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A spectral-dynamic stiffness method (S-DSM) for exact free vibration analysis of general orthotropic com-
posite plate-like structures is presented in the paper. The method combines the advantages of the clas-
sical dynamic stiffness method (DSM) with those of the spectral method, and it resembles the finite
element and the boundary element methods. The formulation is based on the exact general solution of
the governing differential equation, which provides complete flexibility to describe any arbitrary bound-
ary conditions. The dynamic stiffness formulation is essentially accomplished through a mixed-variable
approach in a symbolic form with explicit expressions rendering physical meanings. Then a systematic
procedure for plate assemblies under arbitrary boundary constraints is described. Finally, a set of novel
techniques are proposed to enhance the Wittrick–Williams algorithm by resolving the fully-clamped
plate problem. The validation of the theory and its applications to a wide range of engineering structures
are demonstrated in Part II of this two-part paper.
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1. Introduction dynamic stiffness method (DSM) and the spectral method (SM).
Composite structures are increasingly being used in areas of
aerospace, civil, naval, automotive, electronic, and armoured engi-
neering amongst others. In many cases, complex engineering
structures are modelled by composite plates and their assemblies
subject to arbitrarily prescribed boundary conditions. In this
respect, free vibration analysis is an essential consideration in each
stage of such structures during design, manufacturing, operation
and maintenance. Thus an accurate and efficient method to com-
pute natural frequencies and mode shapes of composite structures
is important. Furthermore, some areas like structural health mon-
itoring and active control of vibration and noise require accurate
knowledge of free vibration behaviour both in the low and high
frequency range, warranting the development of more accurate
and robust methods. It should be noted that the finite element
method can become unreliable in vibration analysis at high fre-
quency ranges, for example, cutting tools at ultrasonic frequencies.

Against this background, the first part of this paper is aimed at
developing an efficient and robust method for exact free vibration
analysis of composite plate-like structures for any arbitrary bound-
ary conditions within any frequency range. This method is termed
as the spectral-dynamic stiffness method, abbreviated as S-DSM.
The S-DSM is mainly based on the methodology of both the
As a consequence, it has the merits of both methods. Furthermore,
the S-DSM shares some important advantages of the finite element
method (FEM) and boundary element method (BEM), but does not
have any of their disadvantages. Table 1 shows the main features
of the current S-DSM side by side to those of the conventional
FEM and DSM. The differences and similarities are self-explanatory
in the table.

The current S-DSM inherits all the advantages of the classical
DSM such as high accuracy, computational efficiency and the cer-
tainty that no natural frequencies of the structure is missed.
Understandably the S-DSM and DSM have much superior mod-
elling capability over the FEM and other methods. This is mainly
due to three reasons: (i) The dynamic stiffness (DS) matrix is for-
mulated from the strong form solution of the governing differential
equation (GDE) and boundary conditions (BC). Therefore no dis-
cretisation is needed except when geometric and/or material dis-
continuities in the structure occur. Consequently, the DSM and
S-DSM give exact solutions with high computational efficiency.
This is in sharp contrast to the usual FEM and BEM whose shape
functions are generally approximate and both can be computation-
ally expensive when higher natural frequencies and/or better accu-
racies are required, (ii) The DSM and S-DSM are versatile because
the DS matrix can be assembled in the same way as the FEM, (iii)
Natural frequencies are computed by applying the Wittrick–
Williams algorithm on the DS matrix. This algorithm is robust
and it ensures that no natural frequency of the structure is missed.
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Table 1
Comparisons of the FEM and the DSM with the current S-DSM for free vibration problems. For notational convenience, some abbreviations are introduced: GDE – Governing differential equation; BC – Boundary conditions; DOF –
degree(s) of freedom; SF – shape function(s).

Conventional FEM DSM (SEM) S-DSM

Mathematical basis Variation based Differentiation based (strong form) Differentiation based (strong form)
Methodology Uses approximate shape functions to describe the

displacement field; Relies on a variational formulation
to derive the elemental stiffness and mass matrices;
Assemble for the whole structure; Apply BC and solve

Obtain exact general solution of GDE; Substitute it into BC
to form elemental DS matrix; Assemble the DS matrices for
the whole structure; Apply BC and solve

Obtain exact general solution of GDE in spectral sense
(both in time and in space); Uses a set of novel
techniques to make the method numerically stable and
efficient; The rest steps are similar to the DSM

h-refinement [1] (finer mesh) Fine mesh is needed, depending on the required
accuracy and/or for the highest natural frequency

Extremely coarse mesh is adequate for exact solutions
unless geometric and/or material discontinuities occur

Same as the DSM

p-refinement [1] (higher SF
order)

Only low order polynomials are adopted N/A (only allows sinusoidal deformation) Space-wise spectral refinement, SF order can be as high
as possible (numerically stable)

Shape functions (SF) Approximate and frequency independent Exact frequency dependent (spectral in time only) Exact frequency–wavenumber dependent (spectral
both in time and in space)

Assembly Assemble directly to allow complex geometries:
compatibility, continuity and equilibrium are generally
satisfied

Assemble directly, but limited to one-directional
(prismatic) assembly

Assemble directly to allow complex geometry: the
compatibility, continuity and equilibrium are
automatically satisfied

Arbitrary boundary conditions
(BC)

Yes, approximately applied at the boundary point nodes No, limited to Levy type plates with sinusoidally varied
boundary conditions only

Yes, directly and accurately applied using linear
transformation

Final eigenvalue matrix(ces) Two frequency-independent/symmetric/sparse
matrices for mass and stiffness properties

One frequency-dependent/symmetric/dense (sparse for
large assembly) DS matrix

Same as the DSM

Solver Generally linear eigenvalue solvers The Wittrick–Williams algorithm The Wittrick–Williams algorithm
Computational cost Expensive especially when higher natural frequencies

and/or higher accuracies are required
Inexpensive Inexpensive

Natural frequencies May miss some Impossible to miss Impossible to miss
High frequencies computation Difficult, if not impossible Possible but has been difficult so far for plate and shell

problems
No problem, robust and efficient
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The DSM was pioneered by Kolous̆ek [2] in the 1940’s, but it
was not until the development of the Wittrick–Williams (WW)
algorithm [3] in the seventies when the DSM became popular
and entered into a sustained period of prosperous developments.
In the past four decades numerous exact DS theories have been
proposed for a wide range of one-dimensional (1D) elements such
as bars and beams for which Banerjee et al. [4–9] have been lead-
ing promoters. However, when developing two dimensional (2D)
DS elements like plates, two serious limitations emerged for classi-
cal application of the DSM.

(i) First, the DSM was restricted to Levy-type rectangular plates
with one pair of opposite edges simply supported. Thus, it
allowed only sinusoidal deformation in one direction (e.g.,
see [10–15]) which brought two inevitable consequences.
On the one hand, it is undoubtedly an obstacle in applying
more general boundary conditions. On the other hand, the
Levy-type solution restricted the application only to
one-directional plate assemblies and there was no clear pos-
sibility of assembling dissimilar elements like beams and
bars. These are naturally serious restrictions because engi-
neering structures are modelled as plate and other elements
assemblies in a quite general manner.

(ii) Additionally, it should be emphasised that in almost all of
the previous DSM developments on plates [10–15], one of
the key issues in the WW algorithm application was the
evaluation of the natural frequencies of fully-clamped plate
elements, which can sometimes be very difficult.

The challenges encountered in solving the first aforementioned
restriction lie in obtaining a general solution of the plate differen-
tial equation in free vibration. Such a general solution should not
only satisfy the 2D GDE rigorously but also must provide accurate
representation for arbitrarily prescribed BC on the four edges of
the plate. This is resolved in this paper by using the concept of
spectral method (SM) [16,17], which is indicated by the letter
‘S’ for the current method S-DSM. It should be noted that the
term spectral in the current S-DSM is used in both time-wise
and space-wise sense, which is somehow different from the spec-
tral element method (SEM) used by many, see Patera [18],
Ostachowicz et al. [19] and Lee [20] for examples. In [18,19], spec-
tral of SEM is used only for spatial coordinates and the spectral in
[20] by Lee is only for time coordinate. In this paper, the
time-wise Fourier transform (spectral) of the time coordinate will
be referred to as frequency whereas the space-wise Fourier trans-
form (spectral) of the spatial coordinates is denoted as
wavenumber.

The second limitation mentioned above has been completely
removed in the research by an elegant technique inspired by the
Gauss circle problem [21] in conjunction with the use of a
mixed-variable formulation for the DS matrix. This methodology
enhances the WW algorithm significantly and makes the current
S-DSM efficient and robust within any frequency range covering
low to high frequencies.

The methodology of the S-DSM is somehow different from that
of the FEM (see Table 1) and some technical preliminaries are
required to show the steps used in the development of the S-DSM.

(i) The time-dependent plate vibration problem governed by
the GDE is first transformed into frequency dependent GDE
by using harmonic oscillation assumption (Section 2.1).
Then the general solution is represented as a superposition
of two series solutions, which are deduced analytically based
on the idea of the spectral method [16,17] applied in the spa-
tial domain. The general solution is then partitioned into
four symmetric and antisymmetric component cases
(Section 2.2). Accordingly, the BC are partitioned into four
symmetric and antisymmetric components as described in
Section 2.3.

(ii) Then in Section 3.1, a symbolic, but concise derivation is car-
ried out through a mixed-variable formulation with unified
notations leading to DS component matrices. (The formula-
tion also facilitates the application of the enhanced WW
algorithm introduced later.) In the light of the partitioning
of the BC, the analytically formulated DS component matri-
ces are superposed to form the DS matrix of the complete
orthotropic composite plate element for the general case
(Section 3.2).

(iii) Following analogous procedure as used in the FEM, the over-
all DS matrix of a plate assembly is modelled by assembling
the DS matrices for each individual plate elements
(Section 4.1).

