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a b s t r a c t 

An analytical spectral stiffness method is proposed for the efficient and accurate buckling 

analysis of rectangular plates on Winkler foundation subject to general boundary condi- 

tions (BCs). The method combines the advantages of superposition method, stiffness-based 

method and the Wittrick–Williams algorithm. First, exact general solutions of the gov- 

erning differential equation (GDE) of plate buckling considering both elastic foundation 

and biaxial loading is derived by using a modified Fourier series. The superposition of 

such general solutions satisfy the GDE exactly and BCs approximately, which guarantees 

the rapid convergence and high accuracy. Then, based on the exact general solution, the 

spectral stiffness matrix which relates the coefficients of plate generalized displacement 

BCs and force BCs is symbolically developed. As a result, arbitrary BCs can be prescribed 

straightforwardly in the stiffness-based model. As an efficient and reliable solution tech- 

nique, the Wittrick–Williams algorithm with the J 0 problem resolved is applied to obtain 

the critical buckling solutions. The accuracy and efficiency of the method are verified by 

comparing with other methods. Benchmark buckling solutions are provided for plates with 

all possible boundary conditions. Also, dependence of various factors such as foundation 

stiffness, load combinations and aspect ratio on the buckling behaviors are investigated. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

Plate structures have been used in mechanical engineering, aviation, and ship-building as they are light and strong.

However, due to certain complex load combinations, structural instability can arise. Buckling is a common form of instability,

manifest as either local, or global buckling. Global buckling instability will lead to a sudden change in geometry and the loss

of bearing capacity, while local buckling instability will lead to the reduction of the effective section of some structures and

the failure of some components which will accelerate the overall instability of the structure. Once buckling occurs in a plate,

the structure loses its serviceability, which is far more dangerous than the loss of strength. This can also be confirmed by

many practical engineering accidents. As for the cause of buckling instability of a plate, the load combination, boundary
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conditions (BCs), and support condition all exert an important influence on the occurrence of buckling. Therefore, it is an

important problem that needs to be solved when designing the structure of plates under various load combinations to

ensure that buckling analysis is in accordance with arbitrary boundary and support conditions so as to avoid instability. 

Numerical methods are frequently used in the buckling analysis of plates by engineers and researchers because they usu-

ally meet engineering requirements and the error is within an acceptable range. Methods in this category included, but not

limited to, finite element [1] , finite difference [2] , boundary element [3] , finite strip [4,5] , differential quadrature [6] and its

extensions [7,8] , discrete singular convolution [9] , generalized integral transformation [10] and etc. Although these numer-

ical methods can easily cope with plate buckling considering general boundary conditions, these methods usually require

a refined domain grid for more accurate results. In parametric or optimisation studies, remeshment is required, which of-

ten leads to unacceptable computational efficiency and accuracy. In this regard, analytical methods are ideal alternatives to

provide efficient and accurate predictions for parametric and optimization studies. 

It is well-known that analytical buckling solutions can be derived for Levy-type plates with as least one pair of oppo-

site edges are simply supported [11–13] . The first contribution in this regard was probably made by Bryan [14] , who pro-

posed a buckling solution of isotropic rectangular plates, simply supported on four sides. Later, exact buckling solutions are

proposed for simply supported plates under shear [15] , uni-/bi-axial tension and/or compression with uniform [16–20] and

non-uniform [21–24] distributions, those with variable thickness and elastic modulus [25] and stiffeners [26] and Levy plates

on elastic foundation [27–29] . Also, an applicable buckling formula was proposed for plates subjected to both biaxial and

shear loads [30] . More recently, exact Levy-type buckling solutions are obtained for Mindlin plates on elastic foundation

[31] , thick plate made of both isotropic [32] and functionally graded materials [33,34] . Based on the Levy-type solutions,

exact stiffness method (or exact strip method) was firstly proposed by Wittrick and Williams [35] for buckling analysis of

Levy-type plate structures. Further exact stiffness formulations are developed to investigate the critical buckling of curved

composite plates [36] , delaminated composite plates [37,38] and thick composite plates [39] . Although the above methods

are limited to Levy-type plates, it is worthy highlighting that the exact stiffness method is stiffness-based which facilitates

the assembly procedure as well as the application of various boundary conditions on the nodal edges very straightforwardly.

For buckling analysis of plates with more general boundary conditions, many researchers have made contributions by

using different analytical methods, such as the Rayleigh-Ritz method [40,41] , superposition method [42,43] and its exten-

sions [44–50] , Kantorovich-based methods [51–53] amongst many others [54–56] . The Rayleigh–Ritz method [40,41] is a

very common and popular method since it is very versatile in modeling both governing differential equations (GDEs) and

boundary conditions (BCs). In this method, the GDEs are satisfied approximately by chosen admissible functions and BCs are

enforced by using penalty method [57] or Lagrangian multipliers. However, some drawbacks may be involved in some cases

such as the need of choosing proper admissible functions and also inaccuracy or numerical instabilities may be introduced

upon satisfaction of boundary and continuity conditions [58] . On the other hand, superposition method [42,43] is an effi-

cient and accurate analytical method for eigenvalue analysis of plates where the GDE is satisfied exactly and BCs is satisfied

approximately. Cleghorn and Yu [44] used the superposition method to develop the buckling solutions of the rectangular

thin plates with complete fixed support and simple opposite support. Li and his co-authors [46–48] studied the buckling

behaviors of rectangular plates under three types of BCs by using the symplectic superposition method. Papkov and Baner-

jee [45] has proposed a limitant theory combined with superposition method which can be applied to plate vibration and

buckling analyses. Their method permits the evaluation of upper and low bounds at the same time, which is a significant

advantage. Tenenbaum et al. [49,50] combined the superposition method with a stability determination method for solving

the buckling loads of isotropic and orthotropic rectangular plates with different classical boundary conditions. Although the

superposition-based methods exhibit high accuracy and rapid convergence rate, different formulae are needed for differ-

ent BCs. Moreover, buckling eigenvalues are found by extensively evaluating the determinant (or inverse) of the analytical

matrix [46,47] at a wide range of buckling load parameters, which is likely to miss some of the eigenvalues, increase the

numerical cost significantly and involve some numerical instabilities in some cases. Some important properties of the above

Rayleigh–Ritz method and superposition methods are given and compared in Table 1 . Besides, Shufrin et al. [52] adopted a

semi-analytical extended Kantorovich method [59] for buckling analysis of laminated rectangular plates under general BCs.

By combining Kantorovich procedure and Galerkin method, Lopatin and Morozovb [53] derived the analytical buckling so-

lutions of orthotropic rectangular plates with two opposite edges fixed and the other two free and subjected to linearly

distributed in-plane loads. However, the results of Kantorovich-based method have discrepancy with accurate solutions due

to the nature of the method as explained in [60] . Ruocco and his co-authors [54–56] discussed the buckling behaviors of

composite plates under different BCs by using a semi-analytical method. In this type of method, the deformation in one

direction is described by four pre-assumed functions which does not necessarily form a complete set, therefore introducing

inaccuracy in the results. 

It is clear from the above review that different analytical methods have different advantages and disadvantages on buck-

ling analysis of plates. Is that possible to propose a highly efficient and accurate analytical method for buckling analy-

sis of plates considering any arbitrary BCs and foundation supports, by combining those methods’ advantages and mean-

while avoiding their disadvantages? A possibility has been opened up in recent years, that a new analytical method called

the spectral dynamic stiffness method has been successfully developed for the free vibration analysis of plates structures

[62–64] with general boundary conditions, which has been demonstrated to be a highly accurate and efficient method. Thus,

the main objective of this paper is to extend the method to stability analysis by proposing a spectral stiffness formulation

for buckling analysis of plates with general BCs on elastic foundation and developing related solution techniques. Firstly, the
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Table 1 

Comparisons on the properties of three different analytical methods for buckling analysis of rectangular plates with non-Levy-type boundary conditions. 

