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This paper presents an analytical spectral dynamic stiffness (SDS) formulation for exact inplane modal
analysis of composite plate assemblies and prismatic solids subjected to any arbitrary boundary condi-
tions, arbitrary non-uniform elastic supports, mass attachments and coupling constraints. First, the ele-
mental SDS matrix is derived symbolically from the exact general solution of the governing differential
equation, which is assembled directly to model complex geometries. Then, any arbitrary classical and/
or non-classical boundary conditions are applied directly in a strong form, which makes the method ver-
satile for a wide range of engineering problems. As the solution technique, the Wittrick-Williams algo-
rithm is applied by resolving the mode count problem of a fully clamped element. It is demonstrated
that the method gives exact solutions with prominent computational efficiency. The proposed method
provides an efficient and accurate analytical tool for the parametric and optimization analysis on the
inplane vibration of various composite structures.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Although the majority of existing investigations have been
devoted to the transverse modal analysis of composite plates, there
is a growing awareness that inplane vibration plays a significant
role in many elastodynamic problems. For example, the inplane
vibration should be considered in built-up structures [1–5] since
it is generally coupled with out-of-plane vibration when different
plates joint at a certain angle. The inplane vibration becomes even
more important when the structures are excited within higher
frequency range in energy flow and noise transmission analysis
[6–10]. Also, inplane modal analysis of plates has been widely used
in other areas, such as linear ultrasonic motors [11–14] and shear
walls [15–20]. On the other hand, the inplane (cross-sectional)
vibration of prismatic solids is generally encountered in structural
health monitoring [21–26], seismic analysis of civil engineering
structures like dams [27] and buildings, plane strain vibration of
composite hollow cylinders [28,29], and edge vibration of lami-
nated plates [30–32].
Nevertheless, compared to transverse vibrations, the existing
analytical research on inplane vibrations of composite plates and
prismatic solids is scarce which furthermore, has some or other
restrictions. Gorman [33] applied the superposition method to con-
duct the inplane modal analysis of fully clamped orthotropic
plates. Wittrick and Williams [1], and Boscolo and Banerjee [34]
developed the dynamic stiffness method for the exact free inplane
vibration of plates with a pair of opposite edges simply supported.
Wang and Wereley [35] solved the free inplane vibration of plates
with free and clamped edges using the Kantorovich method. Liu
and Xing presented the closed-form exact solutions for free inplane
vibration of isotropic [36,37] and orthotropic plates [38] with at
least one pair of the plate edges simply supported. Dozio [39] used
the Ritz method based on trigonometric functions for the free
inplane vibration of symmetric laminated anisotropic plates,
where the boundary conditions can be any combination of free
and clamped. Ghorbel [40] developed the dynamic stiffness
method for the inplane harmonic response of a completely free
orthotropic rectangular plate. More recently, Papkov [41] dis-
cussed the inplane vibration of completely free and fully clamped
rectangular orthotropic plates by investigating the asymptotic
behaviour of the formulated non-trivial quasi-regular infinite sys-
tems. However, all above methods have been restricted to certain
classical boundary conditions (BCs).
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The above restrictions have been removed by some other meth-
ods to account for general classical BCs and/or uniform elastic sup-
ports. Methods considering general classical BCs include different
Ritz methods by Bardell et al. [42] and Dozio [43], dynamic stiff-
ness method by Nefovska-Danilovic and Petronijevic [44] and the
spectral collocation method by Mohazzab and Dozio [45]. How-
ever, there are much fewer investigations considering inplane
vibration subjected to uniform elastic supports. The earliest work
on inplane vibration under elastic supports is probably performed
by Gorman [46], where the uniform normal elastic supports were
treated by using the superposition method. Later, Zhang et al.
[47] investigated the free inplane vibration of orthotropic rectan-
gular plates with uniform elastic edges by using the Fourier series
based analytical method.

Whilst non-uniform elastic supports are generally used to
model more realistic supports, it appears that existing work on
inplane vibration of plates subjected to non-uniform elastic sup-
ports are sporadic in the literature [43,48] (both using weak-
form Ritz methods). Dozio [43] applied the Trigonometric Ritz
method for the free inplane analysis of isotropic rectangular plates
with arbitrary elastic supports. Shi et al. [48] applied the Ritz
method based on an improved Fourier series to allow the treat-
ment of some practical boundary conditions such as uniform elas-
tic supports, point supports, partial supports and internal line
supports. However, in both weak-form methods, clamped and sim-
ple supports need to be modelled by using the penalty method,
whose main drawback [49] lies in choosing a suitable magnitude
for the penalty parameter. Furthermore, both research seems to
have been limited to single rectangular plates. The modelling of
plates with more complex geometries should resort to numerical
methods, such as the recently developed differential quadrature
finite element method (FEM) by Xing and Liu [50], strong formula-
tion FEM by Fantuzzi and Tornabene [51,52] and the differential
quadrature hierarchical FEM by Liu et al. [53]. However, until
now the associated theories considering non-uniform elastic sup-
ports for these powerful strong-form methods still need to be
developed.

To the best of the author’s knowledge, there is no existing ana-
lytical method in the literature on the inplane vibration of compos-
ite plate assemblies or prismatic solids, let alone considering
arbitrary non-uniform elastic supports, mass attachments and
elastic coupling constraints. However, those cases are more fre-
quently encountered in practical engineering problems. In particu-
lar, the non-uniform elastic supports can model more realistic
supports with non-uniform stiffness such as damaged boundaries.
The non-uniform mass attachments can describe any arbitrary
masses that are attached to plate assemblies or solid surfaces,
e.g., floors loaded onto shear walls, or sensors attached to struc-
tures. The non-uniform elastic coupling constraints can be used
to model for example, adhesive layers, cracks or buffer springs
between two plates or solids, or the coupling between two shear
walls.

Therefore, the major purpose of this paper is to develop an exact
but general analytical theory called the spectral dynamic stiffness
method (SDSM) for the inplane modal analysis of two types of
composite structures. These include both the free inplane vibration
of symmetric cross-ply laminated plates and the cross-sectional
free vibration of prismatic orthotropic solids. Both the plate assem-
blies and the cross sections of prismatic solids may have simple or
complex geometries. Furthermore, they may be subjected to any
arbitrary classical BCs as well as non-classical BCs including, arbi-
trary non-uniform elastic supports, mass attachments and cou-
pling constraints. The SDS formulations for both elements and
classical or non-classical BCs are in a strong form and therefore,
are very easy to implemented in computation. The SDSM was first
proposed by Liu and Banerjee for the transverse free vibration of
isotropic plates [54] and composite plate assemblies [55,56] and
later for plane elastodynamic problems [57]. Also, an SDS theory
has been proposed to deal with the transverse vibration of plate
assemblies with any arbitrary elastic supports, mass attachments
and coupling constraints [58]. However, the SDS formulation has
not been developed for the inplane vibration of composite plate
assemblies and prismatic solids with arbitrary classical and/or
nonclassical BCs. Besides, it will also be shown that the SDSM gives
exact results with excellent computational efficiency, which exhi-
bits a predominant advantage over the FEM and other methods in
terms of accuracy and computational efficiency. All results com-
puted by the SDSM are accurate up to the last digit presented,
which will serve as benchmark solutions.

The paper is organised as follows. In Section 2.1, the governing
different equation (GDE) and the natural boundary conditions
(BCs) of inplane vibration problems are formulated using
Hamilton’s principle. This is followed by the development of exact
general solution of the GDE (Section 2.2) and the spectral represen-
tation of any arbitrary BCs (Section 2.3). Then, the spectral dynamic
stiffness formulation for an element is developed which then can
be assembled directly to model complex structures, see Section 3.
The corresponding SDS theory dealing with any arbitrary non-
uniform elastic supports, mass attachments and coupling con-
straints is given in Section 4. In Section 5, as a solution technique,
the Wittrick-William algorithm is enhanced by resolving the mode
count problem of a fully clamped element. In order to assist read-
ers who are interested in applying the proposed method, Section 6
describes the implementation procedure in details. Then in
Section 7, the proposed method is validated against existing results
wherever available and then applied to a wide range of engineering
problems. Finally, the paper is concluded in Section 8.