(iv) The overall DS matrix now satisfies the GDE exactly in the
whole domain, which also allows the application of any arbi-
trary BC accurately, see Section 4.2.

(v) The natural frequencies of the plate structure are extracted
through the application of the WW algorithm enhanced sig-
nificantly in this paper by using novel techniques. Mode
shapes are computed using a slightly different procedure
when compared with that of the classical DSM, see Section 5.

It is now appropriate to review briefly some of the other typ-
ical analytical and semi-analytical attempts made for free vibra-
tion analysis of plates. These include the Rayleigh–Ritz method
[22–25], Fourier series-based analytical method [26–29] and
superposition method [30–32] amongst others [33–36]. The
Rayleigh–Ritz method has been frequently used [22–25] because
of its flexibility and conceptual simplicity [37]. However, different
admissible functions should be chosen for different boundary
conditions so that the formulation using the Rayleigh–Ritz
method is not unique. Recently, a Fourier-series based analytical
method (FSA) was proposed by Li and his co-authors [26–29]
for plates with general boundary supports. In the FSA, a fictitious
Fourier cosine series was used to satisfy first the elastic BC and
then the GDE to form the final eigenvalue system expressed in
terms of separate stiffness and mass matrices. However, when
using this method, there is no guarantee that no natural fre-
quency of the structure will be missed and the method may
become computationally expensive and very difficult in achieving
high accuracies, particularly in the high frequency range. Besides,
the assembly procedure in this method seems to be quite tedious
and cumbersome [28,29]. The superposition method on the other
hand, pioneered by Lamé [38] and extensively used by Gorman in
plate vibration problems (see his review paper [39]), has been
shown to be an accurate and efficient method. However, the
method is not sufficiently general since different BC require dif-
ferent formulation, and it is limited to a single plate
[30,31,40,41] or simple plate assemblies [42,43]. Nevertheless, it
should be pointed out that the superposition method is an excel-
lent idea which has partly motivated the formulation of the cur-
rent S-DSM. Accurate and efficient attributes of the superposition
method are preserved as well as further improvements are made
in the current S-DSM with the help of the enhanced WW algo-
rithm. Furthermore, the current S-DSM can be applied to arbitrar-
ily prescribed boundary conditions, which was not so easily
possible in the superposition method.

The research described in this paper has no-doubt opened up
novel possibilities for solving complex plate and shell vibration
and buckling problems in an exact and efficient manner. In Part
II of this two-part paper, an extensive numerical results computa-
tion exercise is conducted to demonstrate the superiority of the
proposed method in terms of its exactness, efficiency and
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robustness over the conventional FEM and other analytical and
semi-analytical methods.
2. Governing differential equation, general solution and
boundary condition

2.1. Governing differential equation

Consider a rectangular orthotropic composite Kirchhoff plate as
shown in Fig. 1 occupying the region X� ½�h=2;h=2�, where
X ¼ ½�a; a� � ½�b; b� denotes the midplane surface of the plate,
and h is the total thickness. The composite plate consists of Nl

number of specially orthotropic layers that are symmetrically
aligned within X. If classical lamination theory [44] is applied,
clearly the bending and extensional deformations will be decou-
pled for any symmetric laminate (in laminate notation: Bij ¼ 0).
In this paper, attention is focused only on the transverse vibration
of the plate. Using the classical Kirchhoff theory, the displacement
fields of the plate can be expressed as: uðx; y; z; tÞ ¼ �z@w=@x,
vðx; y; z; tÞ ¼ �z@w=@y and wðx; y; z; tÞ ¼ w. The governing differen-
tial equation (GDE) and the natural boundary conditions (BC) for
the plate can be derived using Hamilton’s principle [44]. For sym-
metric and balanced cross ply laminates, D16 ¼ D26 ¼ 0, therefore
the GDE takes the form [44]

D11
@4w
@x4 þ 2ðD12 þ 2D66Þ

@4w
@x2@y2 þ D22

@4w
@y4 þ I0

@2w
@t2

� I2
@4w
@x2@t2 þ

@4w
@y2@t2

 !
¼ 0; ð1Þ

where the bending stiffnesses Dij of the plate and the inertia param-
eters I0 and I2 are given by

Dij ¼
1
3

XNl

k¼1

CðkÞij ðz
3
k � z3

k�1Þ; ½I0; I2� ¼
XNl

k¼1

qðkÞ ðzk � zk�1Þ;
1
3
ðz3

k � z3
k�1Þ

� �
ð2Þ

and where qðkÞ is the mass density, CðkÞij is the material property
matrix related to constitutive laws in the laminate coordinate sys-
tem of the kth layer (see e.g., Ref. [44]).

If harmonic oscillation assumption wðx; y; tÞ ¼Wðx; yÞeixt is
made and the following notations are introduced

C ¼ D12 þ 2D66

D11
; K ¼ D22

D11
; j ¼ I0x2

D11
; v ¼ I2x2

D11
; ð3Þ

the GDE of Eq. (1) can then be transformed into the frequency
domain as follows
Fig. 1. Coordinate system and notations for displac
@4W
@x4 þ 2C

@4W
@x2@y2 þK

@4W
@y4 þ v @2W

@x2 þ
@2W
@y2

 !
� jW ¼ 0: ð4Þ

Also, Hamilton’s principle facilitates the generation of the natural
boundary conditions (BC) as a by-product. Following the sign con-
vention illustrated in Fig. 1, the natural BC along the boundaries
x ¼ �a may be expressed as

dW : Vx ¼ �D11
@3W
@x3 þ C�

@3W
@x@y2 þ v @W

@x

 !
; ð5aÞ

d/x ¼ �d
@W
@x

: Mxx ¼ �D11
@2W
@x2 þ m21

@2W
@y2

 !
; ð5bÞ

where C� ¼ 2C� m21. Similarly, the natural BC along y ¼ �b become

dW : Vy ¼ �D11 K
@3W
@y3 þ C�

@3W
@y@x2 þ v @W

@y

 !
; ð6aÞ

d/y ¼ �d
@W
@y

: Myy ¼ �D11 K
@2W
@y2 þ m21

@2W
@x2

 !
: ð6bÞ

The notations /x in Eq. (5b) and /y in Eq. (6b) denote the rotations
of the transverse normal about the y- and x-axes respectively (see
for example p.132 in Ref. [44]). The next step will be to seek a gen-
eral solution of Eq. (4).

2.2. General solution

In this section, a general solution of Eq. (4) in an exact sense is
derived by superposing two sets of series solutions using the con-
cept of the spectral method (SM) [16,17]. If the general solution is
expressed as Wðx; yÞ ¼ XðxÞYðyÞ on the basis of the separation of
variables principle, then each series solution is derived from first
representing either XðxÞ or YðyÞ in terms of modified Fourier series
and then solving for the other direction (either YðyÞ or XðxÞ).

The task of seeking the general solution for Eq. (4) is difficult
unless one embarks on a Levy-type assumption. This is because
the general solution not only must be capable of representing
any arbitrary displacement field Wðx; yÞ which satisfies the GDE
of Eq. (4) in the domain X, but also it must provide the flexibility
to describe any arbitrary boundary conditions on the four plate
boundaries. Owing to the homogeneity and the linearity, the gen-
eral solution of Eq. (4) can be sought by using the method of sep-
aration of variables:

Wðx; yÞ ¼ XðxÞYðyÞ ¼ Ceqxþpy; ð7Þ

where C is an arbitrary constant; q and p are the two wave param-
eters corresponding to x and y. Substituting Eq. (7) into Eq. (4) leads
to the following characteristic equation
ements and forces for a thin laminated plate.
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q4 þ 2Cp2q2 þKp4 þ vðq2 þ p2Þ � j ¼ 0; ð8Þ

which gives the dispersion (spectrum) relation relating the fre-
quency parameter j and the two wave parameters q and p.
Therefore, any combination of the wave parameters p; q and fre-
quency parameter j fulfilling Eq. (8) represents a solution to the
GDE of Eq. (4). So there are infinite number of possibilities of such
combinations. Naturally, this becomes a formidable problem giving
rise to difficulties when obtaining the general solution. This is of
course, very different from Levy-type solutions (e.g., see Refs.
[10,11,15]) in which the pair of simply-supported opposite edges
enable one to fix the wave parameter in one direction and the other
wave parameter can then be expressed easily, just like the 1D beam
problem (e.g., see Refs. [4–8]). The general solution for the current
S-DSM is, however, resolved using the spectral method. In what fol-
lows a detailed description of the procedure is given.