Rayleigh–Ritz method Superposition method Present 

Formulations (Shape functions, abbr. SFs) 

GDE (domain) Approximate Exact Exact 

BCs(boundary) Approximate (Lagrangian multiplier or 

penalty method) 

Approximate (series) Approximate (series) 

Convergence Depend on how SFs satisfy GDE & BCs Rapid Rapid 

Building blocks (BB) Unique BB for general BCs Different BB for different BCs Unique BB for general BCs 

Matrices Symmetric stiffness & geometric 

stiffness 

Nonsymmetric, could be 

stiffness/non-stiffness 

Symmetric stiffness 

Solution technique 

Solvers Linear algebra solvers Matrix determinant or 

inversion 

Wittrick-Williams algorithm 

Efficiency Medium (due to large number of 

DOFs) 

Medium (due to intensive 

determinant & inverse 

calculations) 

High 

Numerical stability Depends on 2D SFs’ orthogonality [61] 

& penalty parameter [57] 

Might be unstable Stable (due to 1D modified 

Fourier series’ orthogonality) 

Possible of missing roots Impossible Likely Impossible 

Fig. 1. Coordinate system and notations for a rectangular plate placed on elastic Winkler foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exact general solution of the governing partial differential equation (GDE) for plate buckling considering foundation stiffness

is derived by using the modified Fourier series (MFS). At the same time, the BCs of the generalized displacements and forces

of the plates are expressed by the MFS. Then the spectral stiffness formulation is derived to correlate the MFS coefficients of

all displacements and forces BCs. It is worth noting that the spectral stiffness formulation satisfies the GDE exactly and any

arbitrary BCs can be prescribed straightforwardly by in the form of the MFS coefficients. Finally, the generalized Wittrick–

Williams algorithm is used to solve the eigenvalue problem of the spectral stiffness matrix. The critical buckling solution of

plate structure can be obtained efficiently and accurately. Essentially, the proposed method has the advantages of different

methods (see Table 1 ), i.e., the rapid convergence rate and high accuracy of the superposition method [42] , the easiness

in describing general boundary conditions as in the stiffness-based method [35] and the high efficiency, numerical stability

and certainty that no buckling mode will be missed by applying the Wittrick–Williams algorithm [65] . 

In the rest of this paper, the spectral stiffness formulation for rectangular plates on Winkler foundation is developed

in Section 2 . Then, Section 3 describes the solution technique, i.e., the generalized Wittrick–Williams algorithm for solving

the corresponding buckling eigenproblem. Section 4 demonstrates its validity, accuracy and versatility, and investigates the

effects of foundation stiffness, load combination and aspect ratio on the buckling behaviors, and where benchmark solutions

are provided for plate buckling under all possible BCs. Finally, Section 5 concludes the paper. 

2. Spectral stiffness formulation for a rectangular plate on Winkler foundation with general boundary conditions 

2.1. Governing differential equation and general solutions 

Fig. 1 shows an isotropic Kirchhoff plate with dimension [ −a, a ] × [ −b, b] and thickness h and laid on an elastic Win-

kler foundation. The plate is subjected to inplane loading in the x ( ̂  N x ) and y ( ̂  N y ) directions, which could be either ten-

sile(positive) and compressive(negative). The governing differential equation (GDE) for buckling of a thin plate placed on

elastic Winkler foundation can be formulated based on variational principle [66] as follows 

D 

[
∂ 4 w 

∂x 4 
+ 2 

∂ 4 w 

∂ x 2 ∂ y 2 
+ 

∂ 4 w 

∂y 4 

]
− ˆ N x 

∂ 2 w 

∂x 2 
− ˆ N y 

∂ 2 w 

∂y 2 
+ ̂

 k w = 0 , (1) 
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where (x, y ) ∈ [ −a, a ] × [ −b, b] , D is the bending stiffnesses and 

ˆ k is the stiffness of the Winkler foundation. 

By dividing both sides of Eq. (1) by D , one may get 

∂ 4 w 

∂x 4 
+ 2 

∂ 4 w 

∂ x 2 ∂ y 2 
+ 

∂ 4 w 

∂y 4 
− N x 

∂ 2 w 

∂x 2 
− N y 

∂ 2 w 

∂y 2 
+ kw = 0 , (2)

where 

k = 

ˆ k /D , N x = 

ˆ N x /D , N y = 

ˆ N y /D . 

The general solution for Eq. (2) is derived based on the variable separation principle following a similar procedure as

the spectral dynamic stiffness method (SDSM) [60,67] . It has been proven mathematically and physically in [67] that for a

rectangular element (2D), a two-series general solution should be sought which forms a complete set of the solutions for

the rectanguler element with arbitrary boundary conditions (BCs) 

w (x, y ) = 

∞ ∑ 

m =1 

X 

∗
m 

(x ) ̂  Y m 

(y ) + 

∞ ∑ 

n =1 

Y ∗n (y ) ̂  X n (x ) , (3)

where X ∗m 

(x ) and Y ∗n (y ) described in x ∈ [ −a, a ] and y ∈ [ −b, b] take the form of one-dimensional (1D) modified Fourier basis

functions 

X 

∗
m 

(x ) = T k (αkm 

x ) = 

{
cos (αkm 

x ) , k = 0 

sin (αkm 

x ) , k = 1 

(4a)

Y ∗n (y ) = T j (β jn y ) = 

{
cos (β jn y ) , j = 0 

sin (β jn y ) , j = 1 

(4b)

where T k , T j represent modified Fourier basis functions with the wavenumbers αkm 

and β jn which are shown as follows 

αkm 

= 

{
mπ/a k = 0 

(m + 1 / 2) π/a k = 1 

, β jn = 

{
nπ/b j = 0 

(n + 1 / 2) π/b j = 1 

. (5)

Consequently, a two-series general solution of GDE of Eq. (2) in the form of Eq. (3) can be derived 

w (x, y ) = 

∑ 

m ∈ N 
k ∈{ 0 , 1 } 

T k (αkm 

x ) 
[ 

C km 1 ch (p 1 km 

y ) + C km 2 ch (p 2 km 

y ) + C km 3 sh (p 1 km 

y ) + C km 4 sh (p 2 km 

y ) 
] 

+ 

∑ 

n ∈ N 
j= { 0 , 1 } 

T j (β jn y ) 
[ 

C jn 1 ch (q 1 jn x ) + C jn 2 ch (q 2 jn x ) + C jn 3 sh (q 1 jn x ) + C jn 4 sh (q 2 jn x ) 
] 

, (6)

where the wave parameters p 1 km 

, p 2 km 

and q 1 jn , q 2 jn are obtained as follows. Substituting the X ∗m 

(x ) and Y ∗n (y ) of Eq. (4) into

Eq. (2) leads to the following two characteristic equations, respectively. { 

α4 
km 

− 2 α2 
km 

p 2 
km 

+ p 4 
km 

+ N x α2 
km 

− N y p 
2 
km 

+ k = 0 

q 4 
jn 

− 2 q 2 
jn 
β2 

jn 
+ β4 

jn 
− N x q 

2 
jn 

+ N y β2 
jn 

+ k = 0 

. (7)

Therefore, ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p 1 , 2 km 

= 

√ 

N y 

2 

+ α2 
km 

∓
√ 

N 

2 
y 

4 

+ (N y − N x ) α2 
km 

− k 

q 1 , 2 jn = 

√ 

N x 

2 

+ β2 
jn 

∓
√ 

N 

2 
x 

4 

+ (N x − N y ) β2 
jn 

− k 

. (8)