2. Preliminaries

2.1. Derivation of governing differential equation and boundary
conditions

First, the governing differential equation and the corresponding
natural boundary conditions are derived using Hamilton’s princi-
ple. Assume that the geometry, material and the prescribed bound-
ary conditions of a three-dimensional elastic body are uniform in
one direction, such that all deformation and forces can be repre-
sented by the displacement of its cross section occupying the
region X bounded by @X. If the deformation field of this cross sec-
tion is described by u, Hamilton’s principle in the usual notation
gives

d
Z t2

t1

ðK�W þWeÞdt ¼ 0; ð1Þ

where K and W are the kinetic energy and elastic energies respec-
tively, and We is the work done by external loads t on the @X
(assuming no body force is applied). If the elastic body is under
small deformation, e.g., juj � 1 then

K ¼ 1
2

Z
X
q _u � _udA; W ¼ 1

2

Z
X
r : edA; We ¼

Z
@X

t � uds;

where r is the Cauchy stress tensor

r ¼ C : e; e ¼ 1
2
ðu� $þ $� uÞ ¼ ð$� uÞs; ð2Þ

and in which C is a fourth-order tensor defining the reduced stiff-
nesses of the cross section. The corresponding matrix forms of the
reduced stiffnesses for an orthotropic material are detailed in
Appendix A, which take different expressions for plane stress and
plane strain deformations. By using integration by parts, we have
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d
Z t2

t1

Kdt ¼
Z
X
q _u � udA

����t2
t1

�
Z t2

t1

Z
X
q€u � dudA

� �
dt ð3Þ

where the first term on the right hand side evaluated at initial and
final time is set to zero according to the Hamilton’s principle. Also,

dW ¼ d
1
2

Z
X
e : C : edA

� �
¼

Z
X
r : edA ¼

Z
X
r : ð$� duÞsdA: ð4Þ

In view of the identity T : ð$� aÞ ¼ $ � ðT � aÞ � ð$ � TÞ � a which
is valid for any second-order tensor T and first-order tensor a and
noticing that r is a symmetric tensor, the expression on the right
hand side of Eq. (4) can be rewritten asZ
X
$ � ðr � duÞ � ð$ � rÞ � du½ �dA ¼

Z
@X
ðr � nÞ � duds�

Z
X
ð$ � rÞ � dudA:

ð5Þ
Assuming that the boundary forces t are dead loads, one has

d
Z t2

t1

Wedt ¼
Z t2

t1

Z
@X

t � duds
� �

dt: ð6Þ

Substituting Eqs. (3), (5) and (6) into Eq. (1) leads to

d
Z t2

t1

Z
X
ð$ � r� q€uÞ � dudAþ

Z
@X
ðt � r � nÞ � dudA

� �
dt ¼ 0: ð7Þ

In view of Eq. (2), we have

$ � r ¼ $ � ðC : eÞ ¼ C..
.ð$� eÞ ¼ C..

.
$� ð$� uÞs: ð8Þ

Now we introduce the local coordinates fn; sg attached to the
boundary @X, where n and s are normal and tangent unit vectors
which form a local orthonormal basis. Therefore, the second term
in the square brackets on the left hand side of Eq. (7) becomesZ
@X
ðt � r � nÞ � duds ¼

Z
@X
ðt � r � nÞ � ðdunnþ dussÞds: ð9Þ

Due to the arbitrariness of du in Eq. (7), the governing equation
of the above system can be cast as

C..
.
$� ð$� uÞs � q€u ¼ 0: ð10Þ

and the natural boundary condition can be written in the form

dun : tn ¼ C : ð$� uÞs � n � n; ð11aÞ

dus : ts ¼ C : ð$� uÞs � n � s; ð11bÞ
where tn ¼ t � n and ts ¼ t � s. The component form of Eq. (10) can be
written as

1
2
Cabcd DbDduc þ DbDcud

� �� q€ua ¼ 0 ð12Þ

By considering Eqs. (2) and (7), the component form of the nat-
ural BCs in Eq. (11) takes the form

dun : tn ¼ 1
2
CabcdðDduc þ DcudÞnbna; ð13aÞ

dus : ts ¼ 1
2
CabcdðDduc þ DcudÞnbsa: ð13bÞ
2.2. Governing differential equation and exact general solution

If the displacement field u within the domain X is assumed to
undergo harmonic oscillation such that u ¼ ½Uðx; yÞ;Vðx; yÞ�T
expðixtÞ, then the governing differential equation (GDE) for the
inplane vibration of an element in the frequency domain is given
by
a1U;xx þ U;yy þ ða3 þ 1ÞV ;xy þ jU ¼ 0; ð14aÞ

a2V ;yy þ V ;xx þ ða3 þ 1ÞU;xy þ jV ¼ 0; ð14bÞ

where the suffix after the comma denotes the related partial deriva-
tives and

a1 ¼ A11

A66
; a2 ¼ A22

A66
; a3 ¼ A12

A66
; j ¼ I0x2

A66
: ð15Þ

Note that Eq. (14) applies for the inplane vibration of both sym-
metric cross-ply plates (under plane stress assumption) and infi-
nite prismatic orthotropic solids (under plane strain assumption).
For the plane stress case, when a symmetric cross-ply plate is com-
posed of Nl layers, the material parameters of Eq. (15) are given as
follows

Aij ¼
XNl

k¼1

Q ðkÞ
ij hðkÞ

; I0 ¼
XNl

k¼1

qðkÞhðkÞ
; ð16Þ

where the superscript k 2 f1;2; . . . ;Nlg denotes the kth layer of the
total Nl layers. For the plane strain vibration of an infinite prismatic
orthotropic solid, the parameters of Eq. (15) become

Aij ¼ Qij; I0 ¼ q: ð17Þ
Notice that Qij in Eq. (16) or (17) stands for reduced stiffnesses

in the global coordinates for either plane-stress (Eq. (16)) or
plane-strain (Eq. (17)) vibration, which can be transformed from
the reduced stiffnesses Qij in the material reference system fol-
lowing the usual steps as described in [59]. The reduced stiff-
nesses in the material reference system Qij take different
expressions in plane stress and plane strain, which are provided
in Appendix A.

Now we are in position to derive the exact general solution of
the GDE (14). With the help of the two sets of modified Fourier
basis functions given in Appendix B, the general solution of the
GDE (14) can be appropriately represented as follows

Uðx; yÞ ¼
X
m2N

k2f0;1g

T �
kðakmxÞUkmðyÞ þ

X
n2N

j2f0;1g

UjnðxÞT jðbjnyÞ; ð18aÞ

Vðx; yÞ ¼
X
m2N

k2f0;1g

T kðakmxÞVkmðyÞ þ
X
n2N

j2f0;1g

VjnðxÞT �
j ðbjnyÞ; ð18bÞ

where T k; T j and T �
k; T

�
j are the modified Fourier basis functions

defined by Eqs. (B.1a) and (B.1b) respectively. The corresponding
wavenumbers are taken as akm ¼ ðmþ k=2Þp=a and
bjn ¼ ðnþ j=2Þp=b with n 2 N and N ¼ f0;1;2; . . .g. It is worth high-
lighting that the T k; T j and T �

k; T
�
j are adopted in the way of Eq. (18)

such that the k (related to x direction) and j (related to y direction)
correspond to the correct symmetry/antisymmetry of the deforma-
tion in the related directions. In Eq. (18), UkmðyÞ;UjnðxÞ;VkmðyÞ and
VjnðxÞ are unknown functions which are determined by substituting
Eq. (18) into the GDE of Eq. (14) to give

d2
y þ j� a1a2

km �l1dy

l1dy a2d
2
y þ j� a2

km

" #
UkmðyÞ
VkmðyÞ

� �
¼ 0

0

� �
ð8Þk 2 f0;1g; m 2 N except k ¼ m ¼ 0 ð19aÞ

a1d
2
x þ j� b2

jn l2dx

�l2dx d2
x þ j� a2b

2
jn

" #
UjnðxÞ
VjnðxÞ

� �
¼ 0

0

� �
ð8Þj 2 f0;1g; n 2 N except j ¼ n ¼ 0 ð19bÞ
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Fig. 1. Coordinate system boundary force and displacement notations for the
inplane vibration of an element.
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where di
x ¼ di

=dxi; di
y ¼ di

=dyi and l1 ¼ ð�1Þkða3 þ 1Þakm;

l2 ¼ ð�1Þ jða3 þ 1Þbjn. (Two special cases when k ¼ m ¼ 0 and
j ¼ n ¼ 0 will be discussed later.) By assuming
UkmðyÞ ¼ dkmVkmðyÞ; VkmðyÞ ¼ expðtkmyÞ and VjnðxÞ ¼ djnUjnðxÞ;
UjnðxÞ ¼ expðrjnxÞ, the general solutions for UkmðyÞ; VkmðyÞ; UjnðxÞ
and VjnðxÞ in Eq. (18) are determined to be

UkmðyÞ ¼ d1kmeC1kmchðt1kmyÞ þ d1kmeC2kmshðt1kmyÞ
þd2kmeC3kmchðt2kmyÞ þ d2kmeC4kmshðt2kmyÞ

VkmðyÞ ¼ eC1kmchðt1kmyÞ þ eC2kmshðt1kmyÞ þ eC3kmchðt2kmyÞ
þeC4kmshðt2kmyÞ

8>>>><>>>>:
ð20aÞ

UjnðxÞ¼ eD1jnchðr1jnxÞþ eD2jnshðr1jnxÞþ eD3jnchðr2jnxÞþ eD4jnshðr2jnxÞ
VjnðxÞ¼ d1jn eD1jnchðr1jnxÞþd1jn eD2jnshðr1jnxÞþd2jn eD3jnchðr2jnxÞ