Based on the concept of spectral method, any arbitrary 1D func-
tion XðxÞ and YðyÞ defined in x 2 ½�a; a� and y 2 ½�b; b� can be rep-
resented by the modified Fourier series given in Eq. (A.1) of
Appendix A as

XðxÞ ¼
X
m2N

k2f0;1g

eCkmT kðakmxÞ; YðyÞ ¼
X
n2N

j2f0;1g

eCjnT jðbjnyÞ; ð9Þ

where N ¼ f0;1;2;3; . . .g; eCkm and eCjn are unknown coefficients
and T k; T j denote complete orthogonal sets of Fourier basis func-
tions with the wavenumbers akm and bjn taking the form

akm ¼
mp=a k ¼ 0
ðmþ 1=2Þp=a k ¼ 1

�
; bjn ¼

np=b j ¼ 0
ðnþ 1=2Þp=b j ¼ 1

�
ð10Þ

where m; n 2 N. This is a crucial step to be undertaken to obtain the
general solution. The adopted basis functions form an orthogonal
complete set, in which the wavenumbers akm or bjn have been care-
fully chosen, see Eq. (10). Essentially such a series is composed of
cosine and sine series. The cosine series forms a complete set to
describe the symmetric component of XðxÞ or YðyÞ whereas the sine
series represents the anti-symmetric component. The details are
referred to in Appendix A. Then for each wavenumber in one direc-
tion (akm or bjn), one can always obtain the analytical solution in the
other direction based on the GDE. To this end, adding up the above
two infinite series and also based on Euler’s formula, the general
solution of the GDE can be written in an exact sense as

Wðx; yÞ ¼
X
m2N

k2f0;1g

T kðakmxÞ Ckm1 coshðp1kmyÞ½ þ Ckm2 coshðp2kmyÞ

þ Ckm3 sinhðp1kmyÞ þ Ckm4 sin hðp2kmyÞ�
þ
X
n2N

j¼f0;1g

T jðbjnyÞ½Cjn1 coshðq1jnxÞ þ Cjn2 coshðq2jnxÞ

þ Cjn3 sinhðq1jnxÞ þ Cjn4 sinhðq2jnxÞ�: ð11Þ

The wave parameters p1km; p2km and q1jn; q2jn are solved by substitut-
ing qkm ¼ iakm and pjn ¼ ibjn into the characteristic Eq. (8) to obtain

p1km ¼ 1ffiffiffi
K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2

km �
v
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4 þ vðK� CÞa2
km þ ðC

2 �KÞa4
km þKj

qr
p2km ¼ 1ffiffiffi

K
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca2

km �
v
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4 þ vðK� CÞa2
km þ ðC

2 �KÞa4
km þKj

qr
8>>><>>>:

ð12Þ

and

q1jn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cb2

jn �
v
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4 þ vð1� CÞb2
jn þ ðC

2 �KÞb4
jn þ j

qr
q2jn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cb2

jn �
v
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

4 þ vð1� CÞb2
jn þ ðC

2 �KÞb4
jn þ j

qr
8>>><>>>: : ð13Þ
It can be proved [16] that the general solution of Eq. (11) estab-
lishes a complete solution space of Eq. (4). That is to say, the gen-
eral solution of Eq. (11) not only satisfies the GDE of Eq. (4)
rigorously, but also provides complete flexibility to describe any
arbitrary boundary conditions on the four sides of the plate. As
pointed out by Doyle [45], the spectral idea always establishes a
close relationship between the structural dynamics and wave
propagation problems. Here, the physical meaning of this general
solution becomes self-explanatory if one looks from a wave prop-
agating point of view. For example, with a given q ¼ iakm, namely,
when the plate is assumed to move harmonically with the
wavenumber akm in the x direction, there will be a pair of incident
and reflected waves in the y direction with wave parameters p1km

and p2km, respectively, and vice versa.
An inspection on Eq. (11) indicates that the general solution of

Eq. (11) can be partitioned into a sum of four component solutions

in each of which the function Wkjðx; yÞ is either even or odd. Thus
letting

Wðx; yÞ ¼
X

k;j2f0;1g
Wkjðx; yÞ ¼W00 þW01 þW10 þW11; ð14Þ

where the indices k (related to x direction) and j (related to y
direction), taking in turn with values either ‘0’ or ‘1’, represent
either symmetric or antisymmetric functions in the related
directions. Therefore, the general solution Wðx; yÞ defined in the
region X ¼ ½�a; a� � ½�b; b� is represented by the four solution

components Wkjðx; yÞ defined on the first quadrant of the
midplane X1 ¼ ½0; a� � ½0; b� based on their symmetric or antisym-

metric properties, e.g., Wkjð�x; yÞ ¼ ð�1ÞkWkjðx; yÞ and Wkjðx;�yÞ ¼
ð�1Þ jWkjðx;yÞ. According to Eq. (11), the four solution components
take the following unified form

Wkjðx; yÞ ¼
X
m2N

A1kmHjðp1kmyÞ þ A2kmHjðp2kmyÞ
� �

T kðakmxÞ

þ
X
n2N

B1jnHkðq1jnxÞ þ B2jnHkðq2jnxÞ
� �

T jðbjnyÞ; ð15Þ

where A1km; A2km; B1jn and B2jn are unknown coefficients to be
determined; T stands for trigonometric functions defined in Eq.
(A.1) and H represents hyperbolic functions with the following
definitions

HjðpikmyÞ ¼
coshðpikmyÞ k¼ 0
sinhðpikmyÞ k¼ 1

�
; HkðqijnxÞ ¼

coshðqijnxÞ j¼ 0
sinhðqijnxÞ j¼ 1

(
ð16Þ

where i ¼ 1; 2. Both HjðpikmyÞ and HkðqijnxÞ can be denoted by the
unified notation below

HlðNnÞ ¼
HjðpikmyÞ with l ¼ j; N ¼ p1km or p2km; n ¼ y
HkðqijnxÞ with l ¼ k; N ¼ q1jn or q2jn; n ¼ x

(
:

ð17Þ

Some useful properties of the above trigonometric T and hyperbolic
H functions will be introduced later. By using the notation

H�l ðNnÞ ¼ dHlðNnÞ
Ndn

; ð18Þ

the following relationships can be obtained based on the properties
of hyperbolic function

diHlðNnÞ
dni

¼ NiHlðNnÞ; i is even

NiH�l ðNnÞ; i is odd

(
: ð19Þ

The properties of trigonometric function T based on differentiation
rules is given in Eq. (A.2). Also, a careful inspection on Eqs. (12) and



Fig. 2. Illustration of the arbitrarily prescribed boundary conditions applied on the entire plate X in ðaÞ which are partitioned into four kj BC components which are
prescribed to the quarter plate as in ðbÞ.
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(13) gives the following identities which will be used in later
formulations.

p2
1km þ p2

2km ¼ ð2Ca2
km � vÞ=K; p2

1kmp2
2km ¼ ða4

km � va2
km � jÞ=K; ð20aÞ

q2
1jn þ q2

2jn ¼ 2Cb2
jn � v; q2

1jnq2
2jn ¼ Kb4

jn � vb2
jn � j; ð20bÞ

Kðp2
1km þ b2

jnÞðp2
2km þ b2

jnÞ ¼ ðq2
1jn þ a2

kmÞðq2
2jn þ a2

kmÞ: ð20cÞ

2.3. Boundary conditions

Previously, the general solution Wðx; yÞ which is defined in the
domain X (Fig. 2(a)) has been partitioned into four components

Wkjðx; yÞ defined within X1 (first quarter of X, see Fig. 2(b)) with
different symmetric/antisymmetric properties, with kj taking four
different combinations of ‘0’ and ‘1’. In this section, the arbitrarily
prescribed BC prescribed along the four boundaries B1 � B4

(Fig. 2(a)) will be partitioned into four corresponding BC compo-
nents imposed on the two boundaries Ba and Bb of the plate quar-
ter X1, see Fig. 2(b).

Without loss of generality, any arbitrarily prescribed displace-
ment and force BC on the four plate edges of X can be written in
vector form as

W1

/1

W2

/2

W3

/3

W4

/4

266666666666664

377777777777775
¼

Wða; yÞ
/xða; yÞ
Wðx; bÞ
/yðx; bÞ

Wð�a; yÞ
/xð�a; yÞ
Wðx;�bÞ
/yðx;�bÞ

266666666666664

377777777777775
;

V1

M1

V2

M2

V3

M3

V4

M4

266666666666664

377777777777775
¼

Vxða; yÞ
Mxxða; yÞ
Vyðx; bÞ

Myyðx; bÞ
�Vxð�a; yÞ
�Mxxð�a; yÞ
�Vyðx;�bÞ
�Myyðx;�bÞ

266666666666664

377777777777775
; ð21Þ

where Wi; /i; Vi and Mi are introduced for the BC prescribed along
boundary Bi (i ¼ 1; 2; 3; 4 as shown in Fig. 2(a)).

On substituting general solution of Eq. (14) into the general BC
of Eqs. (5) and (6), both the general force and displacement BC can
be decomposed into four kj components as below.

Wkj
a

Wkj
b

/kj
a

/kj
b

2666664

3777775¼
Wkjjx¼a

Wkjjy¼b

�@xWkjjx¼a

�@yWkjjy¼b

2666664

3777775;
Vkj

a

Vkj
b

Mkj
a

Mkj
b

2666664

3777775¼ D11

� @3
x þC�@x@

2
y þv@x

� 	
Wkjjx¼a

� K@3
y þC�@y@

2
x þv@y

� 	
Wkjjy¼b

� @2
x þ m21@

2
y

� 	
Wkjjx¼a

� K@2
y þ m21@

2
x

� 	
Wkjjy¼b

2666666664

3777777775
;

ð22Þ

where @ i
x and @i

y denote the differential operators @ i
x ¼ @

i=@xi and

@i
y ¼ @

i=@yi. In Eq. (22), the terms labelled with the subscript a or
b indicate the corresponding boundary conditions applied along
Ba and Bb of the quarter plate respectively, see Fig. 2(b).

Therefore, the relationships between the arbitrarily prescribed
boundary conditions of Eq. (21) and its four components of
Eq. (22) can be established. These are recorded in Appendix B,
which will be used later in the DS development.
3. Development of the dynamic stiffness matrix

In general, the dynamic stiffness (DS) matrix of a structure is
formulated by substituting the general solution into the displace-
ment and the force BC and then eliminating the unknowns coeffi-
cients from the general solution. Although more or less the same
idea applies for the current S-DSM development, there are how-
ever, still some differences when compared with that of the classi-
cal DSM development.

In the current S-DSM, both the general solution and the arbi-
trarily prescribed BC have been decomposed into four kj compo-
nents with different symmetry/antisymmetry properties, see Eqs.
(15) and (22). Therefore, one can develop the DS component matri-

ces Kkj corresponding to each kj components. Subsequently, by
considering the relationships between the BC of the whole plate
and its four BC components as given in Eqs. (B.2) and (B.3), these

four DS component matrices Kkj can be assembled to form effec-
tively the DS matrix K for the entire plate for the most general
case. In doing so, the formulation is symbolically simplified and
thus computational cost is significantly reduced.