Additionally, it should be noted in passing that, for any k, j ∈ { 0 , 1 } , m, n ∈ N , we can get the following relationships based

on Eq. (8) . 

p 2 1 km 

+ p 2 2 km 

= 2 α2 
km 

+ N y , p 2 1 km 

p 2 2 km 

= α4 
km 

+ N x α
2 
km 

+ k , (9a)

q 2 1 jn + q 2 2 jn = 2 β2 
jn + N x , q 2 1 jn q 

2 
2 jn = β4 

jn + N y β
2 
jn + k , (9b)
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p 2 2 km 

− p 2 1 km 

= 

√ 

N 

2 
y + 4(N y − N x ) α2 

km 

− 4 k , (9c) 

q 2 2 jn − q 2 1 jn = 

√ 

N 

2 
x + 4(N x − N y ) β2 

jn 
− 4 k , (9d) 

(p 2 1 km 

+ β2 
jn )(p 2 2 km 

+ β2 
jn ) = (q 2 1 jn + α2 

km 

)(q 2 2 jn + α2 
km 

) = α4 
km 

+ 2 α2 
km 

β2 
jn + β4 

jn + N x α
2 
km 

+ N y β
2 
jn + k . (9e) 

Next, by using the symmetric and anti-symmetric properties of trigonometric functions and hyperbolic functions, we can

divide the general solution w ( x, y ) of Eq. (6) into the sum of the four solution components. 

w (x, y ) = 

∑ 

k, j∈{ 0 , 1 } 
w 

k j (x, y ) = w 

00 + w 

01 + w 

10 + w 

11 , (10)

where â0â for symmetric components and â1â for antisymmetric components respectively, k and j express the symmetry

properties relating to x and y , 

w 

k j (x, y ) = 

∑ 

m ∈ N 

{ ∑ 

i =1 , 2 

[
A ikm 

H j (p ikm 

y ) 
]
T k (αkm 

x ) 

} 

+ 

∑ 

n ∈ N 

{ ∑ 

i =1 , 2 

[
B i jn H k (q i jn x ) 

]
T j (β jn y ) 

} 

, (11) 

and where A 1 km 

, A 2 km 

, B 1 jn and B 2 jn are unknown coefficients to be solved. H represents hyperbolic functions defined as

follows. 

H j (p ikm 

y ) = 

{
ch (p ikm 

y ) j = 0 

sh (p ikm 

y ) j = 1 

, H k (q i jn x ) = 

{
ch (q i jn x ) k = 0 

sh (q i jn x ) k = 1 

. (12) 

Understandably, the kj solution components can be represented by the function only in the first quadrant ( x × y = [0 , a ] ×
[0 , b] ). 

2.2. Boundary conditions and spectral stiffness formulation 

The boundary conditions (BCs) of the plate can be derived from the variational principle [66] to obtain Eq. (13) 

δw ; v x = −D 

[
∂ 3 w 

∂x 3 
+ (2 − ν) 

∂ 3 w 

∂ x∂ y 2 
− N x 

∂w 

∂x 

]
, (13a) 

δφx = −δ
∂w 

∂x 
; m xx = −D 

(
∂ 2 w 

∂x 2 
+ ν

∂ 2 w 

∂y 2 

)
, (13b) 

δw ; v y = −D 

[
∂ 3 w 

∂y 3 
+ (2 − ν) 

∂ 3 w 

∂ y∂ x 2 
− N y 

∂w 

∂y 

]
, (13c) 

δφy = −δ
∂w 

∂y 
; m yy = −D 

(
∂ 2 w 

∂y 2 
+ ν

∂ 2 w 

∂x 2 

)
. (13d) 

In above equation φx and φy are the bending rotations, m xx , m yy are bending moments, v x , v y are shear forces, and ν
is the Poisson ratio. It is noteworthy that buckling load coefficients N x and N y appear in the shear force BCs of Eqs. (13) ,

which were derived from variational principle [66] . Some existing research for buckling analysis has taken wrong expres-

sions [68] for force BCs as pointed out by Coman and Liu [69] . It is found that if problematic BCs are adopted in the spectral

stiffness formulation, the developed stiffness matrix will not be symmetric as it should be. This is expected since problem-

atic BCs violate the energy conservation law of the system physically and will lead to an asymmetric stiffness matrix from a

mathematical point of view. Therefore, it is suggested to utilize the energy-based variational principle [66] which can help

us avoid mistakes in derivation of GDEs and BCs. 
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Next, the above generalized displacement and force BCs will be adopted to develop the spectral stiffness formulation.

In the above section, four kj solution components w 

kj ( x, y ) in the first quadrant of xOy plane, namely, [0, a ] × [0, b ] are

representable. Accordingly, there are four kj components for the corresponding BCs, which can be expressed in terms of the

modified Fourier series 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 

k j 
a 

w 

k j 

b 

φk j 
a 

φk j 

b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑ 

n ∈ N 
w a jn 

T j (β jn y ) √ 

ζ jn b ∑ 

m ∈ N 
w bkm 

T k (αkm 

x ) √ 

ζkm 

a ∑ 

n ∈ N 
φa jn 

T j (β jn y ) √ 

ζ jn b ∑ 

m ∈ N 
φbkm 

T k (αkm 

x ) √ 

ζkm 

a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v k j 
a 

v k j 

b 

m 

k j 
a 

m 

k j 

b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= D 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∑ 

n ∈ N 
v a jn 

T j (β jn y ) √ 

ζ jn b ∑ 

m ∈ N 
v bkm 

T k (αkm 

x ) √ 

ζkm 

a ∑ 

n ∈ N 
m a jn 

T j (β jn y ) √ 

ζ jn b ∑ 

m ∈ N 
m bkm 

T k (αkm 

x ) √ 

ζkm 

a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (14)

where 
√ 

ζ jn b and 

√ 

ζkm 

a were introduced [67] to ensure that the resultant component matrix K 

kj remain symmetric for the

general case when a � = b . 

Similar to the spectral dynamic stiffness method [60,67] , the modified Fourier series coefficients for the kj components

of both force and displacement BCs can be related by the spectral stiffness method. This is achieved by substituting the kj

solution components of Eq. (11) into the natural BCs of Eq. (13) . ⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

w 

k j 
a 

w 

k j 

b 

φk j 
a 

φk j 

b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

w 

k j | x = a 
w 

k j | y = b 
−∂ x w 

k j | x = a 
−∂ y w 

k j | y = b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

v k j 
a 

v k j 

b 

m 

k j 
a 

m 

k j 

b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= D 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−
(
∂ 3 x + (2 − ν) ∂ x ∂ 2 y − N x ∂ x 

)
w 

k j | x = a 
−
(
∂ 3 y + (2 − ν) ∂ y ∂ 2 x − N y ∂ y 

)
w 

k j | y = b 
−
(
∂ 2 x + ν∂ 2 y 

)
w 

k j | x = a 
−
(
∂ 2 y + ν∂ 2 x 

)
w 

k j | y = b 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (15)

With the help of the expressions φk j 
a , φ

k j 

b 
, v k j 

a and v k j 

b 
of both Eqs. (14) and (15) , 

− ∂ x w 

k j 
∣∣

x = a = 

∑ 

n ∈ N 
φa jn T j (β jn y ) / 

√ 

ζ jn b , (16a)

− ( ∂ 3 x + (2 − ν) ∂ x ∂ 
2 
y − N x ∂ x ) w 

k j 
∣∣

x = a = 

∑ 

n ∈ N 
v a jn T j (β jn y ) / 

√ 

ζ jn b , (16b)

