                                                                                                                                                                                                                             



Thin-Walled Structures 159 (2021) 107197

8

displacement present. The fifth mode is bending dominated, but with 
substantial axial deformation in the central part of the beam. The 
behaviour of the mode shapes for the C-C is similar to that of the F-F case 
in the sense, the first and fourth modes are respectively bending and 
axial whereas some amount of coupling between bending and axial 
deformation is present in the second, third and fifth mode. It is inter-
esting to note that for the F-F, C-F and C-C boundary conditions, pure 
axial mode can occur (see Eqs. (30)–(32) and Eq. (35)) whereas for the 
P-P case this cannot happen because the pin support at the shear centre 
will couple the axial displacement with the bending rotation (see Eq. 
(30)). This observation can be further verified by the force-displacement 
relationship given by Eq. (50) and considering the zero and non-zero 
elements of the dynamic stiffness matrix and then applying appro-
priate boundary conditions. Another interesting observation that can be 
made from the results shown in Fig. 6 is that unlike the classical beam 
theory which gives exactly the same natural frequencies for the F-F and 
C-C cases (when the rigid-body modes for the F-F case are disregarded), 
the coupled axial-bending dynamic stiffness theory developed in this 
paper reveals somehow a different picture in that it gives different 
natural frequencies for the F-F and C-C cases. Given the complexity of 
the problem, this is expected. Similar observation was made for the 
bending-torsion coupled beams [1–4]. The results shown in Fig. 6 
indicate that for the first five modes, the differences in the natural fre-
quencies for the F-F and C-C cases are 4.67%, 6.57%, 7.53%, 0.0% and 
7.85%, respectively. 

In order to demonstrate the degree of inaccuracy that can creep into 
the result when neglecting the effects of shear deformation and rotatory 
inertia, Fig. 7 shows, for different values of the slenderness ratio, the 
percentage error (ε %) that will incur in the first three natural fre-
quencies (i = 1, 2 and 3) of the beam for clamped-clamped (C-C) 
boundary condition when using coupled axial-bending Bernoulli-Euler 
theory as opposed to the current axial-bending coupled Timoshenko 
theory. This C-C boundary condition was chosen for illustrative purposes 
because the effects of shear deformation and rotatory inertia are much 
more pronounced for this case than for other boundary conditions which 
was also observed in earlier investigation of natural frequencies using 
classical (uncoupled) Timoshenko beam theory [26]. Clearly, with 
increasing values of the slenderness ratio, the error diminishes, as 
expected. 

One of the striking features of the Timoshenko beam theory is that it 

assumes the shear rigidity (kAG) of the beam to have a finite value which 
is approximately of the same order of magnitude of the axial or exten-
sional rigidity (EA) which is in sharp contrast to the Bernoulli-Euler 
theory which assumes implicitly that the shear rigidity of the beam to 
be infinite. It is well recognised that Timoshenko introduced a fictitious 
shear correction factor (also known as the shape factor) k to account for 
the zero shear-stress condition at the free surface of the beam. The value 
of k essentially provides an indicative effectiveness of the cross-section 
in carrying the shear stress. The value of k can be realistically taken 
within the range 0.4 < k < 0.9 depending on the type of cross-section. In 
all the above illustrative examples, the value of k was taken to be 2/3. To 
demonstrate the effect of k on results, Fig. 8 shows for a range of k 
values, the percentage error (ε %) in the first two natural frequencies of 
the above example for C-C boundary condition with the slenderness 
ratio L/r0 = 25 when the coupled axial-bending Bernoulli-Euler theory is 
used as opposed to coupled axial-bending Timoshenko theory. The first 
two natural frequencies were chosen because the modes corresponding 
to these natural frequencies are dominated by bending deformation for 
which the shear correction factor is expected to have a major effect. As 
expected, Fig. 8 shows that with increasing values of k, the error di-
minishes. For a typical value of k = 0.7, error incurred in the two natural 
frequencies are 8.7% and 17.5%, respectively. 

The next set of results was obtained for a portal frame shown in 
Fig. 9. The properties for each of the three beams which make the portal 
frame are taken to be the same as those of the single beam used above, 
but the length (L) of each beam is set to 0.5 m. Table 3 shows the first 
five natural frequencies of the portal frame computed using the current 
DSM based on coupled axial bending Timoshenko theory together with 
the ones computed using the earlier DSM theory based on coupled axial 
bending Bernoulli-Euler theory [17]. Predictably, the earlier theory [17] 
which neglects the effects of shear deformation and rotatory inertia 
overestimates the natural frequencies. The errors are expected to be 
larger for bending dominated higher order modes. For frameworks, 
however, the error may not increase in any predictable manner, i.e. with 
ascending order or descending order of the natural frequencies, given 
the complexity of the problem, associated with the coupling effect 
arising from the axial and bending deformation. For instance, the errors 
incurred in the fourth and fifth natural frequencies, as a result of using 
coupled axial-bending Bernoulli-Euler dynamic stiffness theory as 
opposed to the corresponding Timoshenko theory of the current paper 

Table 2 
Effect of the slenderness ratio on the natural frequencies of coupled axial-bending Timoshenko beam for various boundary conditions.  