Moreover, due to the application of Fourier series, careful atten-
tion is to be paid during the S-DSM development to ensure that the
formulated DS matrices are symmetric, so as to enable the applica-
tion of the Wittrick–Williams algorithm.

Finally, the DS component matrix Kkj is generated through a
mixed-variable formulation which makes the current method effi-
cient, accurate and numerically stable when compared with the
classical DS formulation. In the present method, the unknown coef-
ficients in the general solution are eliminated based on some, but
not all, of the boundary conditions. Then the remaining boundary
conditions are applied to form a mixed-variable algebraic system
which is subsequently used to formulate the DS component matrix

Kkj. By contrast, if the classical DS formulation was used, both the

force f kj and the displacement boundary conditions dkj would have

to be expressed in terms of unknown coefficient ckj, i.e., dkj ¼ Dkjckj

and f kj ¼ Fkjckj and the DS matrix is given by Kkj ¼ FkjDkj�1
. The

inverse of the matrix Dkj for the current case requires more compu-
tational resources and may cause numerical ill-conditioning. This
might be the case especially when more terms are included in
the Fourier series.
3.1. Formulation of the DS component matrix Kkj

The formulation of Kkj is accomplished in three steps: (i) The BC
are represented by a modified Fourier series, (ii) The unknown
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coefficients A1km; A2km; B1jn and B2jn appearing in the general solu-
tion are solved based on some of the BC and (iii) Through a
mixed-variable formulation procedure, the remaining BC lead to
an infinite system of mixed-variable form which is finally used to

arrive at the DS component matrix Kkj. Note that in what follows
the procedure is valid for all of the four symmetric/antisymmetric
component cases by taking k and j in turn with values either ‘0’ or
‘1’.

3.1.1. Formulation of boundary-condition components using modified
Fourier series

In the last section, the BC components of Eq. (22) have been
expressed by the general solution and its derivatives.
Alternatively, the BC components of Eq. (22) can be represented
by modified Fourier series of Eq. (A.3), which will be combined
with those expressions of Eq. (22) to finally formulate the DS com-

ponent matrix Kkj.
Here the same set of Fourier basis functions of Eq. (A.1) is

adopted as in Eq. (9), but appropriate Fourier series formula should
be chosen to keep the symplecticity [46] of the formulated matrix
system and therefore, ensuring the symmetry of the resulting DS
matrix. In this method, the modified Fourier series of Eq. (A.3) in
Appendix A is adopted, and hence the entries of the BC component
vectors on the left-hand sides of Eq. (22) can be alternatively
expressed as

Wkj
a

Wkj
b

/kj
a

/kj
b

2666664

3777775¼

X
n2N

Wajn
T jðbjnyÞffiffiffiffiffiffi

fjnb
pX

m2N
Wbkm

T kðakmxÞffiffiffiffiffiffiffi
fkma
pX

n2N
/ajn

T jðbjnyÞffiffiffiffiffiffi
fjnb
pX

m2N
/bkm

T kðakmxÞffiffiffiffiffiffiffi
fkma
p

2666666666664

3777777777775
;

Vkj
a

Vkj
b

Mkj
a

Mkj
b

2666664

3777775¼D11

X
n2N

Vajn
T jðbjnyÞffiffiffiffiffiffi

fjnb
pX

m2N
Vbkm

T kðakmxÞffiffiffiffiffiffiffi
fkma
pX

n2N
Majn

T jðbjnyÞffiffiffiffiffiffi
fjnb
pX

m2N
Mbkm

T kðakmxÞffiffiffiffiffiffiffi
fkma
p

2666666666664

3777777777775
ð23Þ

where the superscripts kj for the Fourier coefficients such as Wajn

and Vbkm are omitted for notational convenience. The Fourier coef-
ficients of the boundary conditions (e.g. Wajn and Vbkm) in Eq. (23)
were obtained from Eq. (A.3) to give

Wajn ¼
Z b

�b
Wkj

a

T jðbjnyÞffiffiffiffiffiffiffiffi
fjnb

p dy; Vbkm ¼
Z a

�a

Vkj
b

D11

T kðakmxÞffiffiffiffiffiffiffiffiffiffi
fkma
p dx: ð24Þ

The
ffiffiffiffiffiffiffiffi
fjnb

p
and

ffiffiffiffiffiffiffiffiffiffi
fkma
p

appearing in Eqs. (23), and (24) provide the
symmetry of the forward and inverse Fourier transformation to
eliminate the dependence of the length in the integral ranges
½�b; b� or ½�a; a�. Therefore, when a – b the ensuing DS component

matrices Kkj will remain symmetric. This will become apparent
later.

3.1.2. The determination of the unknown coefficients in the general
solution

In view of Eqs. (A.2) and (19), the expressions for /kj
a and Vkj

a

given in Eqs. (22) and (23) lead to

�@xWkj





x¼a
¼
X
n2N

/ajnT jðbjnyÞ
ffiffiffiffiffiffiffiffi
fjnb

q.
; ð25aÞ

� ð@3
x þ C�@x@

2
y þ v@xÞWkj





x¼a
¼
X
n2N

VajnT jðbjnyÞ
ffiffiffiffiffiffiffiffi
fjnb

q.
; ð25bÞ

which yield

� /ajn=
ffiffiffiffiffiffiffiffi
fjnb

q
¼ q1jnH�kðq1jnaÞB1jn þ q2jnH�kðq2jnaÞB2jn; ð26aÞ

� Vajn=
ffiffiffiffiffiffiffiffi
fjnb

q
¼ q2

1jn � C�b2
jn þ v

� 	
q1jnH�kðq1jnaÞB1jn

þ q2
2jn � C�b2

jn þ v
� 	

q2jnH�kðq2jnaÞB2jn ð26bÞ
for all n 2 N. With the help of Eq. (20b), the unknowns coefficients
B1jn and B2jn can be determined from Eq. (26) for all n 2 N to give

B1jn ¼
Vajn � ðm21b

2
jn � q2

1jnÞ/ajnffiffiffiffiffiffiffiffi
fjnb

p
q1jnH�kðq1jnaÞðq2

2jn � q2
1jnÞ

; ð27aÞ

B2jn ¼ �
Vajn � ðm21b

2
jn � q2

2jnÞ/ajnffiffiffiffiffiffiffiffi
fjnb

p
q2jnH�kðq2jnaÞðq2

2jn � q2
1jnÞ

: ð27bÞ

Similarly, with the help of Eq. (20a), the expressions of /kj
b and Vkj

b in
Eqs. (22) and (23) yield the unknowns A1km and A2km to be

A1km ¼
Vbkm � ðm21a2

km �Kp2
1kmÞ/bkmffiffiffiffiffiffiffiffiffiffi

fkma
p

p1kmH�j ðp1kmbÞðp2
2km � p2

1kmÞ
; ð28aÞ

A2km ¼ �
Vbkm � ðm21a2

km �Kp2
2kmÞ/bkmffiffiffiffiffiffiffiffiffiffi

fkma
p

p2kmH�j ðp2kmbÞðp2
2km � p2

1kmÞ
: ð28bÞ
3.1.3. Infinite system and the formulation of the DS component matrix

Kkj

So far, all unknown coefficients A1km; A2km; B1jn and B2jn in the
solution component of Eq. (15) have been determined using the

entries /kj
a ; /kj

b ; Vkj
a and Vkj

b in the BC components of Eqs. (22)
and (23). Subsequently, an infinite system of algebraic equations
is derived by substituting the above determined unknowns into

the remaining entries Wkj
a ; Wkj

b ; Mkj
a and Mkj

b in Eqs. (22) and
(23), see Appendix C for details. This infinite system can be rewrit-
ten in the following mixed-variable matrix form as:

Wkj

Mkj

" #
¼

Akj
WU Akj

WV

Akj
MU Akj

MV

" #
Ukj

Vkj

" #
: ð29Þ

The explicit expressions of the four coefficient matrices Akj in Eq.
(29) are given in Appendix D, with each expression denoting a clear
physical meaning. The whole mixed-variable matrix in Eq. (29)

exhibits a symplectic structure: Akj
WV ¼ Akj

WV

T
and Akj

MU ¼ Akj
MU

T
are

symmetric matrices, while Akj
WU ¼ �Akj

MV

T
. This is because the adop-

tion of the modified Fourier series formula (A.3) keeps the symplec-
ticity of the Hamiltonian system. The symplecticity of this system
can be proved analytically based on the minimum potential energy
through the application of variational principle [46]. The
sub-vectors in Eq. (29) are defined as

Vkj ¼
Vkj

a

Vkj
b

" #
; Mkj ¼

Mkj
a

Mkj
b

" #
; Wkj ¼

Wkj
a

Wkj
b

" #
; Ukj ¼

Ukj
a

Ukj
b

" #
ð30Þ

where

Vkj
a ¼ ½Vaj0;Vaj1; . . . ;Vajn; � � ��T ; Vkj

b ¼ ½Vbk0;Vbk1; � � � ;Vbkm; . . .�T ;
Mkj

a ¼ ½Maj0;Maj1; . . . ;Majn; . . .�T ; Mkj
b ¼ ½Mbk0;Mbk1; . . . ;Mbkm; . . .�T ;

Wkj
a ¼ ½Waj0;Waj1; . . . ;Wajn; . . .�T ; Wkj

b ¼ ½Wbk0;Wbk1; . . . ;Wbkm; . . .�T ;
Ukj

a ¼ ½/aj0;/aj1; . . . ;/ajn; . . .�T ; Ukj
b ¼ ½/bk0;/bk1; . . . ;/bkm; � � ��

T

are the vectors whose entries are the Fourier coefficients in Eq. (23).
Each entry of the above vectors corresponds to a frequency–
wavenumber dependent DOF. Two particular boundary conditions
need special mention. When the plate is completely free on all of

its four edges, one has Mkj ¼ Vkj ¼ 0, the system of Eq. (29) is

reduced to the homogeneous system Akj
MUUkj ¼ 0; whereas when

the plate is fully clamped all around its edges with Wkj ¼ Ukj ¼ 0,

the system of Eq. (29) becomes Akj
WV Vkj ¼ 0. Therefore, the natural

frequencies in these two special cases can be computed by applying

the Wittrick–Williams algorithm directly to Akj
MU and Akj

WV

respectively.