þd2jn eD4jnshðr2jnxÞ

8>><>>:
ð20bÞ

where

t1km
t2km

	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
2 � 4a2c2

q
2a2

vuut
;

r1jn
r2jn

	
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1 � 4a1c1

q
2a1

vuut
ð21Þ

with

b2 ¼ða1þ1Þjþ a3ða3þ2Þ�a1a2½ �a2
km; c2 ¼ðj�a1a2

kmÞðj�a2
kmÞ;

b1 ¼ ða1 þ 1Þjþ a3ða3 þ 2Þ � a1a2½ �b2
jn; c1 ¼ ðj� b2

jnÞðj� a2b
2
jnÞ:

Also, by inserting Eq. (20) into Eq. (19), the expressions for dikm
and dijn (i ¼ 1;2) in Eq. (20) are obtained to be

dikm ¼ � a2t2ikm þ j� a2
km

l1tikm
; dijn ¼ � a1r2ijn þ j� b2

jn

l2rijn
ð22Þ

together with the following identities

ða1r2ijn þ j� b2
jnÞðr2ijn þ j� a2b

2
jnÞ þ l2

2r
2
ijn ¼ 0;

ðt2ikm þ j� a1a2
kmÞða2t2ikm þ j� a2

kmÞ þ l2
1t

2
ikm ¼ 0: ð23Þ

By considering the symmetry/antisymmetry of the hyperbolic
and trigonometric functions, the general solution of Eq. (20) can
be decomposed into four components

Uðx; yÞ ¼
X

k;j2f0;1g
Ukjðx; yÞ ¼ U00 þ U01 þ U10 þ U11; ð24aÞ

Vðx; yÞ ¼
X

k;j2f0;1g
Vkjðx; yÞ ¼ V00 þ V01 þ V10 þ V11; ð24bÞ

k; j taking in turn 0 and 1 denotes symmetric and antisymmetric
functions respectively. Therefore,

Ukjðx; yÞ ¼
X
m2N

T �
kðakmxÞ

X
i¼1;2

d1iCikmHjðtikmyÞ
� �" #

þ
X
n2N

X
i¼1;2

DijnH
�
kðrijnxÞ

� �
T jðbjnyÞ

" #
; ð25aÞ

Vkjðx; yÞ ¼
X
m2N

T kðakmxÞ
X
i¼1;2

CikmH
�
j ðtikmyÞ

� �" #

þ
X
n2N

X
i¼1;2

d2iDijnHkðrijnxÞ
� �

T �
j ðbjnyÞ

" #
; ð25bÞ
where Hk;Hj and H�
k;H

�
j stand for hyperbolic functions defined as

follows

HlðCnÞ ¼
chðCnÞ l ¼ 0
shðCnÞ l ¼ 1


; H�

l ðCnÞ ¼
shðCnÞ l ¼ 0
chðCnÞ l ¼ 1


ð26Þ

with either l ¼ k; C ¼ rijn; n ¼ x or l ¼ j; C ¼ tikm; n ¼ y. However,
for the two special cases when k ¼ m ¼ 0 and j ¼ n ¼ 0 in Eq.
(19), the above development from Eqs. (19) to (25) will be reduced.
In particular, both Eqs. (19a) and (19b) will be reduced to second-
order equations leading to two roots �t00 and �r00 respectively,
where

t00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j=a2

p
; r00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�j=a1

p
: ð27Þ

To this end, when j ¼ n ¼ 0, the first term of the second series
on the right hand side of Eq. (25a) becomes D00H

�ðr00xÞ; and when
k ¼ m ¼ 0, the first term of the first series on the right hand side of
Eq. (25b) becomes C00H

�ðt00yÞ. In Eq. (25), Cikm and Dijn (including
C00 and D00) are unknowns to be determined later in Section 3.1.

2.3. Natural boundary conditions and its spectral representation

The natural BCs in the frequency domain along the four bound-
aries Bi (i = 1,2,3,4) of the rectangular element in Fig. 1 are
obtained by applying Eq. (13) to the four boundaries to give

dLi : Ni; dTi : Si; i ¼ 1;2;3;4; ð28Þ
where the direction of Li;Ni; Ti and Si are defined in Fig. 1 with the
following expressions

L1

T1

L2

T2

L3

T3

L4

T4

266666666666666664

377777777777777775
¼

Ujx¼a

V jx¼a

V jy¼b

Ujy¼b

Ujx¼�a

V jx¼�a

V jy¼�b

Ujy¼�b

266666666666666664

377777777777777775
;

N1

S1

N2

S2

N3

S3

N4

S4

266666666666666664

377777777777777775
¼ A66

a1U;x þ a3V ;y
� �jx¼a

U;y þ V ;x
� �jx¼a

a2V ;y þ a3U;x
� �jy¼b

U;y þ V ;x
� �jy¼b

� a1U;x þ a3V ;y
� �jx¼�a

� U;y þ V ;x
� �jx¼�a

� a2V ;y þ a3U;x
� �jy¼�b

� U;y þ V ;x
� �jy¼�b

2666666666666666664

3777777777777777775

: ð29Þ

Here, Li and Ti are introduced to denote the normal un and tan-
gent us displacements respectively of Eq. (13) along the ith bound-
ary Bi; whereas Ni and Si are the longitudinal tn and shear ts forces
along Bi. (Note that LiðNiÞ and TiðSiÞ are defined either by UðrxxÞ
and VðrxyÞ or by VðryyÞ and UðrxyÞ, depending on which boundary
they apply to.) Therefore, there is a 90�phase difference between Li
(Ni) and Ti (Si), so two types of modified Fourier series (MFS) of Eqs.
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(B.1a) and (B.1b) are adopted to transform any arbitrarily pre-
scribed BCs Li;Ni and Ti; Si respectively. To this end, one has the
corresponding modified Fourier coefficient vectors

f ¼ NT
1; S

T
1;N

T
2; S

T
2;N

T
3; S

T
3;N

T
4; S

T
4

h iT
; ð30aÞ

d ¼ LT1;T
T
1; L

T
2;T

T
2; L

T
3;T

T
3; L

T
4; T

T
4

h iT
; ð30bÞ

where

N i ¼ ½Ni00;Ni01; . . . ;Ni0s; . . . ;Ni10;Ni11; . . . ;Ni1s; . . .�T ; ð31aÞ

Si ¼ ½Si01; . . . ; Si0s; . . . ; Si10; Si11; . . . ; Si1s; . . .�T ; ð31bÞ

Li ¼ ½Li00; Li01; . . . ; Li0s; . . . ; Li10; Li11; . . . ; Li1s; . . .�T ; ð31cÞ

T i ¼ ½Ti01; . . . ; Ti0s; . . . ; Ti10; Ti11; . . . ; Ti1s; . . .�T : ð31dÞ
Here, the sub-vectors N i and Li are the modified Fourier coeffi-

cient vectors of the BCs on Bi of the element by applying the first
type of MFS (B.1a) to Ni and Li of Eq. (29) respectively, and Si and
T i are the corresponding modified Fourier coefficient vectors by
applying the second type of MFS (B.1b) to Si and Ti of Eq. (29)
respectively. For example,

Nils ¼
Z L

�L

Ni

A66

T lðclsnÞffiffiffiffiffiffiffi
flsL

p dn; Tils ¼
Z L

�L
Ti
T �

l ðclsnÞffiffiffiffiffiffiffi
flsL

p dn;

where l 2 f0;1g; s 2 N; n denotes either x or y and 2L is the boundary
length representing either 2a or 2b in this paper. It should be noted
that Si00 and Ti00 are zero because T �

0ðc00nÞ 	 0 based on Eq. (B.1b).
Therefore, both Si00 and Ti00 have been deleted from the vectors Si

and T i respectively to avoid null rows or columns.

3. Development of the spectral dynamic stiffness matrix for
inplane vibration

Since the general solution of Eq. (18) can be decomposed into
four ðk; jÞ components as in Eq. (25), the spectral dynamic stiffness
(SDS) matrix K of a rectangular element also can be combined by

the corresponding four ðk; jÞ SDS components Kkj where

k; j 2 f0;1g. The development of the SDS component matrix Kkj

are performed in Section 3.1 which are then combined to form
the complete SDS matrix K of an entire element, see Section 3.2.
Finally, Section 3.3 describes briefly the assembly procedure for
the final structure and the application of arbitrary classical bound-
ary condition.