− ∂ y w 

k j 
∣∣

y = b = 

∑ 

m ∈ N 
φbkm 

T k (αkm 

x ) / 
√ 

ζkm 

a , (16c)

− ( ∂ 3 y + (2 − ν) ∂ y ∂ 
2 
x − N y ∂ y ) w 

k j 
∣∣

y = b = 

∑ 

m ∈ N 
v bkm 

T k (αkm 

x ) / 
√ 

ζkm 

a , (16d)

which yield 

− φa jn / 
√ 

ζ jn b = q 1 jn H 

∗
k (q 1 jn a ) B 1 jn + q 2 jn H 

∗
k (q 2 jn a ) B 2 jn , (17a)

− v a jn / 
√ 

ζ jn b = 

(
q 2 1 jn − (2 − ν) β2 

jn − N x 

)
q 1 jn H 

∗
k (q 1 jn a ) B 1 jn + 

(
q 2 2 jn − (2 − ν) β2 

jn − N x 

)
q 2 jn H 

∗
k (q 2 jn a ) B 2 jn , (17b)

− φbkm 

/ 
√ 

ζkm 

a = p 1 km 

H 

∗
j (p 1 km 

b) A 1 km 

+ p 2 km 

H 

∗
j (p 2 km 

b) A 2 km 

, (17c)
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− v bkm 

/ 
√ 

ζkm 

a = 

(
p 2 1 km 

− (2 − ν) α2 
km 

− N y 

)
p 1 km 

H 

∗
j (p 1 km 

b) A 1 km 

+ 

(
p 2 2 km 

− (2 − ν) α2 
km 

− N y 

)
p 2 km 

H 

∗
j (p 2 km 

b) A 2 km 

. 

(17d) 

All unknown coefficients A 1 km 

, A 2 km 

, B 1 jn and B 2 jn of the general solution in Eq. (11) can be determined to be 

B 1 jn = 

v a jn − (νβ2 
jn 

− q 2 
1 jn 

) φa jn √ 

ζ jn b q 1 jn H 

∗
k 
(q 1 jn a )(q 2 

2 jn 
− q 2 

1 jn 
) 

, (18a) 

B 2 jn = −
v ajn −

(
νβ2 

jn 
− q 2 

2 jn 

)
φajn √ 

ζjn b q 2 jn H 

∗
k 

(
q 2 jn a 

)(
q 2 

2 jn 
− q 2 

1 jn 

) , (18b) 

A 1 km 

= 

v bkm 

− (να2 
km 

− p 2 
1 km 

) φbkm √ 

ζkm 

a p 1 km 

H 

∗
j 
(p 1 km 

b)(p 2 
2 km 

− p 2 
1 km 

) 
, (18c) 

A 2 km 

= −
v bkm 

−
(
να2 

km 

− p 2 
2 km 

)
φbkm √ 

ζkm 

a p 2 km 

H 

∗
j ( p 2 km 

b ) 
(

p 2 
2 km 

− p 2 
1 km 

) . (18d) 

The above unknown coefficients are then substituted into the expressions for w 

k j 
a , w 

k j 

b 
, m 

k j 
a and m 

k j 

b 
in Eq. (14) . Through

a similar procedure as in [67] , the modified Fourier series coefficients for all displacements and forces BCs can be related

by the following matrix form 

[
w 

k j 

m 

k j 

]
= 

[ 

A 

k j 

wφ
A 

k j 
w v 

A 

k j 

mφ
A 

k j 
m v 

] [
φk j 

v k j 

]
, (19) 

where 

v k j = 

[ 

v k j 
a 

v k j 

b 

] 

, m 

k j = 

[ 

m 

k j 
a 

m 

k j 

b 

] 

, w 

k j = 

[ 

w 

k j 
a 

w 

k j 

b 

] 

, φk j = 

[ 

φk j 
a 

φk j 

b 

] 

(20) 

and in which 

The expressions for the four matrices A 

k j 
wv , A 

k j 

mφ
, A 

k j 

wφ
and A 

k j 
m v are given as follows 

A 

k j 

wφ
(n, n ) = −( 
1 �1 − 
2 �2 ) / 
5 , A 

k j 

wφ
(n, m ) = −
7 
9 , 

A 

k j 

wφ
(m, n ) = −
8 
10 , A 

k j 

wφ
(m, m ) = −( 
3 �3 − 
4 �4 ) / 
6 , 

A 

k j 
w v (n, n ) = (�1 − �2 ) / 
5 , A 

k j 
w v (n, m ) = 
7 , 

A 

k j 
w v (m, n ) = 
8 , A 

k j 
w v (m, m ) = (�3 − �4 ) / 
6 , 

A 

k j 

mφ
(n, n ) = −

(

2 

1 �1 − 
2 
2 �2 

)
/ 
5 , A 

k j 

mφ
(n, m ) = −
7 
11 , 

A 

k j 

mφ
(m, n ) = −
8 
11 , A 

k j 

mφ
(m, m ) = −

(

2 

3 �3 − 
2 
4 �4 

)
/ 
6 , 

A 

k j 
m v (n, n ) = (
1 �1 − 
2 �2 ) / 
5 , A 

k j 
m v (n, m ) = 
7 
10 , 

A 

k j 
m v (m, n ) = 
8 
9 , A 

k j 
m v (m, m ) = (
3 �3 − 
4 �4 ) / 
6 , 
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where 


7 = 
8 = 2(−1) m + n / 
{ √ 

ζkm 

ζ jn ab [(α2 
km 

+ β2 
jn 

) 2 + N x α2 
km 

+ N y β2 
jn 

+ k ] 

} 
. 

It can be found that A 

k j 
w v and A 

k j 

mφ
are symmetric matrices and A 

k j 

wφ
= −A 

k j 
m v 

T 
. This is because the formulation is a con-

servative system and we have also introduced 

√ 

ζ jn b and 

√ 

ζkm 

a in the modified Fourier series. Otherwise, these matrices

will not have the above symplectic properties. By organizing coefficient vectors for force BCs on the left-hand side and

displacement BCs on the right-hand side, we have 

f 
k j = K 

k j d 

k j 
, (21)

where 

f 
k j = D 

[
v k j 

m 

k j 

]
, d 

k j = 

[
w 

k j 

φk j 

]
, 

K 

k j = D 

[ 

A 

k j 
w v 

−1 −A 

k j 
w v 

−1 A 

k j 

wφ

A 

k j 
m v A 

k j 
w v 

−1 A 

k j 

mφ
− A 

k j 
m v A 

k j 
w v 

−1 A 

k j 

wφ

] 

. 