X. Liu, J.R. Banerjee / Composite Structures 132 (2015) 1274–1287 1281
On the basis of Eq. (29), the DS matrix for each kj component
can be reconstructed in the following form

f kj ¼ Kkjdkj
; ð31Þ

where

f kj ¼ D11
Vkj

Mkj

" #
; dkj ¼ Wkj

Ukj

" #
;

Kkj ¼ D11
Akj

WV

�1
�Akj

WV

�1
Akj

WU

Akj
MV Akj

WV

�1
Akj

MU � Akj
MV Akj

WV

�1
Akj

WU

24 35:
3.2. Using the DS component matrix Kkj to form the DS matrix K for
the entire plate element

In this section, the previous DS component matrices Kkj defined
in the domain X1 of the quarter plate are assembled to form the DS
matrix K in the domain X of the entire plate. This is achieved by
considering the relationships of the BC for the quarter plate and
the entire plate (see Eqs. (B.2) and (B.3)).

As in Eq. (31), f kj and dkj are the Fourier coefficient vectors of the
BC on Ba; Bb of the quarter plate (see Fig. 2(b)) through the use of
modified Fourier series of Eq. (A.3). Similarly, by applying Eq. (A.3)
to the force and displacement BC of the entire plate (see Eq. (21)),
one has the corresponding Fourier coefficient vectors

f ¼ f 1; f 2; f 3; f 4½ �T ; d ¼ d1;d2;d3;d4½ �T ; ð32Þ

in which

f i ¼ V0
i ;V

1
i ;M

0
i ;M

1
i

h iT
; di ¼ W0

i ;W
1
i ;U

0
i ;U

1
i

h iT
ð33Þ

and where the sub-vectors such as V1
i and W0

i are essentially the
Fourier coefficient vectors of the BC on Bi of the entire plate given
in Eq. (21), see Fig. 2. The superscripts, being ‘0’ or ‘1’, stand for
the Fourier cosine or sine transform of the corresponding BC on
boundary Bi. It should be kept in mind that every element of f or
d corresponds to a frequency–wavenumber dependent DOF
(FWDOF) on one boundary of the entire plate.

Now the relationships between f ; d and f kj; dkj can be estab-
lished by considering the relationships given by Eqs. (B.2) and
(B.3). Introducing the transfer matrix T so that

f ¼ T½f 00; f 01; f 10; f 11�T ; d ¼ T½d00
;d01

;d10
;d11�

T
: ð34Þ

T is the transfer matrix in the form

T ¼

In O O O O O O O In O O O O O O O
O O O O In O O O O O O O In O O O
O In O O O O O O O In O O O O O O
O O O O O In O O O O O O O In O O
O O Im O O O Im O O O O O O O O O
O O O O O O O O O O Im O O O Im O
O O O Im O O O Im O O O O O O O O
O O O O O O O O O O O Im O O O Im

�In O O O O O O O In O O O O O O O
O O O O �In O O O O O O O In O O O
O In O O O O O O O �In O O O O O O
O O O O O In O O O O O O O �In O O
O O �Im O O O Im O O O O O O O O O
O O O O O O O O O O �Im O O O Im O
O O O Im O O O �Im O O O O O O O O
O O O O O O O O O O O Im O O O �Im

26666666666666666666666666666666664

37777777777777777777777777777777775

;

ð35Þ

where In and Im are identity matrices of dimension n and m respec-
tively, and O represents null matrices. It is easily seen that T is the
combination of certain number of Ts as indicated in Eq. (B.3) (the
number depends on the number of terms included in the Fourier
series). As expected, T has the inherent property which is depen-
dent on Ts, see Eq. (B.5), and consequently

T�1 ¼ TT=2; 8 M; N 2 N: ð36Þ

Now returning to Eq. (34) one has

d00
;d01

;d10
;d11

h iT
¼ 1

2
TT d: ð37Þ

Finally, putting Eqs. (31), (32), (34) and (37) together yields the DS
matrix for the entire plate element as

f ¼ Kd; ð38Þ

where

K ¼ 1
2

T

K00 O O O
O K01 O O
O O K10 O
O O O K11

26664
37775TT ð39Þ

is the DS matrix of the entire plate element, which relates the
Fourier coefficient vectors of the force f to that of the displacement
d on the four edges of the plate.

Note that so far all of the above formulation are exact since
m; n 2 ½0;1Þ. However, for computational purposes, the infinite
series/matrices need to be truncated at certain point. It is worth
highlighting that the size of the matrix in the current S-DSM is
significantly smaller than that of the conventional finite element
(FEM) or boundary element methods (BEM). This is mainly due to
two reasons. On the one hand, the small size of the DS matrix
arises from the boundary formulation, because the DS matrix
relates the forces and displacements along the plate boundaries
in stead of in the plate domain. In this respect, the S-DSM shows
resemblance with the BEM. With m 2 ½0;M � 1� and n 2 ½0;N � 1�
respectively, the order of the matrices are: ðM þ NÞ � ðM þ NÞ for

Akj
; 2ðM þ NÞ � 2ðM þ NÞ for Kkj and 8ðM þ NÞ � 8ðM þ NÞ for K .

That is to say, the order of the matrices are linear with the sum
of M and N (the numbers of FWDOF in x and y coordinates)
instead of being proportional to the product of M and N as in
the case of FEM for a M � N mesh. On the other hand, since the
current S-DSM falls into the spectral (both time- and
spatial-wise) decomposition strategy rather than spatial discreti-
sation like the FEM and BEM, it is self-evident that much fewer
FWDOF are required in S-DSM, and yet an exact or almost exact
description of the deformation field can be achieved. Naturally
the size of present DS matrix is significantly smaller owing to
its spectral properties.

4. Assembly procedure and the application of arbitrarily
prescribed boundary conditions

In this section, the dynamic stiffness (DS) matrices K developed
above for individual plate elements are assembled to form the
overall DS matrix K f of the final structure. A single element can,
of course, be considered as the final structure as a special case.
The application procedure of any prescribed boundary conditions
for the final structure (i.e., f f and df ) is also discussed in this
section.

4.1. Assembly procedure

Like the classical DSM formulation, the assembly procedure for
the current S-DSM also resembles closely the finite element
method (FEM) with the exception that each plate element is con-
nected through line nodes instead of point nodes. There are
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however, some differences in the assembly procedure between the
current method and the classical DSM using a Levy-type solution.
This is due to the reason that each Levy-type plate element has
only a pair of line nodes on opposite edges, which limits its appli-
cation to plate assemblies only in a one-directional manner. In the
current S-DSM, each plate element has four line nodes at disposal
for the assembly in a much more general manner. This flexibility
contributes to the versatility of the current S-DSM enormously.
With such analytically formulated DS elements, one can model
complex structures accurately by plate assemblies.

For the sake of illustration, Fig. 3 shows the assembly procedure
for a simple L-shaped plate. The L-shaped plate is modelled using
three plate elements , , and with ten line nodes numbered
therein. The local DS matrices for the elements , , and are
denoted by blue �, red 	 and black 4 blocks respectively. The
assembly of the global DS matrix K f of the final structure, which
relates the force f f to the displacement df Fourier coefficient vec-
tors, is schematically shown on the right hand side of Fig. 3. Note
that the two overlapped symbols denote the two common line
nodes 3 and 5. It can be easily seen from this illustrative example
that the assembly procedure is as simple as that of the FEM. Thus
existing computer code available for FEM assembly can be used in
the current S-DSM method directly or by making some minor
modifications.

4.2. Application of arbitrarily prescribed boundary conditions

This section will show the implementation of arbitrarily pre-
scribed boundary conditions to a plate assembly (with a single
plate as a special case).

The boundary conditions can be arbitrarily prescribed on plate
edges, which are directly transformed into vector form f f and df

as in Eq. (32) by using the modified Fourier series of Eq. (A.3).
For instance, if the displacement boundary condition WiðnÞ is pre-
scribed along the ith boundary n 2 ½�L; L�, by applying the modified
Fourier series formula of Eq. (A.3), one can write

WiðnÞ ¼
X
s2N

l2f0;1g

Wils �
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; Wils ¼

Z L

�L
WiðnÞ

T lðclsnÞffiffiffiffiffiffiffi
flsL

p dn ð40Þ

where the notations are defined in Table A.1 of Appendix A. By
putting the Fourier coefficients into vector form one will have the

displacement vector as: ½W0
i ;W

1
i �

T ¼ Wi00;Wi01;Wi02; � � � ;Wi10;Wi11;½
Fig. 3. Illustration of the assembly proce
Wi12; � � ��T , with W0
i and W1

i denoting respectively the symmetric
and the antisymmetric components of displacements Wi. In this
way, any arbitrarily prescribed boundary conditions such as line
and/or point supports on the boundaries can be represented by
the Fourier coefficient vectors f f or df . Moreover, the present
method also benefits the application of elastic edge constraints
which are another type of boundary conditions encountered in
many real applications. There are generally two types of elastic edge
constraints for the Kirchhoff plate theory, namely, the linear and the
rotational elastic constraints. These constraints usually can be
expressed in the following forms

KxW ¼ Vx; Rx/x ¼ Mx; along boundary x ¼ xB; ð41aÞ
KyW ¼ Vy; Ry/y ¼ My; along boundary y ¼ yB: ð41bÞ

Here, Kx and Ky are the linear spring constants along the corre-
sponding boundaries, whereas Rx and Ry are the rotational spring
constants. Expressing both sides of Eq. (41) in terms of the modified
Fourier series formula of Eq. (A.3) will lead to the DS matrices of the
spring constraints on the plate edges. The DS matrices of elastic
edge restraints are then superposed to the unmodified DS matrix
of the plate structure (i.e., without elastic constraints) to form the
final DS matrix of the elastically constrained structural system.
Similarly, the above procedure can be applied to model composite
stiffened panels. A panel can be idealised as S-DS plate elements
which are assembled at the location of stiffeners. The stiffeners
are modelled as beam elements whose displacement (rotation)
and force (moment), i.e., the related values for plate are W; /; V
and M, can be expressed by the modified Fourier series such as in
Eq. (40). Finally, the S-DS matrix for the stiffener can be developed
based on beam theories which can be directly superposed to the
unmodified DS matrix of the plate structure. This is quite similar
to the procedure for modelling elastic constraints given in Eq. (41).