3.1. Development of the SDS component matrix Kkj

Similar to the SDSM development for transverse vibration of

thin plates [55], the SDS component matrix Kkj for inplane vibra-
tion is also developed by eliminating the unknowns in the corre-
sponding ðk; jÞ component of the general solution given in Eq.
(25). This is achieved by expressing the ðk; jÞ component of the nat-
ural BCs given in Eq. (29) as follows

Lkja

Lkjb

Tkj
a

Tkj
b

26666664

37777775 ¼

Ukjjx¼a

Vkjjy¼b

Vkjjx¼a

Ukjjy¼b

26666664

37777775 ¼

P
n2NLajn

T jðbjnyÞffiffiffiffiffiffi
fjnb

pP
m2NLbkm

T kðakmxÞffiffiffiffiffiffiffi
fkma

p
P

n2NTajn
T �

j ðbjnyÞffiffiffiffiffiffi
fjnb

p
P

m2NTbkm
T �

kðakmxÞffiffiffiffiffiffiffi
fkma

p

266666666664

377777777775
; ð32aÞ
Nkj
a

Nkj
b

Skja
Skjb

2666664

3777775 ¼ A66

a1U
kj
;x þ a3V

kj
;yjx¼a

a2V
kj
;y þ a3U

kj
;x jy¼b

Ukj
;y þ Vkj

;x jx¼a

Ukj
;y þ Vkj

;x jy¼b

2666664

3777775 ¼ A66

P
n2NNajn

T jðbjnyÞffiffiffiffiffiffi
fjnb

pP
m2NNbkm

T kðakmxÞffiffiffiffiffiffiffi
fkma

pP
n2NSajn

T �
j ðbjnyÞffiffiffiffiffiffi
fjnb

pP
m2NSbkm

T �
kðakmxÞffiffiffiffiffiffiffi
fkma

p

26666666664

37777777775
ð32bÞ

In consequence, the unknowns D1jn and D2jn in the ðk; jÞ general
solution component of Eq. (25) can be determined from the expres-

sions Lkja of Eq. (32a) and Skja of Eq. (32b). In this way,

Ukj
���
x¼a

¼
X
n2N

LajnT jðbjnyÞ=
ffiffiffiffiffiffiffiffi
fjnb

q
; ð33aÞ

Ukj
;y þ Vkj

;x

���
x¼a

¼
X
n2N

SajnT
�
j ðbjnyÞ=

ffiffiffiffiffiffiffiffi
fjnb

q
; ð33bÞ

which yieldX
i¼1;2

DijnH
�
kðrijnaÞ

� � ¼ Lajn=
ffiffiffiffiffiffiffiffi
fjnb

q
; ð34aÞ

X
i¼1;2

ð�1Þjþ1bjn þ d2irijn
� �

DijnH
�
kðrijnaÞ

h i
¼ Sajn=

ffiffiffiffiffiffiffiffi
fjnb

q
ð34bÞ

ð8Þk; j 2 f0;1g;n 2 N except for n ¼ j ¼ 0 when Eq. (34a)

becomes D00H
�
kðr00aÞ ¼ La00=

ffiffiffiffiffiffi
2b

p
. Then the unknown coefficients

D00;D1jn and D2jn can be determined from Eq. (34) to give

D00 ¼ La00ffiffiffiffiffiffi
2b

p
H�

kðr00aÞ
j ¼ n ¼ 0 ð35aÞ

D1jn ¼ ð�1Þjþ1bjnþd22r2jn½ �Lajn�Sajnffiffiffiffiffiffi
fjnb

p
H�

k
ðr1jnaÞN2=l2

D2jn ¼ � ð�1Þjþ1bjnþd21r1jn½ �Lajn�Sajnffiffiffiffiffiffi
fjnb

p
H�

k
ðr2jnaÞN2=l2

9>>=>>; otherwise; ð35bÞ

where N2 ¼ ða2b
2
jn � jÞðr21jn � r22jnÞ=ðr1jnr2jnÞ. Similarly, the expres-

sions of Lkjb in Eq. (32a) and Skjb in Eq. (32b) yield the unknowns
C00;C1km and C2km to be

C00 ¼ Lb00ffiffiffiffiffiffi
2a

p
H�

j ðt00bÞ
k ¼ m ¼ 0 ð36aÞ

C1km ¼ ð�1Þkþ1akmþd12t2km½ �Lbkm�Sbkmffiffiffiffiffiffiffi
fkma

p
H�

j ðt1kmbÞN1=l1

C2km ¼ � ð�1Þkþ1akmþd11t1km½ �Lbkm�Sbkmffiffiffiffiffiffiffi
fkma

p
H�

j
ðt2kmbÞN1=l1

9>>=>>; otherwise; ð36bÞ

where N1 ¼ ða1a2
km � jÞðt21km � t22kmÞ=ðt1kmt2kmÞ.

So far, all unknown coefficients C00;C1km;C2km;D00;D1jn and D2jn

in the general solution component of Eq. (25) have been deter-

mined using the expressions for Lkja ; L
kj
b ; S

kj
a and Skjb in the ðk; jÞ BC

components of Eq. (32). Subsequently, an infinite system of alge-
braic equations is derived by substituting the above determined

unknowns into the remaining entries Tkj
a ; T

kj
b ;N

kj
a and Nkj

b in Eq.
(32) and applying the modified Fourier series formula of either
Eq. (B.4a) or Eq. (B.4b) to the corresponding hyperbolic functions.
This infinite system can be rewritten in the following mixed-
variable matrix form as:

Tkj

Nkj

" #
¼ Akj

TL Akj
TS

Akj
NL Akj

NS

" #
Lkj

Skj

" #
ð37Þ
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where

Nkj ¼ ½Naj0;Naj1; . . . ;Najn; . . . ;Nbk0;Nbk1; . . . ;Nbkm; . . .�T ; ð38aÞ

Skj ¼ ½Saj0; Saj1; . . . ; Sajn; . . . ; Sbk0; Sbk1; . . . ; Sbkm; . . .�T ; ð38bÞ

Lkj ¼ ½Laj0; Laj1; . . . ; Lajn; . . . ; Lbk0; Lbk1; . . . ; Lbkm; . . .�T ; ð38cÞ
T ¼

In O O O O O O O In O O O O O O O
O O O O In O O O O O O O In O O O
O O Iyn O O O O O O O Iyn O O O O O
O O O O O O In O O O O O O O In O
O Im O O O Im O O O O O O O O O O
O O O O O O O O O Im O O O Im O O
O O O Iym O O O Iym O O O O O O O O
O O O O O O O O O O O Im O O O Im
�In O O O O O O O In O O O O O O O
O O O O �In O O O O O O O In O O O
O O Iyn O O O O O O O �Iyn O O O O O
O O O O O O In O O O O O O O �In O
O �Im O O O Im O O O O O O O O O O
O O O O O O O O O �Im O O O Im O O
O O O Iym O O O �Iym O O O O O O O O
O O O O O O O O O O O Im O O O �Im

26666666666666666666666666666666664

37777777777777777777777777777777775

; ð43Þ
Tkj ¼ ½Taj0; Taj1; . . . ; Tajn; . . . ; Tbk0; Tbk1; . . . ; Tbkm; . . .�T ð38dÞ
whose elements are the modified Fourier coefficients as given earlier
in Eq. (32). It should be noted that when j ¼ 0; Saj0 and Taj0 are zero
due to T �

0ðc00nÞ 	 0 based on Eq. (B.1b). Similarly, when k ¼ 0; Sbk0
and Tbk0 are zero. Therefore, when j ¼ 0 and/or k ¼ 0; Sa00; Sb00 in
Eq. (38b) and/or Ta00; Tb00 in Eq.(38d) should be removed from the

vectors Skj and/or Tkj, respectively. The explicit expressions of the four

coefficient matrices Akj in Eq. (37) are given concisely in Appendix C.
Similar to the transverse vibration formulation in [55], the mixed-
variable coefficient matrix of Eq. (37) also exhibits a symplectic struc-

ture: Akj
TS ¼ Akj

TS

T
and Akj

NL ¼ Akj
NL

T
are symmetric matrices, while

Akj
TL ¼ �Akj

NS

T
. Based on Eq. (37), the SDS matrix for each ðk; jÞ compo-

nent can be reconstructed in the following form

f kj ¼ Kkjdkj
; ð39Þ

where

f kj ¼ A66
Nkj

Skj

" #
; dkj ¼ Lkj

Tkj

" #
; ð40Þ

Kkj ¼ A66
Akj

NL � Akj
NSA

kj
TS

�1
Akj

TL Akj
NSA

kj
TS

�1

Akj
TS

�1
Akj

TL Akj
TS

�1

24 35: ð41Þ

3.2. Combing the SDS component matrices to the SDS matrix for a
complete element

This section describes the combination of the four SDS compo-

nent matrices (Kkj) to form the SDS matrix of an entire element (K).
In essence, the relationship between Kkj and K is determined by

that between f ;d of Eq. (30) and f kj;dkj of Eq. (39). Following sim-
ilar but slightly different procedure of that for transverse vibration
[54], the following relationships can be reached

f ¼ T ½f 00T ; f 01T ; f 10T ; f 11T �T ; d ¼ T½d00T
;d01T

;d10T
;d11T �

T

; ð42Þ
where T is the transfer matrix in the form
and in which In; I
y
n; Im and Iym are identity matrices of dimension

n;n� 1;m and m� 1 respectively, and O represents null matrices.
Also, it is found that T�1 ¼ TT=2; therefore, the second equation of
Eq. (42) will lead to

½d00T
;d01T

;d10T
;d11T �

T

¼ 1
2
TTd: ð44Þ

Finally, putting Eqs. (39), (30), (42) and (44) together yields

f ¼ Kd; ð45Þ
where

K ¼ 1
2
T

K00 O O O
O K01 O O
O O K10 O
O O O K11

26664
37775TT ð46Þ

is the SDS matrix for the inplane vibration of the entire element.