Next, we need to develop the spectral stiffness matrix for a whole plate which relates the modified Fourier series coeffi-

cients of displacement BCs and force BCs. The displacement and force BCs on the four edges (denoted by subscripts 1, 2, 3

and 4 as in Fig. 1 ) of the plate can be written in the following vector form ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 

φ1 

w 2 

φ2 

w 3 

φ3 

w 4 

φ4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w (a, y ) 
φx (a, y ) 
w (x, b) 
φy (x, b) 

w (−a, y ) 
φx (−a, y ) 
w (x, −b) 
φy (x, −b) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v 1 
m 1 

v 2 
m 2 

v 3 
m 3 

v 4 
m 4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v x (a, y ) 
m xx (a, y ) 
v y (x, b) 

m yy (x, b) 
v x (−a, y ) 

m xx (−a, y ) 
v y (x, −b) 

m yy (x, −b) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (22)

Similar to Eq. (14) , arbitrarily prescribed BCs on the four plate boundaries can be transformed into the vector form f and d

by using the modified Fourier series formula. Since the general solution has been partitioned into four kj components as in

Eq. (10) , so the vectors f , d for displacement and force BCs can be related to the four kj components f kj , d kj of Eq. (21) with

the relationship 

f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 1 

f 2 

f 3 

f 4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= T 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 
00 

f 
01 

f 
10 

f 
11 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, d = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

d 1 

d 2 

d 3 

d 4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= T 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

d 

00 

d 

01 

d 

10 

d 

11 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (23)
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in which 

f i = 

[ 
v 0 i 

T 
, v 1 i 

T 
, m 

0 
i 

T 
, m 

1 
i 

T 
] T 

, d i = 

[ 
w 

0 
i 

T 
, w 

1 
i 

T 
, φ0 

i 

T 
, φ1 

i 

T 
] T 

, (24) 

where T is the total transfer matrix taking the form 

T = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

I n O O O O O O O I n O O O O O O O 

O O O O I n O O O O O O O I n O O O 

O I n O O O O O O O I n O O O O O O 

O O O O O I n O O O O O O O I n O O 

O O I m 

O O O I m 

O O O O O O O O O 

O O O O O O O O O O I m 

O O O I m 

O 

O O O I m 

O O O I m 

O O O O O O O O 

O O O O O O O O O O O I m 

O O O I m 

I n O O O O O O O −I n O O O O O O O 

O O O O I n O O O O O O O −I n O O O 

O −I n O O O O O O O I n O O O O O O 

O O O O O O −I n O O O O O O I n O O 

O O I m 

O O O −I m 

O O O O O O O O O 

O O O O O O O O O O I m 

O O O −I m 

O 

O O O −I m 

O O O I m 

O O O O O O O O 

O O O O O O O O O O O −I m 

O O O I m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (25) 

Here O is null matrix, I n and I m 

are identity matrices of dimension n and m respectively, and T −1 = T T / 2 . Finally, we have

f = K d , (26) 

where 

K = T diag ( K 

00 
, K 

01 
, K 

10 
, K 

11 ) T T / 2 . (27) 

If a boundary line node (either w or φ) is restrained, the corresponding rows and columns of the spectral stiffness matrix

K are removed. In such a way, all possible BCs along the plate edges can be applied easily, leading to the final spectral

stiffness matrix K f for the plate subject to those BCs. 

3. The Wittrick–Williams algorithm enhancement 

A reliable and efficient solution technique to extract buckling load parameters from the analytical spectral stiffness ma-

trix of a structure is the powerful Wittrick–Williams ( WW ) algorithm [65] . This algorithm ensures that no buckling load

parameter is lost by monitoring the Sturm sequence of the ensuring matrix. According to the WW algorithm, the number of

buckling eigenvalues between 0 and a trial buckling load coefficients (mode count J ) of the final structure is 

J = J 0 + s { K f } , (28) 

where J 0 count is mode count of a plate element with all node lines fixed, and s ( K f ) is the sign count (negative inertia) of

K f evaluated at the trial buckling load parameter. It is well known that in buckling analysis the first nonzero eigenvalue is of

importance. However, J 0 is important in the method due to two reasons. First, for some of the most practical cases such as

fully clamped cases, the J 0 is needed, otherwise, more elements should be involved in the modeling and will introduce un-

necessary complexity. Second, higher buckling modes are sometimes very important in the optimization analysis especially

in plate problems since mode veering is very likely to occur when changing certain parameters, in which the second (or

higher) buckling mode will become the first. It is therefore important to trace the first couple of buckling modes in para-

metric or optimization analysis. However, the J 0 count is a difficult issue in the WW algorithm. In much previous research,

J 0 count problems were avoided by partitioning a large element into a small mesh to ensure J 0 is zero, which affects the

computational efficiency significantly. In this paper, an indirect method is applied to obtain J 0 by taking advantage of the

closed-form buckling solutions of a fully guided plate. According to WW algorithm of Eq. (28) , the mode count of a fully

guided plate is given as J G = J 0 + s ( K G ) , where s ( K G ) is the sign count of the formulated stiffness matrix K G . Therefore, J 0
can be obtained from 

J 0 = J G − s ( K G ) , (29) 

in which 

s ( K G ) = 

∑ 

k, j∈{ 0 , 1 } 
s ( K 

k j 
G 

) = 

∑ 

k, j∈{ 0 , 1 } 
s ( A 

k j 
w v ) (30) 
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It is noted that the above indirect strategy has been successfully applied to plate elements in [67,70] which improves the

computational efficiency. However, when this strategy is applied to buckling analysis, the formulation of J G will be com-

pletely different which will be described in what follows. In the case of all guided edges of the plate ( GGGG ), the shape

function has the following relation 

w (x, y ) = C ′ cos 

(
mπ

2 a 
x̌ 

)
cos 

(
nπ

2 b 
y̌ 

)
, m, n ∈ { 0 , 1 , 2 , . . . } except for m = n = 0 (31)

where x̌ ∈ [0 , 2 a ] , y̌ ∈ [0 , 2 b] . It should be noted that m = n = 0 is related to the situation when the plate remains flat which

apparently has no physical meaning in the buckling analysis. Then, substituting Eq. (31) into Eq. (2) leads to the character-

istic equation 

m 

4 + a 1 m 

2 n 

2 + a 2 n 

4 + a 3 m 

2 + a 4 n 

2 + a 5 = 0 , (32)

where a 1 = 2(a/b) 2 , a 2 = (a/b) 4 , a 3 = (2 a/π ) 2 N x , a 4 = (2 a/π ) 2 (a/b) 2 N y , a 5 = (2 a/π ) 4 k . Next, we find the number of eigen-

values lower than the trial buckling load parameters which can be computed following the procedure below 

tep 1 Initialise J G = 0 , input [ N x , N y ] 
T ; 

tep 2 If N x ≤ 0 (zero or compressive) 
• Let n = 0 , Eq. (32) becomes m 

4 + a 3 m 

2 = 0 , leading to m 

∗ = 

√ −a 3 ; 
• Let m range from 0 to � m 

∗� , where � m 

∗� ’ is the largest integer not greater than m 

∗; 
• Substituting m into Eq. (32) leads to a 2 n 

4 + b 2 n 
2 + c 2 = 0 where b 2 = a 1 m 

2 + a 4 , c 2 = m 

4 + a 3 m 

2 − a 5 , resulting in

a root n ∗ = 

√ (
−b 2 + 

√ 

b 2 
2 

− 4 a 2 c 2 

)
/ (2 a 2 ) ; 

• J G = J G + � n ∗� . 
tep 3 Otherwise if N x > 0 (tensile) and N y ≤ 0 (compressive) 

• Let m = 0 , Eq. (32) becomes a 2 n 
4 + a 4 n 

2 = 0 , leading to n ∗ = 

√ −a 4 /a 2 ; 
• Let n range from 0 to � n ∗� ; 
• Substituting n into Eq. (32) leads to m 

4 + b 3 m 

2 + c 3 = 0 where b 3 = a 1 n 
2 + a 3 , c 2 = a 2 n 

4 + a 4 n 
2 − a 5 , resulting in

a root m 

∗ = 

√ (
−b 3 + 

√ 

b 2 
3 

− 4 c 3 

)
/ 2 ; 

• J G = J G + � m 

∗� ; 
tep 4 Output the mode count J G ; 

tep 5 Calculate s ( K G ) and apply Eq. (29) leading to J 0 ; 

tep 6 Calculate K f and apply Eq. (28) resulting in the mode count J for the final structure; use the bisection method to find

the critical buckling load parameter. 