Now it is appropriate to point out that the current S-DSM has
also the advantages that are analogous to the boundary element
method (BEM) [47–49], but free from its shortcomings. In the
BEM, the fundamental solution is derived analytically or
semi-analytically from the GDE which is then used to formulate
the boundary integral equation (BIE). As a result, any boundary
conditions in BEM can be applied and the BIE can be solved numer-
ically. The current S-DSM is, in this aspect, similar to that of BEM.
The DS formulation satisfies the GDE rigorously because it has been
derived from the exact general solution. This formulation also pro-
vides the flexibility to apply any arbitrary boundary conditions.
dure of a L-shaped plate assembly.
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However, unlike the conceptual complexity and the need to solve
the BIE numerically as in BEM, the current S-DSM describes arbi-
trarily prescribed BC accurately and efficiently by modified
Fourier series whose coefficients are related directly by the DS
matrix.

After describing the prescribed boundary conditions in their
Fourier coefficient form, it should be noted that there will generally
be some cases where the displacement vectors of certain bound-
aries have zero vectors. A simple example is the classical boundary
conditions for which the displacement corresponding to a certain
plate edge can be zero. Therefore, the corresponding sub-vectors
will be null. Usually, there are two methods for the implementa-
tion of such zero displacement boundary conditions. One is the
penalty method and the other is the condensation method, see
for example [19]. In the former, a sufficiently large stiffness can
be added to the appropriate leading diagonal term to suppress
the corresponding displacements whereas in the latter the rows
and columns relating to the zero displacements are removed from
the overall DS matrix of the complete structure. Understandably,
the condensation method is superior to the penalty method in
terms of accuracy and efficiency, but it involves some additional
programming efforts. A brief description of the two techniques is
given below.

Penalty method [50] is widely used to satisfy essential bound-
ary conditions when finding eigenvalues of continuous systems.
This has been proved to be a stable and satisfactory method,
particularly when applying the Wittrick–Williams algorithm
[11,12,14,15,51]. In the current S-DSM, the aforementioned elastic
edge constraints directly facilitate the application of the penalty
method, with the elastic constants Kx; Ky; Rx; Ry of Eq. (41) being
the penalty parameters. Therefore, a geometric constraint can be
considered as an elastic constraint with KxðKyÞ or/and RxðRyÞ taking
large enough value(s). The following boundary conditions on the
ith edge of a plate can be applied: (i) Free (F): no penalty is applied,
(ii) Simply supported (S): W i is penalised, (iii) Clamped (C): both
W i and Ui are penalised. Although the penalty method is quite reli-
able and fairly straightforward to apply, it has some shortcomings.
The first drawback lies in the difficulty to determine a suitable
magnitude for the penalty parameters: too small will lead to accu-
racy loss; too large may cause ill-conditioning or large round off
errors [50]. Additionally, this technique does not reduce the size
of the overall DS matrix and is therefore, not expected to reduce
the computation cost.

The other technique is based on condensing the DS matrix. The
rows and columns of the DS matrix corresponding to the DOF with
zero displacement are removed in this method. Suppose that the
displacement vector df can be partitioned into two sub-vectors
da and db such that the displacement sub-vector db (corresponding
to f b) and the force sub-vector f a (corresponding to da) are zero for
the prescribed boundary conditions, then Eq. (38) can be recast in
the following form

0
f b

� �
¼

Kaa Kab

Kba Kbb

� �
da

0

� �
ð42Þ

where Kab ¼ KT
ba. In such cases, Eq. (42) is condensed to

Kaada ¼ 0: ð43Þ

Thus the natural frequencies can be computed by applying the WW
algorithm to the above condensed DS matrix Kaa. Even though this
condensation technique is not as easy as the penalty method, it cer-
tainly avoids any possible loss of accuracy. More importantly, it
condenses the DS matrix and therefore reduces the computational
cost. Therefore, in the current S-DSM, the condensation method is
applied in stead of the penalty method.
Having applied the prescribed boundary conditions to formu-
late the overall DS matrix K f , the natural frequencies and mode
shapes computation of the plate structure follows from the appli-
cation of the Wittrick–Williams algorithm [3], which is explained
in the next section.

5. The Wittrick–Williams algorithm enhancement and mode
shape computation

The overall dynamic stiffness (DS) matrix K f for the final struc-
ture with prescribed constraints is essentially used for an accurate
and efficient free vibration analysis. A reliable method to achieve
this is to apply the well-known Wittrick–Williams (WW) algo-
rithm [3]. The algorithm monitors the Sturm sequence properties
of K f in such a way that there is no possibility of missing any
natural frequency of the structure. This is, of course, impossible
in most analytical and approximate methods. It should be
emphasised that some difficulties may arise in the WW algorithm
application, but for the current problem potential stumbling blocks
have been removed so as to make the current S-DSM reliable, com-
putationally efficient and accurate.

5.1. Basic features and enhancement

Suppose that x denotes the circular (or angular) frequency of a
vibrating structure, then according to the WW algorithm, as x is
increased from zero to x�, the number of natural frequencies
passed (J) is given by

J ¼ J0 þ sfK f g; ð44Þ

where K f , the overall DS matrix of the final structure whose ele-
ments depend on x is evaluated at x ¼ x�; sfK f g is the number
of negative elements on the leading diagonal of KMf , and KMf is the
upper triangular matrix obtained by applying the usual form of
Gauss elimination to K f , and J0 is the number of natural frequencies
of the structure still lying between x ¼ 0 and x ¼ x� when the dis-
placement components to which K f corresponds are all zeros. Thus

J0 ¼
X

Jm; ð45Þ

where Jm is the number of natural frequencies between x ¼ 0 and
x ¼ x� for an individual component member with its boundaries
fully clamped, while the summation extends over all structural
members. Thus, with the knowledge of Eqs. (44) and (45), one can
ascertain how many natural frequencies of a structure lie below
an arbitrarily chosen trial frequency x�. This simple feature of the
algorithm can be used to converge upon any required natural fre-
quency to any desired accuracy.

Clearly, J0 count is an essential part of the algorithm. However,
the evaluation of J0 count can sometimes be a difficult task and
may become a potential drawback when applying the algorithm.
In the literature, most of the previous DS methods on plates
[11,12,15] use a sufficiently fine mesh to avoid J0 computation
i.e., to ensure that J0 
 0 for the entire frequency range of interest.
However, this will no doubt increase the computational time. This
is particularly true for the current S-DSM because a finer mesh will
increase the number of DOFs much more significantly than that in
a Levy-type plate DS theory. To meet this challenge, an efficient
and reliable strategy is applied which is based on applying the
WW algorithm in reverse to obtain Jm of Eq. (45) such that

Jm ¼ JS � sðKSÞ; ð46Þ

where JS is the overall sign count of a plate with all edges simply
supported and sðKSÞ is the sign count of its formulated DS matrix
KS. The technique in Eq. (46) has been successfully applied to beam
elements [52,53]. However, when it comes to plate problems it
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becomes quite complicated and has not been applied in previous
publications [11,12,15] with the lone exception of Ref. [10] (in
which the JS was formulated easily because the matrix KS was a
2� 2 matrix only). In the present method, the strategy based on
Eq. (46) has been successfully implemented through several novel
techniques.

First the computation of JS in Eq. (46) is accomplished in an ana-
lytical manner by using the number theory. It is well-known that
the exact solution for the natural frequency of an all-round simply
supported cross-ply laminated Kirchhoff plate follows from the
well-established Navier solution [44]. The natural frequency xm̂n̂

for this case can be expressed analytically in the following form

ð2aÞ4I0x2
m̂n̂

p4D11
¼ m̂4 þP1m̂2n̂2 þP2n̂4

1þP3ðm̂2 þ g2n̂2Þ ; m̂; n̂ 2 f1;2;3; . . .g; ð47Þ

where the left hand side of the equation is nondimensionalised and

g ¼ a
b
; P1 ¼ 2Cg2; P2 ¼ Kg4; P3 ¼

I2

I0

p
2a

� 	2
: ð48Þ

Thus, JS, the number of natural frequencies lying below a trial nat-
ural frequency x�, is essentially the number of pairs of m̂ and n̂ such
that the left-hand side of Eq. (47) with xm̂n̂ ¼ x� is greater than the
right-hand side. Obviously, this can be obtained from a numerical
search which may be computationally expensive and the procedure
may miss some of the natural frequencies. However, there exists an
analytical expression for JS if one recognises that this problem is
essentially an extension of the analytical number theory problem
called Gauss circle problem [21] according to which

JS ¼
XbP4c

m̂¼1

bn̂�ðm̂;x�Þc; ð49Þ

where

P4 ¼
2a
p

ffiffiffiffiffiffiffiffiffiffiffiffi
I0x�2

D11

4

s
; n̂�ðm̂;x�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

5 � 4P2P6

q
�P5

2P2

vuut
;

P5 ¼ P1m̂2 �P3P
4
4g

2; P6 ¼ m̂2ðm̂2 �P3P
4
4Þ

and ‘b�c’ is the floor function denoting the largest integer not greater
than ‘�’. The detailed mathematical proof of the above expression is
not given here due to brevity.