Slenderness 
Ratio L/r0 =

1/r 

Natural 
frequency 
ωi (rad/s) 

F-F C-F P-P C-C 

Present 
theory 

Coupled 
Bernoulli- 
Euler 
theory [17] 

% 
error 

Present 
theory 

Coupled 
Bernoulli- 
Euler 
theory [17] 

% 
error 

Present 
theory 

Coupled 
Bernoulli- 
Euler 
theory [17] 

% 
error 

Present 
theory 

Coupled 
Bernoulli- 
Euler 
theory [17] 

% 
error 

25 ω1 8882.7 9075.4 2.17 1444.9 1457.9 0.90 4748.9 4875.3 2.66 8470.7 9241.6 9.10 
ω2 22,666 24,332 7.35 8507.1 9012.0 5.94 14,752 15,678 6.28 21,171 25,058 18.4 
ω3 40,502 41,188 1.69 20,594 20,594 0.00 31,316 35,642 13.8 37,444 41,188 10.0 
ω4 41,188 46,099 11.9 21,912 24,701 12.7 37,185 38,386 3.23 41,188 47,922 16.4 
ω5 60,601 73,239 20.9 38,906 46,989 20.8 51,703 62,789 21.4 55,846 76,710 37.4 

50 ω1 2296.9 2310.3 0.58 364.28 365.11 0.23 1216.5 1224.8 0.68 2267.0 2321.1 2.39 
ω2 6190.1 6322.0 2.13 2245.1 2280.2 1.56 3984.1 4057.2 1.84 6061.2 6371.2 5.11 
ω3 11,762 12,277 4.38 6128.0 6349.1 3.61 8939.8 9318.0 4.23 11,443 12,409 8.44 
ω4 18,711 20,061 7.22 10,297 10,297 0.00 14,540 15,323 5.39 18,110 20,332 12.3 
ω5 20,594 20,594 0.00 11,599 12,342 6.41 20,034 20,535 2.50 20,594 20,594 0.00 

75 ω1 1027.6 1030.3 0.26 162.16 162.32 0.10 543.18 544.85 0.31 1021.5 1032.5 1.08 
ω2 2803.4 2830.8 0.98 1008.6 1015.7 0.70 1799.2 1814.3 0.84 2776.1 2840.7 2.33 
ω3 5414.5 5525.8 2.06 2790.9 2836.9 1.65 4095.7 4176.1 1.96 5343.2 5552.6 3.92 
ω4 8780.8 9086.0 3.48 5378.5 5539.1 2.99 6917.4 7130.5 3.08 8638.2 9142.1 5.83 
ω5 12,822 13,487 5.19 6864.6 6864.6 0.00 10,747 11,280 4.96 12,580 13,588 8.01 

100 ω1 579.39 580.26 0.15 91.265 91.317 0.06 306.05 306.57 0.17 577.45 580.94 0.60 
ω2 1587.7 1596.5 0.55 569.53 571.78 0.40 1017.8 1022.7 0.48 1578.8 1599.7 1.32 
ω3 3085.9 3122.3 1.18 1583.9 1598.8 0.94 2329.8 2355.9 1.12 3062.2 3130.8 2.24 
ω4 5044.0 5145.7 2.02 3073.9 3126.5 1.71 3981.4 4054.2 1.83 4995.6 5163.7 3.37 
ω5 7432.6 7659.0 3.05 5019.6 5148.5 2.57 6218.5 6399.4 2.91 7347.9 7691.7 4.68  
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are 5.35% and 4.74% respectively. The mode shapes of the portal frame 
computed using the present theory are shown in Fig. 10. 

The final set of results was obtained for a continuous beam shown in 
Fig. 11 which is a much bigger structure than the ones chosen in pre-
vious examples. The cross-section of the continuous beam is uniform and 
is an inverted T section (Fig. 4), but with the dimension b = 15 cm, t = 1 
cm. The materials used is that of steel with Young’s modulus E = 200 
GPa, shear modulus G = 76.92 GPa and density, ρ = 7850 kg/m3. The 
shear correction factor k is set to 2/3. The properties of the cross-section 
as required for the analysis are calculated as follows. 