Buckling modes can be obtained by the following procedure. Firstly, arbitrary values are assigned to the selected degrees

of freedom in the displacement vector, and then we can obtain the remaining values in the displacement vector d f . Then

d kj in Eq. (21) is determined by Eq. (24) . Subsequently, unknown coefficients A 1 km 

, A 2 km 

and B 1 jn , B 2 jn are determined by

Eq. (18) , and the modal shapes are recovered by substituting unknowns into Eq. (11) . 

4. Results and discussions 

The method described above is implemented into a MATLAB program which computes the critical buckling loads and

mode shapes of rectangular plates with all possible BCs. The convergence, accuracy and numerical efficiency studies are

carried out in Section 4.1 below. Then the method is applied to plates placed on Winkler foundation in Section 4.2 and plates

with all possible boundary conditions in Section 4.3 . Finally, Section 4.4 discusses the effect of inplane load combinations

on the buckling characteristics. 

Attention should be paid that in this section the letters âSâ âCâ âGâ and âFâ represent simply-supported, clamped, guided

and free edges of the plate respectively. The compressive inplane stress in the x -direction is N x , that in the y -direction is N y .

The dimensions of the plate in the y and x directions are always 2 b × 2 a and the dimensionless critical buckling loads are

defined accordingly when the results are presented. 

4.1. Convergence, efficiency and numerical stability analysis 

As shown in Table 2 , the first six critical buckling load parameters of square plates subjected to compressive inplane

stresses in both x and y directions ( N x < 0, N y < 0) with four BCs (FFFF, CCSC, SCSC, CSCG) are tabulated. It is worth noting

that the results calculated by the present method are performed with different numbers of modified Fourier series terms,

where N and M are the numbers of terms in the y and x directions respectively. The global matrix size is proportional to

the summation of M and N which is different from the commercial Finite Element (FE) package HyperWorks as well as

other methods whose final matrix size is proportional to their products ( M × N ) instead. All the results computed by the

present method have the accuracy of 5 figure precision, which are compared with those obtained from the FEM software

HyperWorks in Table 2 . Among the four tabulated cases, it is obvious that the present method uses 5 + 5 ( M + N) terms



46 X. Liu, X. Liu and W. Zhou / Applied Mathematical Modelling 86 (2020) 36–53 

Table 2 

First six critical buckling load parameters λ = N x (2 a ) 2 /Dπ2 of square plates subjected to compressive inplane stresses in both x and y 

directions ( N x = N y < 0 ) with different BCs. 

M = N Modes Time (s) 

FFFF 3 4 5 6 7 8 

2 0.7391 0.8152 1.2199 2.0079 2.0079 3.7081 0.22 

5 0.7391 0.8150 1.2196 2.0053 2.0053 3.7059 0.28 

10 0.7391 0.8150 1.2196 2.0053 2.0053 3.7058 0.38 

20 0.7391 0.8150 1.2196 2.0053 2.0053 3.7058 0.77 

30 0.7391 0.8150 1.2196 2.0053 2.0053 3.7058 1.59 

FEM 0.7391 0.8150 1.2189 2.0053 2.0053 3.7063 167.00 

CCSC 1 2 3 4 5 6 

2 4.3073 7.4184 8.8810 11.618 12.856 14.924 0.25 

5 4.3110 7.4547 8.8850 11.655 13.093 16.017 0.29 

10 4.3110 7.4548 8.8850 11.655 13.093 16.018 0.34 

20 4.3110 7.4548 8.8850 11.655 13.093 16.018 0.54 

30 4.3110 7.4548 8.8850 11.655 13.093 16.018 0.92 

FEM 4.3126 7.4581 8.8873 11.654 13.103 16.026 184.00 

SCSC 1 2 3 4 5 6 

2 3.8279 5.9088 8.6176 10.348 10.627 14.513 0.26 

5 3.8300 5.9243 8.6206 10.567 10.651 14.923 0.28 

10 3.8300 5.9243 8.6206 10.567 10.651 14.924 0.33 

20 3.8300 5.9243 8.6206 10.567 10.651 14.924 0.59 

30 3.8300 5.9243 8.6206 10.567 10.651 14.924 0.94 

FEM 3.8314 5.9271 8.6228 10.575 10.648 14.922 179.00 

CSCG 1 2 3 4 5 6 

2 3.8248 4.5179 7.9293 8.2736 9.3687 12.444 0.25 

5 3.8248 4.5219 7.9579 8.2738 9.3744 12.499 0.30 

10 3.8248 4.5219 7.9580 8.2738 9.3745 12.499 0.34 

20 3.8248 4.5219 7.9580 8.2738 9.3745 12.499 0.59 

30 3.8248 4.5219 7.9580 8.2738 9.3745 12.499 0.97 

FEM 3.8234 4.5234 7.9634 8.2701 9.3716 12.497 171.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to obtain six eigenvalues with four significant digits within less than 0.30 seconds, 10 + 10 ( M + N) terms leading to 5-bit

precision results within 0.38 seconds. At the same time, the results are compared with finite element solutions computed

by HyperWorks using a fine mesh (FEM, 300 × 300). The computation of both present method and FEM is performed on a

PC equipped with a 3.3GHz Intel Core i5 processor and 4GB of memory. It can be seen from Table 2 that the present method

takes less than 1% computation time of the FEM package HyperWorks in the four cases which meanwhile provides more

accurate results than the FEM with only three significant digits. 

4.2. Discussions on the effect of elastic Winkler foundation 

After showing the computational performance of the proposed method, we now study the effects of elastic foundation

on the buckling of plates. For square plates with four different boundary conditions (i.e., CCCC, FFFF, SSSS and GGGG) and

subjected to compressive inplane stresses in the y -direction only ( N x = 0 , N y < 0 ), a total of 6 buckling eign-modes in terms

of λ = N y (2 a ) 2 /Dπ2 with respect to dimensionless foundation stiffnesses k = ̂

 k /D ( D is the bending stiffnesses and 

ˆ k is the

stiffness of the Winkler foundation) are tabulated in Table 3 . All results computed by the proposed method are provided

with an accuracy of five significant figures. It can be found that the critical load parameters λ always show a monotonic

and linear increase with the dimensionless foundation stiffness k for different boundary conditions and for different buckling

modes, as shown in Fig. 2 . More specifically, the linear relationship can be given by λk = (1 + εk ) λk =0 , where λk and λk =0 

are the λ′ s when dimensionless foundation stiffness is k and 0, respectively, and ε = (λk − λk =0 ) / (kλk =0 ) take different

constants for different BCs and different eigen-modes as given in the last row of Table 3 . 

4.3. Buckling of rectangular plates subject to all possible boundary conditions 

It can be found from Tables 4 and 5 that results computed by the present spectral stiffness method agrees very well with

those of the symplectic superposition method [46,47] for three types of BCs (CCSS, CCCS, FFFF) and with three aspect ratios.

It should be emphasized that the current spectral stiffness method utilizes a uniform formula but is capable of computing

results for all possible BCs. This is in apparent contrast to the symplectic superposition method in [46,47] , which needs to

develop different formulations for each BCs. 