Next, the computation of sðKSÞ in Eq. (46) is achieved in an ele-
gant way by taking advantage of the mixed-variable formulation
explained earlier in Section 3.1. It is well-known that when a
geometrically symmetric structure is subject to symmetric con-
straints, the displacement field will be either symmetric or
antisymmetric. Therefore, in the present case where a rectangular
plate is subjected to all round simple supports, the four symmet-
ric/antisymmetric DS matrices are decoupled to describe the
deformation with corresponding symmetric/antisymmetric prop-

erties in the frequency domain. Hence, sðKSÞ ¼
P

k;j2f0;1gsðK
kj
S Þ.

Now recalling Eq. (31), the case with fully simple supports

becomes equivalent to letting Mkj ¼Wkj ¼ 0, such that

sðKkj
S Þ ¼ sðAkj

MU � Akj
MV Akj

WV

�1
Akj

WUÞ. In this way, one has

sðKSÞ ¼
X

k;j2f0;1g
sðAkj

MU � Akj
MV Akj

WV

�1
Akj

WUÞ: ð50Þ

The above technique of computing JS and sðKSÞ resolves completely
the problem of determining J0 in a highly efficient, accurate and
reliable manner.
5.2. Mode shape computation

The mode shape computation in the current S-DSM is somehow
different from the classical DSM approach due to the application of
the condensation method when applying the BC. Here the follow-
ing steps are used.

(1) Substitute the computed eigenvalues in the condensed
matrix for the whole system Kaa of Eq. (43) and then assign
an arbitrary value to a chosen DOF of da to determine the
rest of the values in the displacement vector in terms of
the chosen one by solving the algebraic system.

(2) Collect the condensed displacement vector da and the zero
displacement vector together, which is essentially an inverse
procedure of the condensation method as evident from Eq.
(42).

(3) Decompose the displacement vector df of the whole struc-
ture into that of plate element d following an inverse step
of the assembly procedure described in Section 4.1.

(4) For each plate element, the displacement vectors dkj can be

obtained from d according to Eq. (37) following which Kkj

and f kj are computed from Eq. (31).
(5) The unknown coefficients Akm and Bjn for each kj component

are calculated using Eqs. (27) and (28) which are substituted
into Eq. (15) and finally into Eq. (14) to recover the mode
shapes in an analytical manner.

6. Conclusions

In this Part I of the two-part paper, a novel spectral-dynamic
stiffness method (S-DSM) has been developed for free flexural
vibration analysis of orthotropic composite plates and their
assemblies with arbitrary boundary conditions. This research has
removed previous restrictions on DS theories of plate structures.
The other related main contributions made in this paper are: (i)
Some important mathematical techniques such as modified
Fourier series are utilised to keep the symplecticity of the DS for-
mulation of the Hamiltonian system, (ii) With the aid of spectral
idea, the ensuing DS matrix has been shown to have complete
flexibility to accommodate arbitrarily prescribed boundary condi-
tions, (iii) The assembly procedure of composite plate assemblies
has been developed and fully explained, (iv) The DS matrix was
formulated through an intensively symbolic and yet simplified
way with clear physical interpretation, which is capable of han-
dling complex plate structures and (v) Several novel techniques
have been proposed, which have resolved the sign count of a
fully-clamped plate leading to the well-known J0 term. This is a
significant enhancement to the Wittrick–Williams algorithm to
make it robust and efficient within all frequency range covering
low to high values.

In the second part of this paper [54], the current S-DSM is
applied to a wide range of plated structures made of composite
materials. The results obtained are compared with the results from
other analytical methods as well as those computed by the com-
mercial finite element package ABAQUS. It is demonstrated that
the S-DSM is superior to any other analytical or numerical known
methods in terms of the exactness, efficiency and versatility.
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Table A.1
The first four trigonometric functions. When applied to Eq. (9), the notations are adopted as either n ¼ x; l ¼ k; s ¼ m; cls ¼ akm ; L ¼ a or n ¼ y; l ¼ j; s ¼ n; cls ¼ bjn ; L ¼ b.

T lðclsnÞ l s ¼ 0 s ¼ 1 s ¼ 2 s ¼ 3

cos clsn 0

sin clsn 0
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Appendix A. Modified Fourier basis function and the
corresponding modified Fourier series

The set of modified Fourier basis functions adopted in the for-
mulation to represent any arbitrary continuous 1D function is of
the form

T lðclsnÞ ¼
cosðspL nÞ l ¼ 0
sin sþ 1

2

� � p
L n

� �
l ¼ 1

(
; n 2 ½�L; L�; s 2 N; ðA:1Þ

where N ¼ f0;1;2; . . .g is the non-negative integer set. It can be
proved that the above basis functions form a complete orthogonal
set. Note that the wave number cls of the cosine/sine basis functions
are to be carefully chosen to provide the flexibility to describe any
arbitrary 1D function with arbitrary boundary conditions at its
boundaries n ¼ �L. This is illustrated in Table A.1, where the first
four cosine/sine functions are shown. Furthermore, due to the
wavenumber adopted in Eq. (A.1), one has

diT lðclsnÞ
dni







n¼L

¼ ð�1Þsþi=2ci
ls i is even

0 i is odd

(
: ðA:2Þ

There are different adaptations of Fourier series in common use,
see for example Ref. [55]. In this paper, the following modified
Fourier series related to the basis functions defined in Eq. (A.1) is
utilised in which the dependence on the length of the integral
range ½�L; L� is eliminated. For any arbitrary displacement or force
boundary condition f ðnÞ along a plate edge n 2 ½�L; L�, one can
write

f ðnÞ ¼
X

s2N
l2f0;1g

Fls �
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; Fls ¼

Z L

�L
f ðnÞ T lðclsnÞffiffiffiffiffiffiffi

flsL
p dn; ðA:3Þ

where s 2 N and

fls ¼
2 l ¼ 0 and s ¼ 0
1 l ¼ 1 or s P 1

�
: ðA:4Þ

Note that
ffiffiffiffiffiffiffi
flsL

p
appearing in Eq. (A.3) provides the symmetry of the

forward and inverse Fourier transformation. The above technique is
for the purpose of retaining the symplecticity of the formulated
system.

Based on Eq. (A.3), the hyperbolic functions in Eq. (16) can be
transformed into Fourier series as follows:

HjðpyÞ ¼
X
n2N

2ð�1ÞnpH�j ðpbÞffiffiffiffiffiffiffiffi
fjnb

p
ðp2 þ b2

jnÞ
�
T jðbjnyÞffiffiffiffiffiffiffiffi

fjnb
p ðA:5aÞ

HkðqxÞ ¼
X
m2N

2ð�1ÞmqH�kðqaÞffiffiffiffiffiffiffiffiffiffi
fkma
p

ðq2 þ a2
kmÞ
� T kðakmxÞffiffiffiffiffiffiffiffiffiffi

fkma
p ; ðA:5bÞ

where p and q stand for p1km; p2km and q1jn; q2jn, respectively, and
fjn; fkm and H�j ðpbÞ; H�kðqaÞ follow the definitions given in Eqs.
(A.4) and (18) receptively.
Appendix B. The relationship between arbitrary boundary
conditions and their kj components

Considering the symmetry/antisymmetry of Wkj of Eq. (15)
and its derivatives, the relationships between the boundary condi-
tions (BC) in Eq. (21) and their four components in Eq. (22) are as
follows

W1

/1

W2

/2

W3

/3

W4

/4

2666666666666666664

3777777777777777775

¼

W00
a þW01

a þW10
a þW11

a

/00
a þ/01

a þ/10
a þ/11

a

W00
b þW01

b þW10
b þW11

b

/00
b þ/01

b þ/10
b þ/11

b

W00
a þW01

a �W10
a �W11

a

�/00
a �/01

a þ/10
a þ/11

a

W00
b �W01

b þW10
b �W11

b

�/00
b þ/01

b �/10
b þ/11

b

266666666666666666664

377777777777777777775

;

V1

M1

V2

M2

V3

M3

V4

M4

2666666666666666664

3777777777777777775

¼

V00
a þV01

a þV10
a þV11

a

M00
a þM01

a þM10
a þM11

a

V00
b þV01

b þV10
b þV11

b

M00
b þM01

b þM10
b þM11

b

V00
a þV01

a �V10
a �V11

a

�M00
a �M01

a þM10
a þM11

a

V00
b �V01

b þV10
b �V11

b

�M00
b þM01

b �M10
b þM11

b

266666666666666666664

377777777777777777775

:

ðB:1Þ

It should be noted that any prescribed BC on the left-hand sides of
Eq. (B.1) can be decomposed into a symmetric and an antisymmet-
ric components, e.g., Wi ¼W0

i þW1
i and Vi ¼ V0

i þ V1
i with sub-

script ‘0’ or ‘1’ denoting the symmetric or the antisymmetric
component respectively. If the decomposition is applied to all the
entries on the left-hand side vectors in Eq. (B.1) and equated
to the symmetric/antisymmetric components of both sides of
Eq. (B.1) separately, the following relationships for the displace-
ment BC of the quarter plate and the entire plate can be obtained.
Thus