(i) Axial stiffness (EA) = 5.8 × 108 N, (ii) Bending stiffness (EIe) =
2.034833 × 106 Nm2, (iii) Shear stiffness (kAG) = 1.4872 × 108 N, 
(iv) Mass per unit length (ρA) = 22.765 kg/m, (v) Rotatory inertia 
per unit length (ρIe) = 0.079867 kgm and the (vi) Distance between 
the shear centre and centroid (zα) = 0.036207 m. 

The first eight natural frequencies of the continuous beam (see 
Fig. 11) are computed using the present theory and shown in Table 4 

Fig. 6. Natural frequencies and mode shapes of a coupled axial-bending Timoshenko beam with slenderness ratio 25 for F-F, C-F, P-P and C-C boundary conditions. 
W; V. 

Fig. 7. The effect of the slenderness ratio on the percentage error in the first 
three natural frequencies for Clamped-Clamped (C-C) boundary condition of a 
coupled axial-bending beam when using Bernoulli-Euler theory as opposed to 
Timoshenko theory. 
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together with the results computed using the earlier coupled axial- 
bending Bernoulli-Euler theory [17] which neglected the effects of 
shear deformation and rotatory inertia. The modes dominated by axial 
deformation is denoted by A whereas the bending dominated modes are 
denoted by B. The modes with substantial coupling between the axial 
and bending deformations are indicated by the letter C. As it can be seen, 
there are significant differences in the natural frequencies, particularly 
for the higher order bending dominated modes and also for coupled 
modes when the results from the current coupled axial-bending Timo-
shenko theory are compared with the earlier coupled axial-bending 

Fig. 8. The effect of the shear correction factor (shape factor) k on the per-
centage error (ε%) for the first two natural frequencies of a coupled axial- 
bending beam with slenderness ratio L/r0 = 25 and for Clamped-Clamped (C- 
C) boundary condition when using Bernoulli-Euler theory as opposed to the 
Timoshenko theory. 

Fig. 9. A portal frame comprising coupled axial-bending Timoshenko beams.  

Table 3 
Natural frequencies of a portal frame using coupled axial-bending Timoshenko 
and Bernoulli-Euler theories.  

Natural frequency 
number (i) 

Natural frequency ωi (rad/s) % 
Difference 

Present 
Theory 

Coupled axial-bending 
Bernoulli-Euler theory [17] 

1 792.69 803.19 1.32 
2 2906.4 2966.2 2.06 
3 4848.7 5036.4 3.87 
4 5160.4 5436.2 5.35 
5 9432.2 9879.4 4.74  

Fig. 10. Mode shapes of a portal frame using coupled axial-bending Timo-
shenko theory. 
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Bernoulli-Euler theory [17]. For axial dominated natural frequency such 
as the fifth natural frequency shown in Table 4, the effects of shear 
deformation and rotatory inertia are not so pronounced, as expected. 

4. Conclusions 

Using the Timoshenko beam theory, the dynamic stiffness matrix of a 
coupled axial-bending beam is developed. The governing differential 
equations are derived using Hamilton’s principle and they are solved in 
closed explicit analytical form in terms of trigonometric and hyperbolic 
functions. Unlike previous investigations which showed that six arbi-
trary constants are needed to describe axial displacement, bending 
displacement and bending rotation, the current investigation revealed 
that only four arbitrary constants are needed to describe the bending 
displacement and bending rotation whereas six arbitrary constants are 
needed to describe the axial displacement. The dynamic stiffness matrix 
of the axial-bending coupled Timoshenko beam is formulated by relating 
the amplitudes of the forces to those of the corresponding displacements 
of the harmonically vibrating beam. The frequencies and mode shapes 
are computed by applying the Wittrick-Williams algorithm as solution 
technique. The theory is validated by an ingeniously devised numerical 
scheme in which the coupled axial-bending Timoshenko beam is 
approximated by a well-established computer program BUNVIS-RG that 
uses uncoupled classical beam theories. Carefully selected results are 
given to demonstrate the importance of shear deformation and rotatory 
inertia in the free vibration of axial-bending coupled beams with various 
boundary conditions. Representative mode shapes are presented 
showing coupling between axial and bending deformations. The theory 
is further applied to a portal frame and to a continuous beam for which 
natural frequencies computed from simpler Bernoulli-Euler axial- 
bending coupled theory are compared and contrasted. It is in the context 
of the free vibration analysis of axial-bending coupled beam, particu-
larly in the medium to high frequency range, the proposed theory is 
expected to be most effective. The results presented can be used as an aid 
to validate finite element and other approximate methods. 
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