3.3. Assembly procedure and the application of arbitrary classical BCs

The SDS matrices for all elements can be assembled directly to
form the global SDS matrix of the complete structure. The proce-
dure follows that described in [55], which will not be repeated
here. Any classical boundary conditions can then be applied onto
the global SDS matrix by condensing all DOFs relating to all fixed
line nodes. It is worth emphasising that the condensing procedure
is in an exact sense and there is no penalty method involved here
in the SDSM like other methods [39,3,47,48]. So there is no need to
determine a sufficient ‘large parameter’ to model fixed DOFs and
therefore, completely avoiding the possible modelling errors or
numerical instability due to an improperly chosen penalty



268 X. Liu / Composite Structures 158 (2016) 262–280
parameter [49]. The treatment of more general non-classical
boundary conditions are given in the next section.

4. The SDS formulation for non-uniform elastic supports, mass
attachments and coupling constraints for inplane vibration

The general SDS theory dealing with arbitrary non-uniform
elastic supports, mass attachments and coupling constraints are
described in [58] with the basic premise that the Kirchhoff plate
theory is applied. However, some extra attention should be paid
when applying the general SDS theory [58] to the current inplane
vibration problems, which is therefore briefly described as follows.

According to the theory given in [58], the additional force f ai ðnÞ
resulting from an arbitrary non-uniform elastic support or mass
attachment applied along the ith line node (n 2 ½�L; L�) can be
described by the following expression

f ai ðnÞ ¼ lGaðnÞdiðnÞ; n 2 ½�L; L�: ð47Þ
Similarly, the additional forces f ai ðnÞ and f aj ðnÞ generated by an

arbitrary non-uniform elastic coupling constraint applied between
the ith and jth line nodes (both with matching edges n 2 ½�L; L�) can
be expressed in the form

f ai ðnÞ
f aj ðnÞ

" #
¼ l

GaðnÞ �GaðnÞ
�GaðnÞ GaðnÞ

" #
diðnÞ
djðnÞ

� �
; n 2 ½�L; L�: ð48Þ

In the current inplane vibration problem, f ai ðnÞ in Eqs. (47) and
(48) (also applies to f aj ðnÞ) represents either additional normal Na

i

or shear Sai forces along the ith line node n 2 ½�L; L� resulting from
the additional elastic supports, mass attachments or coupling con-
straints; whereas diðnÞ denotes either the normal Li or tangent Ti

displacement accordingly. Also in Eqs. (47) and (48), GaðnÞ is a
dimensionless distribution function and l is the stiffness or mass
dynamic stiffness constant which represents one of the three con-
stants: KL0;KT 0 or �x2m0. In particular, for the inplane vibration
of plates with the plane stress reduced stiffnesses given in Eq.

(16), both KL0 and KT 0 have the same dimension of ½ bM�½L̂��1½bT ��2

with the corresponding dimensionless forms KL0Lb=A66 and

KT0Lb=A66 respectively. (½ bM�; ½bL� and ½bT � stand for mass, length and
time respectively in the dimension analysis, and Lb denotes the
length of the line nodes, i.e., 2L). Also, m0 has the dimension of

½ bM�½bL��1
with the dimensionless form m0Lb=mp, where mp is the

total mass of the parent structure. It is understandable that for
inplane vibration of prismatic solids with the reduced stiffnesses
and inertia given in Eq. (17), the dimensions of KL0;KT 0 and m0

can be obtained by dividing their dimensions in the plane stress

case by the dimension of plate thickness (½bL�). The application of
the non-uniform elastic support or mass attachment described
by Eq. (47) along the ith line node is performed easily by

K final
ii ¼ K ii þ lGa; ð49Þ

which means that the ii component of the final SDS matrix (K final
ii )

will have the additional contribution from the elastic support or
mass attachment. Similarly, the ii; ij; ji and jj components of the final
SDS matrices will incorporate the additional contributions resulting
from the elastic coupling constraint of Eq. (48), hence

K final
ii ¼ K ii þ lGa; K final

jj ¼ K jj þ lGa;

K final
ij ¼ K ij � lGa; K final

ji ¼ K ji � lGa:
ð50Þ

In both Eqs. (49) and (50), Ga is the dimensionless SDS matrix cor-
responding to the dimensionless distribution function GaðnÞ in Eqs.
(47) and (48). It should be noted that the formulation of Ga is in a
very accurate yet versatile fashion. If the distribution function
GaðnÞ can be written as the linear combination of some known
functions, the corresponding Ga matrix is simply the linear combi-
nation of the Ga matrices of these known functions. Besides, any Ga

matrix should be a symmetric matrix that can be generally
expressed in the following form

Ga ¼ Ga
00 Ga

01

Ga
10 Ga

11

" #
: ð51Þ

Here special attention should be paid in the formulation of the
above four Ga

tl (with t; l 2 f0;1g) matrices for the current inplane
vibration case.

When the f ai ðnÞ and diðnÞ in Eq. (47) or (48) represent respec-
tively the normal stress Ni and displacement Li, the formulation
of the Ga

tl matrices will follow exactly the procedure given in
[58]. In that way, the analytical expressions for Ga

tl can be obtained
from the following equation by using the first type of modified
Fourier series (B.2), i.e.,

Ga
tlðr; sÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
ftrfls

p
L

Z L

�L
GaðnÞT lðclsnÞT tðctrnÞdn: ð52Þ

In such a case, all four matrices Ga
tl are S
 S matrices if S terms

are adopted in the modified Fourier series, namely, s; r 2 ½0; S� 1�.
(Here, S coincides with M or N where M and N are the numbers of
terms adopted in the series for the related element in the x and y
directions respectively.) The Ga

tl matrices obtained by using Eq.
(52) for some typical distribution functions have already been
given in Appendix A of [58]. However, when f ai ðnÞ and diðnÞ in Eq.
(47) or (48) represent respectively the tangent stress Si and dis-
placement Ti, the formulation of the Ga

tl matrices will be slightly
different by applying the second type of modified Fourier series
(B.3) to give

Ga
tlðr; sÞ ¼

1ffiffiffiffiffiffiffiffiffiffi
ftrfls

p
L

Z L

�L
GaðnÞT �

l ðclsnÞT �
t ðctrnÞdn: ð53Þ

In this case, if S terms are adopted in the modified Fourier series,
the size of four sub-matrices Ga

00;G
a
01;G

a
10 and Ga

11 will be
ðS� 1Þ 
 ðS� 1Þ; ðS� 1Þ 
 S; S
 ðS� 1Þ and S
 S, respectively. The
analytical expressions for the Ga

tl matrices for some typical distri-
bution functions derived from Eq. (53) are given in Appendix D
of this paper.

5. The Wittrick-Williams algorithm and its enhancement

In order to compute the natural frequencies of a structure using
the SDSM, the most reliable and efficient solution technique is
probably the Wittrick-Williams (WW) algorithm [60]. However,
some difficulties may arise in the WW algorithm application, but
for the current problem all potential stumbling blocks have been
removed so as to make the current SDSM reliable, computationally
efficient and accurate within the whole frequency range. For clarity
and completeness, the procedure is briefly summarised as follows.
Suppose that the overall SDS matrix of the final structure is
denoted by K f , which is a transcendental matrix function of circu-
lar frequency x. Then according to the WW algorithm, as x
increases from zero to x�, the number of natural frequencies of
the final structure passed (mode count J) is given by

J ¼ J0 þ sfK�
f g; ð54Þ

where sfK�
f g corresponds to the negative inertia of the K�

f according
to Sylvester’s law [61], and K�

f represents K f when x ¼ x�. The
above sfK�

f g can be computed by applying the usual form of Gauss
elimination to K f leading to a upper triangular matrix, and then
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sfK�
f g is the number of negative elements on the leading diagonal of

the upper triangular matrix. Meanwhile, the J0 of Eq. (54) is given by

J0 ¼
X
m

J0m; ð55Þ

where J0mis the number of natural frequencies between x ¼ 0 and
x ¼ x� for an individual component member with its boundaries
fully clamped, while the summation extends over all structural
members. Thus, with the knowledge of Eqs. (54) and (55), one can
compute any natural frequency up to the desired accuracy by using
bracket methods such as bi-section technique.