W0
1;W

1
1;W

0
3;W

1
3

h iT
¼ T1½W00

a ;W
01
a ;W

10
a ;W

11
a �

T ðB:2aÞ

W0
2;W

1
2;W

0
4;W

1
4

h iT
¼ T2½W00

b ;W
01
b ;W

10
b ;W

11
b �

T ðB:2bÞ

/0
1;/

1
1;/

0
3;/

1
3

� �T ¼ T3½/00
a ;/

01
a ;/

10
a ;/

11
a �

T ðB:2cÞ

/0
2;/

1
2;/

0
4;/

1
4

� �T ¼ T4½/00
b ;/

01
b ;/

10
b ;/

11
b �

T
: ðB:2dÞ

The relationships between the corresponding force BC are

V0
1;V

1
1;V

0
3;V

1
3

h iT
¼ T1 V00

a ;V
01
a ;V

10
a ;V

11
a

h iT
ðB:3aÞ

V0
2;V

1
2;V

0
4;V

1
4

h iT
¼ T2 V00

b ;V
01
b ;V

10
b ;V

11
b

h iT
ðB:3bÞ

M0
1;M

1
1;M

0
3;M

1
3

h iT
¼ T3 M00

a ;M
01
a ;M

10
a ;M

11
a

h iT
ðB:3cÞ

M0
2;M

1
2;M

0
4;M

1
4

h iT
¼ T4 M00

b ;M
01
b ;M

10
b ;M

11
b

h iT
: ðB:3dÞ

In Eqs. (B.2) and (B.3), Tsðs ¼ 1;2;3;4Þ are transfer matrices defined
as
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T1 ¼

1 0 1 0
0 1 0 1
1 0 �1 0
0 1 0 �1

26664
37775; T2 ¼

1 1 0 0
0 0 1 1
1 �1 0 0
0 0 1 �1

26664
37775; ðB:4aÞ

T3 ¼

1 0 1 0
0 1 0 1
�1 0 1 0
0 �1 0 1

26664
37775; T4 ¼

1 1 0 0
0 0 1 1
�1 1 0 0
0 0 �1 1

26664
37775: ðB:4bÞ

Interestingly, it can be shown that

T�1
s ¼ TT

s=2: ðB:5Þ

It is therefore straightforward to represent the vectors on the
right-hand side of Eqs. (B.2) and (B.3) by the left-hand side vectors.
For example

W00
a ;W

01
a ;W

10
a ;W

11
a

h iT
¼ TT

1 W0
1;W

1
1;W

0
3;W

1
3

h iT
=2: ðB:6Þ
Appendix C. Infinite system of algebraic equations stemming

from Wkj
a ; Wkj

b ; Mkj
a and Mkj

b of Eq. (22)

By equating the expressions of Wkj
a ; Wkj

b in Eqs. (22) and (23),
the following two relationships are obtained

Wkj





x¼a
¼
X
m2N
ð�1Þm A1kmHjðp1kmyÞ þ A2kmHjðp2kmyÞ

� �
þ
X
n2N

B1jnHkðq1jnaÞ þ B2jnHkðq2jnaÞ
� �

T jðbjnyÞ

¼
X
n2N

WajnT jðbjnyÞ=
ffiffiffiffiffiffiffiffi
fjnb

q
ðC:1aÞ

Wkj





y¼b
¼
X
n2N
ð�1Þn B1jnHkðq1jnxÞ þ B2jnHkðq2jnxÞ

� �
þ
X
m2N

A1kmHjðp1kmbÞ þ A2kmHjðp2kmbÞ
� �

T kðakmxÞ

¼
X
m2N

WbkmT kðakmxÞ=
ffiffiffiffiffiffiffiffiffiffi
fkma

p
: ðC:1bÞ

Substituting Eqs. (27) and (28) into Eq. (C.1), applying the
Fourier series Eq. (A.5) to the hyperbolic functions
Hjðp1kmyÞ; Hjðp2kmyÞ; Hkðq1jnxÞ and Hkðq2jnxÞ, and eliminating the

common terms T jðbjnyÞ=
ffiffiffiffiffiffiffiffi
fjnb

p
or T kðakmxÞ=

ffiffiffiffiffiffiffiffiffiffi
fkma
p

from both sides,
the following infinite algebraic system arises

Wajn ¼
X
m2N

2ð�1Þmþn Vbkm � m21a2
km þKb2

jn

� 	
/bkm

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

p
Kðp2

1km þ b2
jnÞðp2

2km þ b2
jnÞ

þ 1
q2

2jn � q2
1jn

Vajn � m21b
2
jn � q2

1jn

� 	
/ajn

h i THkðq1jnaÞ
q1jn

(

� Vajn � m21b
2
jn � q2

2jn

� 	
/ajn

h i THkðq2jnaÞ
q2jn

)
ðC:2Þ

Wbkm ¼
1

Kðp2
2km � p2

1kmÞ
Vbkm � m21a2

km �Kp2
1km

� �
/bkm

� � THjðp1kmbÞ
p1km

�
� Vbkm � m21a2

km �Kp2
2km

� �
/bkm

� � THjðp2kmbÞ
p2km




þ
X
n2N

2ð�1Þmþn Vajn � a2
km þ m21b

2
jn

� 	
/ajn

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

p
ðq2

1jn þ a2
kmÞðq2

2jn þ a2
kmÞ

; ðC:3Þ

where the notation THlðNÞ ¼ HlðNÞ=H�l ðNÞ has been used. Similarly,
when the already determined unknowns of Eqs. (27) and (28) and
the Fourier series of Eq. (A.5) are substituted into the expressions

of Mkj
a ; Mkj

b in Eqs. (22) and (23), another set of infinite algebraic
system can be obtained using an analogous procedure.

Appendix D. Expressions of the coefficient matrices in the
mixed-variable formulation of Eq. (29)

The analytical expressions for the coefficient matrices in Eq.
(29) are given in this appendix. After symbolic manipulation, the

four coefficient matrices Akj
WU; Akj

WV ; Akj
MU and Akj

MV can be expressed
in an extremely concise form. The following expressions are the
only analytical expressions required to model complex composite
plate-like structures.

Akj
WU ¼ �

diagn ðR1!1 � R2!2Þ=R5½ � ½R7R9�n;m
R8R10½ �m;n diagm ðR3!3 � R4!4Þ=R6½ �

" #
ðD:1aÞ

Akj
WV ¼

diagn½ð!1 �!2Þ=R5� ½R7�n;m
½R8�m;n diagm½ð!3 �!4Þ=R6�

" #
ðD:1bÞ

Akj
MU ¼ �

diagn½ð!1 �!2Þ=R5� ½R7�n;m
½R8�m;n diagm½ð!3 �!4Þ=R6�

" #
ðD:1cÞ

Akj
MV ¼

diagn½ðR1!1 � R2!2Þ=R5� ½R7R10�n;m
½R8R9�m;n diagm½ðR3!3 � R4!4Þ=R6�

" #
ðD:1dÞ

where

!1 ¼ Hkðq1jnaÞ=ðH�kðq1jnaÞq1jnÞ; !2 ¼ Hkðq2jnaÞ=ðH�kðq2jnaÞq2jnÞ;
!3 ¼ Hjðp1kmbÞ=ðH�j ðp1kmbÞp1kmÞ; !4 ¼ Hjðp2kmbÞ=ðH�j ðp2kmbÞp1kmÞ;
R1 ¼ m21b

2
jn � q2

1jn; R2 ¼ m21b2
jn � q2

2jn;

R3 ¼ m21a2
km �Kp2

1km; R4 ¼ m21a2
km �Kp2

2km;

R5 ¼ q2
2jn � q2

1jn; R6 ¼ Kðp2
2km � p2

1kmÞ;

R7 ¼ 2ð�1Þmþn
= K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

p
ðp2

1km þ b2
jnÞðp2

2km þ b2
jnÞ

h i
;

R8 ¼ 2ð�1Þmþn
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

p
ðq2

1jn þ a2
kmÞðq2

2jn þ a2
kmÞ

h i
;

R9 ¼ m21a2
km þKb2

jn; R10 ¼ a2
km þ m21b2

jn;

R11 ¼ a2
kmb2

jnðK� 2m21Cþ m2
21Þ þ m21 jþ vða2

km þ b2
jnÞ

h i
:

where the hyperbolic functions H and H� were defined in Eqs. (16)
and (18) respectively. In Eq. (D.1), ‘diagn½��’ represents a diagonal
matrix whose diagonal terms are expressed by ‘�’ with the subscript
n varying from 0 to 1, whereas ‘½��n;m’ stands for a matrix whose
entries are ‘�’ with n (row number) and m (column number) taking
from 0 to 1. Similarly, it is easy to understand the notations
‘diagm½��’ and ‘½��m;n’. If the series expansion is truncated with
n 2 ½0;N � 1� and m 2 ½0;M � 1�, then all of the four matrices in

Eq. (D.1) are of size ðM þ NÞ � ðM þ NÞ. Note that the notation ð�Þkj

with kj taking the values ‘00’, ‘01’, ‘10’ and ‘11’, implies that these
definitions are for all of the four symmetric/antisymmetric
components.

Clearly, the above analytical expressions carry physical mean-
ings. For instance, C�; K and m21 are material parameters, v is the
rotatory inertia parameter (Note that v ¼ 0 when rotatory inertia
is ignored); akm; bjn are the wavenumbers and p1km; p2km; q1jn

and q2jn are the frequency-dependent wave parameters. It is inter-
esting to note that the two sub-matrices in the diagonal position
for all of the four matrices in Eq. (D.1) are diagonal matrices. This
is due to the fact that all of the frequency–wavenumber dependent
DOF in one direction (for the corresponding displacements or
forces) are orthogonal to each other. Also, it can be deduced from
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Eq. (20) that R7 ¼ R8 ¼ 2ð�1Þmþn ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

p
½a2

kmða2
km þ 2Cb2

jnÞþ
n.

b2
jnðKb2

jn � vÞ � j�g.
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