Indeed, the effects of different BCs on the buckling of plates have been performed by many authors using different

methods. But there has not been any meaningful research which provides the results published so far in the literature

of all possible BCs for buckling analysis of square plates. To fill this gap, buckling results for a square plate with all 55
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Table 3 

Representative critical buckling load parameters λ = N y (2 a ) 2 /Dπ2 of square plates under four different BCs and sub- 

jected to compressive inplane stresses in the y -direction only ( N x = 0 , N y < 0 ) with different dimensionless foundation 

stiffnesses k = ̂

 k /D . 

k λ

CCCC FFFF SSSS GGGG 

λ1 λ3 λ5 λ1 λ1 λ1 

0 10.074 19.465 26.374 0.922 4.000 1.000 

0.1 10.074 19.465 26.374 0.9218 3.9998 1.0001 

0.5 10.075 19.465 26.374 0.9220 4.0006 1.0004 

1 10.075 19.466 26.374 0.9223 4.0012 1.0007 

2 10.076 19.466 26.375 0.9229 4.0024 1.0014 

3 10.077 19.467 26.376 0.9234 4.0036 1.0021 

4 10.078 19.468 26.376 0.9240 4.0048 1.0028 

5 10.079 19.469 26.377 0.9246 4.0060 1.0035 

10 10.084 19.472 26.381 0.9274 4.0120 1.0070 

100 10.177 19.536 26.452 0.9785 4.1199 1.0701 

1000 11.094 20.175 27.158 1.4799 5.1994 1.7008 

2000 12.095 20.898 27.934 2.0272 6.3989 2.4016 

ε = 

λk − λk =0 

kλk =0 

0.00010 0.00004 0.00003 0.00061 0.00030 0.00070 

Fig. 2. Dependence of dimensionless foundation stiffness k = ̂

 k /D on the critical buckling load parameters λ for four different boundary conditions. 

Table 4 

First seven critical buckling load parameters λ = N y (2 a ) 2 /Dπ2 of square plates subjected to compressive inplane stresses in y directions 

only ( N x = 0 , N y < 0 ) with different aspect ratios and BCs. 

BC b / a Methods Modes 

1 2 3 4 5 6 7 

CCSS 0.5 Present 22.673 25.187 30.891 39.225 47.525 54.515 66.528 

Li et al. [47] 22.673 25.187 30.891 39.225 47.525 54.515 66.528 

FEM 22.674 25.189 30.895 39.233 47.536 54.532 66.560 

1 Present 6.2226 9.0222 14.596 19.618 22.414 22.803 28.879 

Li et al. [47] 6.2226 9.0222 14.596 19.618 22.414 22.803 28.879 

FEM 6.2228 9.0228 14.598 19.619 22.420 22.805 28.884 

1.5 Present 3.4386 7.1541 9.4458 11.639 13.077 16.606 18.680 

Li et al. [47] 3.4386 7.1541 9.4458 11.639 13.077 16.606 18.680 

FEM 3.4387 7.1551 9.4462 11.640 13.080 16.608 18.682 

CCCS 0.5 Present 24.891 26.373 36.089 40.652 53.945 58.384 75.776 

Li et al. [47] 24.891 26.373 36.089 40.651 53.945 58.384 75.776 

FEM 24.892 26.376 36.095 40.660 53.960 58.408 75.820 

1 Present 8.0673 10.908 18.668 21.855 24.005 26.524 34.535 

Li et al. [47] 8.0673 10.908 18.668 21.855 24.005 26.524 34.535 

FEM 8.0675 10.909 18.672 21.856 24.008 26.532 34.544 

1.5 Present 5.3609 9.2515 11.418 13.005 17.054 20.819 20.973 

Li et al. [47] 5.3609 9.2515 11.418 13.005 17.054 20.819 20.973 

FEM 5.3613 9.2542 11.420 13.008 17.064 20.829 20.976 
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Table 5 

First six critical buckling load parameters λ = N x (2 a ) 2 /D of all edges free square plates subjected to compressive inplane stresses 

in both x and y directions ( N x = N y < 0 ) with different aspect ratios. 

b / a Methods Modes 

3 4 5 6 7 8 

0.5 Present 8.8812 12.194 33.983 37.511 39.251 55.169 

Li et al. [46] 8.8812 12.194 33.983 37.511 39.251 55.169 

FEM 8.8815 12.195 33.988 37.515 39.251 55.178 

1 Present 7.2941 8.0437 12.036 19.791 19.791 36.575 

Li et al. [46] 7.2941 8.0437 12.036 19.791 19.791 36.575 

FEM 7.2944 8.0439 12.030 19.792 19.792 36.580 

1.5 Present 3.8595 4.8417 10.090 12.990 13.133 19.076 

Li et al. [46] 3.8594 4.8417 10.090 12.990 13.133 19.076 

FEM 3.8595 4.8418 10.090 12.990 13.133 19.077 

Fig. 3. Rectangular plates with two types of boundary conditions. 

 

 

 

 

 

 

 

 

 

 

 

possible types of BCs without elastic foundation (dimensionless foundation stiffness k = 0 ) and compressed in both x and y

directions, see Table 6 . All results given in Table 6 have five significant figures (accurate up to the last figure quoted) which

will serve as benchmark solutions. 

4.4. Discussions on the effect of inplane load combinations 

Fig. 3 shows the constraints of rectangular plates with two types of BCs in the x and y directions. Tables 7 and 8 shows

the influences of load combination and aspect ratio on the critical buckling loads and mode shapes of rectangular plates with

different BCs (FFFC, CCCF). It can be found that when the aspect ratio b / a and signs of both N x and N y (i.e., compressive or

tensile) remain unchanged, the buckling load parameter under CCCF BC is always higher than that under FFFC BC. Under

the two BCs, the increasing trend of buckling load parameters decreases gradually from the first mode to the seventh mode

when the load combination remains unchanged and the aspect ratio b / a varies from 0.5 to 10. On the other hand, it can

be found that when b/a = 1 , the buckling load parameters for plates pressurive load only in the x -direction is higher than

those for plates compressed only in the y -direction when subjected to FFFC BC. Similar observation can be made for plates

under CCCF BC. It is within oneâs expectation that for rectangular plates, instabilities are much easier to occur along free

edges than clamped edges. 
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Table 6 

First six critical buckling load parameters λ = N y (2 a ) 2 /Dπ2 of square plates without elastic foundation (dimensionless foundation 

stiffness k = 0 ) subjected to compressive inplane stresses in both x and y directions ( N x = N y < 0 ) with 55 different types of BCs. 