It is clear from above that the J0m count is an essential part of
the algorithm. However, it is well-known that the computation
of J0m count can sometimes be a difficult task and may become a
potential drawback when applying the WW algorithm. In the liter-
ature, most of the previous DS methods [3–5,34] used a sufficiently
fine mesh to avoid J0m computation i.e., to ensure that J0m 	 0 for
the entire frequency range of interest. However, this will no doubt
increase the computational time. This is particularly true for the
current SDSM because a finer mesh will increase the number of
DOF much more significantly than the classical DSM. (Also, sub-
structuring technique becomes less attractive in this case due to
the same reason.) To meet this challenge, an efficient and reliable
strategy is applied which is based on the closed-form solution of
each member subject to all-round simple supports. Obviously,
Eq. (54) also applies for such a special case for each member, i.e.,
JSm ¼ J0m þ sfK�

Smg, where JSm is the mode count of a certain mem-
ber with all boundaries simply supported, and sðK�

SmÞ is the sign
count of its formulated SDS matrix KSm when x ¼ x�. Therefore,
J0m of Eq. (55) is given by

J0m ¼ JSm � sðK�
SmÞ; ð56Þ

where both JSm and sðK�
SmÞ are computed efficiently and elegantly in

this paper as described as follows. First, the JSm of Eq. (56) is
obtained analytically by solving a Number Theory problem. It is
known that the closed-form exact solution for the natural frequen-
cies of an all-round simply supported (S2) orthotropic plate (also
applies for plane strain cases) is given in Eq. (32) of Ref. [38] by
Liu and Xing, which can be rewritten in the following dimensionless
form

2q
A66

2axm̂n̂

p

� �2

¼ PA �PB; m̂; n̂ 2 f1;2;3; . . .g ð57Þ

2q
A66

2axm̂n̂

p

� �2

¼PA þPB; m̂; n̂2 f0;1;2;3; . . .g except m̂¼ n̂¼ 0:

ð58Þ
In Eqs. (57) and (58), xm̂n̂ is the natural circular frequency with

m̂ and n̂ being the half-wave numbers in the x and y direction
respectively, and

PA ¼ ða1 þ 1Þm̂2 þ ða2 þ 1Þðgn̂Þ2; g ¼ a=b;

PB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � 1Þm̂2 � ða2 � 1Þðgn̂Þ2
h i2

þ 4ða3 þ 1Þ2m̂2ðgn̂Þ2
r

Thus, JSm, the number of natural frequencies lying below a trial
frequency x�, is essentially the total number of combinations of
ðm̂; n̂Þ such that the left-hand sides of Eqs. (57) and (58) with
xm̂n̂ ¼ x� are no less than the right-hand sides, respectively.
Therefore,

JSm ¼ JSm1 þ JSm2; ð59Þ
where JSm1 and JSm2 are respectively the contributions from Eqs. (57)
and (58). Obviously, JSm1 and JSm2 can be obtained from a numerical
search which may be computationally expensive and the procedure
may miss some of the natural frequencies. However, there exists an
analytical expression for JSm1 and JSm1 and this problem is essentially
an extension of the Gauss circle problem [62] in the field of Analyt-
ical Number Theory. The expressions for JSm1 and JSm2 can be
deduced by solving the inequalities for which the left-hand sides
of Eqs. (57) and (58) with xm̂n̂ ¼ x� are no less than the right-
hand sides, hence

JSm1 ¼
XbP2c

m̂¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

4 �P5

qr
=ð2g ffiffiffiffiffi

a2
p Þ

$ %
; ð60Þ

JSm2 ¼
XbP3c

m̂¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

4 �P5

qr
=ð2g ffiffiffiffiffi

a2
p Þ þ signðm̂Þ

$ %
; ð61Þ

where ‘b�c’ is the floor function denoting the largest integer not
greater than ‘�’ and

P2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P6 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

6 �P7

q
4a1

vuut
; P3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1

ða1 þ 1Þ þ ja1 � 1j

s
;

P1 ¼ 2a
p

� �2 2qx�2

A66
;

P4 ¼ 2½a3ða3 þ 2Þ � a1a2�m̂2 þ ða2 þ 1ÞP1;

P5 ¼ 4a2ð2m̂2 �P1Þð2a1m̂2 �P1Þ;
P6 ¼ P1ða1 þ 1Þ þ 2½a3ða3 þ 2Þ � a1a2�g2;

P7 ¼ 4a1ðP1 � 2g2ÞðP1 � 2a2g2Þ:
Next, the sðK�

SmÞ of Eq. (56) is computed in an elegant way by
taking advantage of the mixed-variable formulation of the ðk; jÞ
symmetric/antisymmetric components explained earlier in Sec-
tion 3.1. It is well-known that when a symmetric structure is sub-
ject to symmetric constraints, the displacement field will be either
symmetric or antisymmetric. Therefore, in the present case where
a rectangular element is subjected to all round simple supports,
any possible natural mode can be described by one of the four sym-
metric/antisymmetric SDS matrices. In this case,

sðK�
SmÞ ¼

P
k;j2f0;1gsðKkj

Sm

�Þ. Now recalling Eqs. (39)–(41), the case
with fully simple supports of type S2 becomes equivalent to letting

Lkj ¼ Skj ¼ 0, such that sðKkj
Sm

�Þ ¼ sðAkj
TS

��1Þ. In this way, one has

sðK�
SmÞ ¼

X
k;j2f0;1g

sðAkj
TS

��1Þ ¼
X

k;j2f0;1g
sðAkj

TS

�Þ: ð62Þ

The above techniques given in Eqs. (56)–(62) have completely
resolved the previous J0 count problem of Eq. (55) in a highly effi-
cient, accurate and reliable manner within the whole frequency
range.

After obtaining the natural frequencies, the corresponding
mode shapes are computed using the global SDS matrix K f in a
similar procedure as described in [55]. However, in the inplane
mode shape computation, the mode shape should be normalised
by using a carefully chosen DOF which causes the sign count of
K f to increase when applying the Wittrick-Williams algorithm.
This is similar to the DSM for Levy-type plate [3].
6. Modelling procedure of the spectral dynamic stiffness
method

To assist the interested readers to use the proposed method
easily, we detail the modelling procedure of the spectral dynamic
stiffness (SDS) method as following:

(i) Partitioning the domain of the considered problem into
elements;
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(ii) Evaluating the elemental SDS matrices K and calculating the
J0m count at a trial frequency x� for each element, this includes

(a) Evaluating the material constants for each element by
using Eq. (15), with Eqs. (16) and (A.5) for plane stress and
Eqs. (17) and (A.7) for plane strain.

(b) Evaluating the four Akj
�� matrices of Eq. (C.1) in the mixed-

variable formulation for each ðk; jÞ component, where the
wavenumber related coefficients akm; bjn; rijn and tikm are
defined in (18), (21) and (27), whereas fkm and fjn are defined

in Eq. (B.1); Computing sðAkj
TSÞ of Eq. (62) for each ðk; jÞ

component.

(c) Calculating the four SDS component matrices Kkj by using
Eq. (41) and combining them to the SDS matrix K for a com-
plete element by using Eq. (46); Computing J0m for each ele-
ment through Eqs. (56), (59) and (62).

(iii) Assembling all elemental SDS matrices for the considered
structure and applying any arbitrarily prescribed classical BCs
following the procedure described in Section 3.3; Computing
J0 count for the global structure by using Eq. (55).
(iv) Applying any arbitrarily prescribed non-classical BCs by
using Eqs. (49) and/or (50), where the general Ga matrices are
given in Eq. (51) by applying Eqs. (52) and (53) to any arbitrarily
given distribution function.
(v) Computing natural frequencies using the Wittrick-Williams
algorithm of Eq. (54); obtaining mode shapes following the pro-
cedure described in the last paragraph of Section 5.

7. Results and discussion

The theory described in this paper is implemented in a Matlab

code using objected-oriented programming technique, which is
very easy to use and open for further development. The SDSM
has been previously developed for transverse vibration of isotropic
plates [54] and complex composite plate assemblies [55,58], which
has been demonstrated to give exact results very efficiently, cover-
ing both low and medium to high frequency ranges. Moreover, the
method has unconditionally computational stability, allowing the
computation of results up to any required precision. In this section,
Table 1
Dimensionless frequency parameter k ¼ xa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� m12m21Þ=E1

p
for fre

(E2=E1 ¼ 2:5; m12m21 ¼ 0:32;G12 ¼ ffiffiffiffiffiffiffiffiffiffi
E1E2

p
=½2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m12m21
p Þ�) with two different aspect ratios:

b=a Method M;N 1 2 3 4

0.5 SDSM 3 + 3 2.78292 3.81369 4.66319 4.777
5 + 5 2.78300 3.81404 4.66348 4.778
10 + 10 2.78303 3.81416 4.66350 4.778
15 + 15 2.78303 3.81418 4.66350 4.778
20 + 20 2.78303 3.81418 4.66350 4.778

Ritz(IFS)[48] 14
 14 2.7830 3.8142 4.6635 4.778
Ritz(trig.)[39] 18
 18 2.7830 3.8142 4.6635 4.778
FSA[47] 12
 12 2.7830 3.8152 4.6647 4.778
GSM[33] 9þ 9 – 3.814 4.663 4.778
FEM[48] 100
 50 2.7828 3.1834 4.6633 4.777

2 SDSM 3þ 3 1.63843 1.66709 1.83352 2.191
5 + 5 1.63851 1.66718 1.83367 2.192
10 + 10 1.63853 1.66720 1.83370 2.192
15 + 15 1.63853 1.66720 1.83370 2.192
20 + 20 1.63853 1.66720 1.83370 2.192

Ritz(IFS)[48] 14
 14 1.6385 1.6672 1.8337 2.192
Ritz(trig.)[39] 18
 18 1.6385 1.6672 1.8337 2.192
FSA[47] 12
 12 1.6386 1.6673 1.8341 2.193
GSM[33] 9þ 9 – 1.667 – –
FEM[48] 50
 100 1.6382 1.6663 1.8326 2.191

Ritz(IFS) – Ritz method based on Improved Fourier Series [48].
Ritz(trig.) – Ritz method based on trigonometric functions [39].
FSA – Fourier series based analytical method [47].
GSM – Gorman’s superposition method[33].
it will be shown that the above advantages remain in the SDSM for
free inplane vibration. In Section 7.1, the excellent convergence
rate and numerical efficiency of the proposed method will first
be demonstrated, then the SDSM results are validated against pub-
lished results wherever available and applied for some other repre-
sentative cases. In Sections 7.2 and 7.3, the SDSM is applied for the
inplane modal analysis of several wide-ranging engineering
problems.

7.1. Convergence and numerical efficiency studies and validation

The first case to be analysed is the free inplane vibration of a
fully clamped orthotropic plate. This case has been chosen in most
of the existing work [33,39,47,48] on free inplane vibration of
orthotropic plates, allowing the comparison analysis given in
Table 1. All of the SDSM results were computed on a PC with a
3.40 GHz Intel 4-core processor and 8 GB of memory. The number
of terms included in the series (or elements) for each method are
shown in the third column in the form of ðM;NÞ; the accuracy (in
terms of Sig. Dig., i.e., significant digits) and computation time
are tabulated in the last two columns whenever available. Note
that M þ N means the final matrix size is proportional to the sum-
mation of M and N whereas M 
 N indicated that the final matrix
size is proportional to their product instead.

Indeed, the proposed SDSM exhibits an very fast convergence
rate. As evident from Table 1, only five (ten/fifteen) series terms
adopted in the SDSM lead to results with accuracy of at least four
(five/six) significant digits. In comparison, the two Ritz methods
(Ritz(IFS) [48] and Ritz(trig.) [39]) used 14 and 18 terms respec-
tively in the series leading to results with five significant digit pre-
cision; the Fourier series based analytical methods (FSA) [47] used
12 terms but gave results with accuracy of only three significant
figures. The Gorman’s superposition method (GSM) [33] on the
other hand, gave results with four digit precision using 9 terms
in the series. More importantly, the number of DOFs involved in
the SDSM is proportional to M þ N, which is in a sharp contrast
to other methods (except the GSM [33]) whose numbers of DOFs
are proportional to M 
 N. For example, to compute results with
five significant digits, the total number of DOFs involved in the
e inplane vibration of fully clamped orthotropic plates
b=a ¼ 0:5 and 2. It should be noted that

5 6 7 8 Sig. Dig. Time(s)

83 5.06754 5.24816 5.26108 5.96234 3 0.10
15 5.06812 5.24827 5.26527 5.96743 4 0.13
15 5.06829 5.24830 5.26553 5.96783 5 0.15
15 5.06832 5.24832 5.26554 5.96786 6 0.16
15 5.06832 5.24832 5.26554 5.96786 6 0.17
1 5.0683 5.2483 5.2655 5.9678 5 6.20
2 5.0683 5.2484 5.2656 5.9679 5 –
7 5.0704 5.2496 5.2660 5.9707 3 –

– 5.240 5.266 5.964 4 –
1 5.0621 5.2469 5.2644 5.9665 3 79.5

63 2.56529 2.57581 2.7254 3.03389 4 0.10
51 2.56586 2.57599 2.72611 3.03392 5 0.13
57 2.56594 2.57599 2.72621 3.03393 5 0.15
58 2.56595 2.57599 2.72622 3.03393 6 0.16
58 2.56595 2.57599 2.72622 3.03393 6 0.17
6 2.566 2.576 2.7262 3.0339 5 6.20
6 2.566 2.576 2.7262 3.0339 5 –
4 2.5669 2.5777 2.7281 3.0352 3 –

2.566 2.576 2.7262 3.034 4
2 2.5653 2.5745 2.7249 3.0315 3 79.5
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SDSM is only 79 (when M þ N ¼ 10þ 10), whereas the Ritz (IFS)
method [48] needed 570 DOFs (M 
 N ¼ 14
 14). The FEM [48]
on the other hand, used as much as 10,201 DOFs (50
 100 ele-
ments) but led to results with only three-significant-digit accuracy.
Indeed, the SDSM represents the dynamic system very accurately
by using a much smaller number of DOFs compared to other meth-
ods. As a result, it is to be expected that the SDSM is much more
efficient than other methods. For example, as evident from Table 1,
the SDSM provided more accurate results by taking only 2% and
0:2% of the computation time taken by the Ritz(IFS) method [48]
and FEM [48] respectively (the computation of the two latter
methods [48] were conducted on a more advanced hardware with
Intel i7 3.9 GHz). The superiority of the SDSM over other methods
will be more significant for higher frequencies, which has been
shown for the transverse free vibration of composite plates [56]
and plane elastodynamic problems [57] and will not be shown here
for brevity. In the remainder of this paper, all SDSM results will be
shown in bold to indicate that the SDSM results are accurate up to
the last digit quoted for benchmark purposes.

After showing the computational performance of the SDSM,
now we validate the SDSM for orthotropic plates with classical
BCs which have closed-form exact solutions available [38] to illus-
trate the high accuracy of the SDSM results. Twelve cases are con-
sidered and shown in Table 2. The four sequential letters denote
respectively the boundary conditions along the right, up, left and
bottom plate edges in an anticlockwise sense. The letters ‘C’ and
‘F’ represent clamped and free edges whereas ‘S1’ and ‘S2’ stand
for edges with T ¼ 0;N ¼ 0 and L ¼ 0; S ¼ 0 respectively. In Table 2,
exact results are computed by the SDSM for the 12 cases with accu-
racy of six significant figures, the first five figures of which all coin-
cide with the closed-form exact solutions [38] presented with five
significant figures. It should be noted that in the both cases S2S1S2F
and S2FS2F, the fundamental natural frequency should be zero cor-
responding to rigid body modes. It is worth highlighting that rigid
modes are not trivial in certain analyses (e.g., for remote compo-
nents, rotating shafts, lying aircraft, satellites). So it is very impor-
tant that the algorithm can automatically detect their presence to
spot potential mechanisms. In the present SDSM, the rigid modes
Table 2
Dimensionless frequency parameters k ¼ ð2aÞx=p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Gxy

p
for a square orthotropic plate (E1

present method are compared with closed-form exact solutions by Liu and Xing [38].

BCs Method 1 2 3 4

S2S1S2C SDSM 0.707107 1.16188 1.91769 2.07792
Exact [38] 0.7071 1.1619 1.9177 2.0779

S2S2S2C SDSM 1.41421 1.52284 2.08147 2.29316
Exact [38] 1.4142 1.5228 2.0815 2.2932

S2CS2C SDSM 1.41421 1.61731 2.12219 2.32376
Exact [38] 1.4142 1.6173 2.1222 2.3238

S2S1S2F SDSM 0 0.895708 1.41421 1.43242
Exact [38] – 0.8957 1.4142 1.4324

S2S2S2F SDSM 0.707107 1.00610 1.84694 1.87161
Exact [38] 0.7071 1.0061 1.8469 1.8716

S2CS2F SDSM 0.707107 1.03010 1.87465 1.87683
Exact [38] 0.7071 1.0301 1.8746 1.8768

S2FS2F SDSM 0 0.805897 1.39655 1.41421
Exact [38] – 0.8059 1.3965 1.4142

S2S1S1C SDSM 0.808655 1.39265 1.60578 2.00191
Exact [38] 0.8087 1.3927 1.6058 2.0019

S2S2S1C SDSM 1.06110 1.42612 1.84329 1.88106
Exact [38] 1.0611 1.4261 1.8433 1.8811

S2CS1C SDSM 1.38640 1.44263 1.93149 2.24522
Exact [38] 1.3864 1.4426 1.9315 2.2452

S2S1S1F SDSM 0.402948 1.05656 1.37714 1.39739
Exact [38] 0.4029 1.0566 1.3771 1.3974

S2S2S1F SDSM 0.698274 1.00728 1.41264 1.42337
Exact [38] 0.6983 1.0073 1.4126 1.4234
are captured without any miss due to the application of the
Wittrick-William algorithm.

Now we are in position to apply the present method to the free
inplane vibration of orthotropic plates with other classical BCs
where closed-form exact solution is not available. Table 3 tabulates
the dimensionless natural frequency parameters for orthotropic
plates with two aspect ratios (a=b ¼ 1 and 2) and subjected to eight
different classical BCs. All results are presented with accuracy of
five significant figures for further comparison purposes, which
are compared with finite element solutions.