BC Modes 

1 2 3 4 5 6 

SSSS 2.0000 5.0000 5.0000 8.0000 10.000 10.000 

SSSC 2.6627 5.3648 6.6292 9.1533 10.239 12.620 

SSSF 1.0554 2.1601 3.9702 5.0662 5.4172 8.3383 

SCSC 3.8299 5.9242 8.6205 10.567 10.651 14.924 

SCSF 1.1438 2.7654 4.0085 5.8359 6.7146 8.8462 

SFSF 0.9322 1.1898 2.3151 3.8099 4.2204 5.1196 

SSSG 1.2500 3.2500 4.2500 6.2500 7.2500 8.2500 

SCSG 1.4811 4.3499 4.3937 6.9815 9.3120 9.3780 

SGSF 0.9528 1.4482 3.3533 3.8705 4.5504 6.6546 

SGSG 1.0000 2.0000 4.0000 5.0000 5.0000 8.0000 

CCCC 5.3036 9.3337 9.3337 12.990 15.615 16.924 

CCCS 4.3109 7.4548 8.8849 11.655 13.093 16.018 

CCCF 2.8932 4.3271 7.4283 7.4540 8.8648 11.682 

CSCF 2.8680 3.9077 5.8854 7.4282 8.6027 10.528 

CFCF 2.7426 2.9714 4.0308 5.8406 7.3970 7.4597 

CSCG 3.8247 4.5218 7.9578 8.2737 9.3744 12.499 

CGCG 3.8299 4.0000 5.9242 8.1830 8.6205 10.567 

CCCG 3.9234 5.5402 8.3377 9.9662 9.9993 13.961 

CGCF 2.8291 3.9807 4.4814 7.4265 7.9257 8.2649 

CGSG 2.0457 2.6627 5.3649 6.0468 6.6293 9.1534 

SGGG 0.2500 1.2500 2.2500 3.2500 4.2500 6.2500 

CGGG 1.0000 1.4811 4.0000 4.3499 4.3937 6.9815 

SGFG 0.0000 1.0000 1.0551 2.1599 3.9700 4.0000 

CGFG 0.2500 1.1436 2.2500 2.7652 4.0083 5.8357 

GGFG 0.2500 0.9525 1.4480 2.2500 3.3531 3.8703 

FGFG 0.0000 0.9322 1.0000 1.1899 2.3153 3.8099 

GGGG 1.0000 1.0000 2.0000 4.0000 4.0000 5.0000 

FFFF 0.0000 0.0000 0.7391 0.8150 1.2196 2.0053 

CFSF 1.7870 1.9055 2.6985 5.2414 5.7159 5.8498 

CCSS 3.2476 6.8169 7.0691 10.230 12.691 12.966 

CCSF 1.8718 3.2222 5.7142 6.8066 7.3202 10.349 

CSSF 1.8491 2.6696 5.3156 5.7588 6.7853 9.3026 

SSFF 0.2037 0.9264 1.4201 2.8282 3.7871 4.3328 

CSFF 0.4081 1.1064 2.1497 3.2377 4.2396 5.5373 

CCFF 0.5783 1.3848 2.7502 3.6799 5.4711 6.5181 

SFFF 0.0000 0.3089 0.8608 1.3974 1.6901 3.2951 

CFFF 0.2396 0.4828 1.3035 2.1218 2.2863 3.8671 

CSSG 2.1551 3.7309 6.1537 7.5399 7.6189 11.232 

SSGG 0.5000 2.5000 2.5000 4.5000 6.5000 6.5000 

CSGG 0.9575 2.6417 3.9579 5.4072 6.5767 8.9580 

SSGF 0.2975 1.2799 2.2726 3.5560 4.2586 6.1537 

SCGF 0.4586 2.1635 2.3284 4.0413 6.1810 6.2499 

SGGF 0.2331 0.5788 2.1652 2.5175 2.7705 4.7490 

SFGF 0.2300 0.3298 1.3768 2.1246 2.4845 3.8191 

CCSG 2.3335 4.8020 6.2394 8.2740 9.6330 12.201 

CCGF 0.7534 2.2912 3.6228 4.8796 6.3385 8.2040 

CCGG 1.3259 3.9040 4.2309 6.2395 8.8483 9.1886 

CGSF 1.8651 2.1465 3.7409 5.6430 6.2074 7.5270 

CSGF 0.6856 1.4601 3.5621 4.3345 4.5079 7.0334 

CGGF 0.7428 1.0076 2.6243 3.6372 4.0568 5.4921 

CFGF 0.5405 0.9394 1.4554 3.4754 3.7395 4.3746 

SGFF 0.0000 0.5013 0.9946 1.7727 2.4709 3.7616 

CGFF 0.2440 0.6672 1.9415 2.2914 2.8923 4.4229 

GGFF 0.1848 0.3049 1.1067 2.0608 2.2889 2.7368 

GFFF 0.0000 0.2250 0.9502 0.9941 1.9134 2.4527 

 

 

 

 

 

5. Conclusions 

An analytical spectral stiffness method for buckling analysis of rectangular plates with general boundary conditions (BCs)

has been proposed. This method integrates the merits of superposition method, stiffness-based method and the Wittrick–

Williams algorithm. First, by introducing the modified Fourier series into the buckling governing differential equation (GDE),

exact shape functions similar to the superposition method are derived, which guarantees the rapid convergence and high

accuracy of the method. Then, applying symbolic calculation upon the exact shape functions leads to a spectral stiffness

formulation, where any arbitrary BCs can be prescribed easily upon the unique stiffness-based formulation. This provides
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Table 7 

First seven critical buckling load parameters λ = N x (2 a ) 2 /Dπ2 of plates with different aspect ratios and load combinations. 

b / a BC Load combinations Modes 

1 2 3 4 5 6 7 

0.5 FFFC N x = 0 , N y < 0 0.9800 2.4657 8.3157 9.0424 10.351 19.342 19.681 

N x < 0 , N y = 0 3.3282 3.7035 6.4928 10.8151 17.482 23.633 24.001 

N x = N y < 0 0.9766 1.6328 2.6689 4.4258 7.7661 8.5993 9.1661 

CCCF N x = 0 , N y < 0 4.2268 12.567 14.244 25.337 27.666 34.561 42.588 

N x < 0 , N y = 0 7.6996 10.607 18.231 25.971 37.638 41.653 42.541 

N x = N y < 0 3.0137 7.4873 9.1652 12.889 14.491 19.519 22.857 

1 FFFC N x = 0 , N y < 0 0.2406 1.8240 2.1583 3.8087 6.0684 7.7350 8.3553 

N x < 0 , N y = 0 0.6123 1.3961 4.2734 5.7179 6.3675 9.2710 11.605 

N x = N y < 0 0.2397 0.4828 1.3035 2.1218 2.2864 3.8670 4.2838 

CCCF N x = 0 , N y < 0 3.9091 9.7102 12.252 13.791 21.014 24.460 24.809 

N x < 0 , N y = 0 4.5761 8.5996 12.628 14.057 16.350 21.765 24.428 

N x = N y < 0 2.8929 4.3272 7.4274 7.4540 8.8648 11.682 12.979 

3 FFFC N x = 0 , N y < 0 0.2363 0.6586 1.3027 1.6803 1.9177 2.1691 2.3450 

N x < 0 , N y = 0 0.4562 0.9705 1.3399 1.4504 2.1221 3.2156 3.4046 

N x = N y < 0 0.2336 0.3739 0.6381 0.9071 1.0248 1.2660 1.3808 

CCCF N x = 0 , N y < 0 3.8743 7.3553 7.4754 8.4133 9.1306 10.580 11.153 

N x < 0 , N y = 0 4.0252 4.5544 5.8137 8.1803 8.2153 8.6671 9.6764 

N x = N y < 0 2.8465 3.8490 3.9076 4.0125 4.4370 5.2522 6.3767 

10 FFFC N x = 0 , N y < 0 0.1172 0.1900 0.2840 0.3975 0.5312 0.6848 0.8586 

N x < 0 , N y = 0 0.1915 0.3279 0.5107 0.7471 0.9394 0.9908 1.0374 

N x = N y < 0 0.1164 0.1737 0.1881 0.2801 0.2808 0.3908 0.4092 

CCCF N x = 0 , N y < 0 3.8729 7.0084 7.0133 7.1201 7.1372 7.3130 7.3369 

N x < 0 , N y = 0 3.9893 4.0373 4.1215 4.2525 4.4356 4.6777 4.9876 

N x = N y < 0 2.8446 3.7690 3.7695 3.8016 3.8035 3.8491 3.8588 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the convenience of the applications of general boundary conditions, which is superior to the superposition method where

different building blocks are required for different BCs. Finally, the Wittrick–Williams algorithm has been applied as the

solution technique with the most important issue J 0 count resolved, which endows the method high efficiency, robustness

and certainty that no mode is missed. It has been demonstrated that the present method provides highly accurate solutions

in an extremely efficient manner, by taking less than one per cent of the time required by the commercial finite element

packages. Besides, this paper provides critical buckling load parameters for rectangular plates subjected to all possible BCs

as benchmark solutions. Finally, the effects of foundation stiffness, load combinations, and aspect ratio on the buckling

behaviors are investigated. The present method has provided a uniform analytical formulation for plate buckling analysis

with general BCs and foundation supports, and meanwhile provide valuable references for future research in this field. 
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