After shown the application of the current SDSM to plates with
classical BCs, now we apply the SDSM to the free inplane vibration
of plates with non-uniform elastic supports. As the only few exist-
ing work [46–48] have been confined to free inplane vibration of
plates with uniform elastic supports, the sole existing contribution
dealing with non-uniform inplane elastic supports appears to be
made by Dozio [43], which was applied to individual isotropic
plates. (It should be kept in mind that the current SDSM method
treats non-uniform elastic supports in a very concise and accurate
manner, in which the SDS matrices of those elastic supports are
superposed directly to the global SDS matrix of the complete struc-
ture in a strong form.) Table 4 shows the first ten inplane natural
frequencies of a square plate with identical elastic supports along
all four edges. Both normal (L) and tangent (T) directions have
the same stiffness distribution, being either triangular (EL̂T̂ ) or
parabolic (E

L
_

T
_). Note that E stands for an elastic support; and

the subscripts L and T denote normal and tangent displacements
respectively; the stiffness distributions of these elastic supports
are indicated by putting a corresponding accent over the subscripts
L and T, where �ð Þ; ð̂ Þ; ð Þ_ and ð�Þ stand for uniform, triangular, para-
bolic and V-shaped distributions respectively, with the corre-
sponding dimensionless distribution functions GaðnÞ taking the
form

�ð Þ : GaðnÞ ¼ 1; ð Þ_ : GaðnÞ ¼ 1� ðn=LÞ2; ð63aÞ

ð̂ Þ : GaðnÞ ¼ 1� jn=Lj; ð�Þ : GaðnÞ ¼ jn=Lj; ð63bÞ
=E2 ¼ 2; m12 ¼ 0:3;A22=A66 ¼ 2) with twelve classical BCs. The results computed by the

5 6 7 8 9 10

2.12132 2.37894 2.60524 2.81997 3.05076 3.27893
2.1213 2.3789 2.6052 2.8200 3.0508 3.2789
2.34934 2.80605 2.82843 2.97501 3.19746 3.34724
2.3493 2.8060 2.8284 2.3975 3.1975 3.3472
2.78530 2.82843 2.85223 3.04568 3.21157 3.68659
2.7853 2.8284 2.8522 3.0457 3.2116 3.6866
1.85173 2.07201 2.18177 2.34173 2.78930 2.81577
1.8517 2.0720 2.1818 2.3417 2.7893 2.8158
2.01824 2.12132 2.38582 2.50525 2.79272 2.80943
2.0182 2.1213 2.3858 2.5053 2.7927 2.8094
2.12132 2.27309 2.42792 2.55767 2.79317 3.23387
2.1213 2.2731 2.4279 2.5577 2.7932 3.2339
1.79142 2.01219 2.01457 2.11312 2.75428 2.79478
1.7914 2.0122 2.0146 2.1131 2.7543 2.7948
2.24882 2.38088 2.56151 3.00158 3.02199 3.05274
2.2488 2.3809 2.5615 3.0016 3.0220 3.0527
2.54023 2.64823 2.73644 2.99418 3.07203 3.33072
2.5402 2.6482 2.7364 2.9942 3.0720 3.3307
2.70359 2.75658 2.76478 3.24250 3.32864 3.38105
2.7036 2.7566 2.7648 3.2425 3.3286 3.3810
1.77269 1.86286 2.32182 2.53195 2.57525 2.62884
1.7727 1.8629 2.3218 2.3520 2.5735 2.6288
1.98215 2.16028 2.33020 2.39275 2.89676 2.93652
1.9822 2.1603 2.3302 2.3928 2.8968 2.9365



Table 3
The first ten dimensionless frequency parameters k ¼ ð2aÞx=p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Gxy

p
for a rectangular orthotropic plate (E1=E2 ¼ 2; m12 ¼ 0:3;A22=A66 ¼ 2) with two aspect ratios and subjected

to eight different classical BCs where closed-form exact solution is not available. The SDSM results are compared with results computed by ANSYS using a 100
 100 mesh
(a=b ¼ 1) or a 200
 100 (a=b ¼ 2) mesh of Plane 182 elements.

BCs a=b 1 2 3 4 5 6 7 8 9 10

FFFF 1 0 0 0 1.1761 1.2455 1.3568 1.4961 1.6268 1.9987 2.0164
(FEM) 0 0 0 1.1762 1.2457 1.3569 1.4964 1.6270 1.9992 2.0164
2 0 0 0 1.2097 1.8295 1.9204 2.5693 2.6025 2.6273 2.7380
(FEM) 0 0 0 1.2097 1.8296 1.9204 2.5696 2.6027 2.6277 2.7382

CFFF 1 0.36944 0.97671 1.0012 1.3419 1.5115 1.5943 2.1492 2.1949 2.4509 2.5575
(FEM) 0.36948 0.97674 1.0013 1.3420 1.5117 1.5946 2.1500 2.1956 2.4518 2.5584
2 0.25747 0.92410 0.97887 1.8989 2.3550 2.5902 2.6392 2.9788 3.0841 3.1183
(FEM) 0.25749 0.92416 0.97888 1.8992 2.3552 2.5904 2.6394 2.9791 3.0848 3.1186

CFS2F 1 0.42424 1.3255 1.4076 1.7131 2.0164 2.1309 2.3080 2.4349 2.8105 2.8391
(FEM) 0.42430 1.3258 1.4077 1.7135 2.0164 2.1312 2.3092 2.4360 2.8110 2.8398
2 0.34016 1.1785 1.9369 2.1332 2.7862 2.8188 2.8240 3.1190 3.1298 3.6910
(FEM) 0.34019 1.1786 1.9370 2.1335 2.7864 2.8189 2.8242 3.1194 3.1306 3.6919

CCCS1 1 1.2132 1.9969 2.2352 2.2778 2.5560 3.0175 3.0446 3.3707 3.3757 3.4761
(FEM) 1.2133 1.9971 2.2354 2.2780 2.5564 3.0180 3.0458 3.3718 3.3768 3.4772
2 1.7034 2.2952 2.8499 3.2027 3.9873 4.0988 4.1889 4.4929 4.6674 4.8289
(FEM) 1.7034 2.2953 2.8500 3.2029 3.9877 4.0996 4.1896 4.4932 4.6680 4.8296

CCS2S2 1 1.4524 1.8541 2.1004 2.3961 2.7218 2.8428 2.8930 3.2008 3.4805 3.6628
(FEM) 1.4525 1.8542 2.1006 2.3964 2.7224 2.8432 2.8936 3.2018 3.4816 3.6646
2 2.1514 2.8388 2.9490 3.3642 3.7110 4.1161 4.2226 4.7310 5.0355 5.1148
(FEM) 2.1514 2.8390 2.9492 3.3645 3.7112 4.1164 4.2232 4.7316 5.0364 5.1160

S2FFF 1 0 0.60483 0.96018 1.2847 1.3690 1.4235 1.7673 1.7737 2.3317 2.4265
(FEM) 0 0.60486 0.96020 1.2848 1.3691 1.4236 1.7676 1.7741 2.3324 2.4276
2 0 0.41073 0.97467 1.3733 2.1777 2.5752 2.5910 2.6476 2.8236 3.0954
(FEM) 0 0.41072 0.97468 1.3734 2.1779 2.5754 2.5912 2.6480 2.8238 3.0958

CS2CF 1 1.1517 1.8466 1.9972 2.1771 2.2417 2.5621 2.8357 2.9593 3.2951 3.3763
(FEM) 1.1519 1.8471 1.9974 2.1776 2.2420 2.5626 2.8378 2.9600 3.2966 3.3776
2 1.6135 1.9198 2.1271 2.8519 2.8978 3.7994 3.8478 4.0503 4.0772 4.4194
(FEM) 1.6136 1.9199 2.1273 2.8521 2.8984 3.8006 3.8482 4.0504 4.0776 4.4200

CS2FF 1 0.76135 0.98940 1.0977 1.5219 1.9179 2.0841 2.2674 2.5091 2.6725 2.8535
(FEM) 0.76138 0.98944 1.0978 1.5222 1.9183 2.0844 2.2682 2.5098 2.6734 2.8546
2 0.97671 1.3419 1.5115 2.1949 2.4509 2.9808 3.1459 3.3589 3.6865 4.0105
(FEM) 0.97672 1.3420 1.5115 2.1951 2.4511 2.9809 3.1466 3.3592 3.6873 4.0112

Table 4
The first ten dimensionless inplane frequency parameters k ¼ xa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� m2Þ=Ep

of a square isotropic plate (m ¼ 0:3) whose four edges are subjected identical non-uniform elastic
supports. In particular, EL̂T̂ stands for an elastically supported edge with triangularly distributed stiffness (l0ð1� jn=LjÞ) in both normal and tangent directions; whereas E

L
_

T
_

represents elastic supports with parabolically distributed stiffness l0½1� ðn=LÞ2 � in both directions. For all elastic supports, l0 ¼ K�
0E=½að1� m2Þ� where K�

0 is the dimensionless
elastic stiffness taking either 1 or 104 in this table.

K�
0 methods 1 2 3 4 5 6 7 8 9 10

EL̂T̂ EL̂T̂ EL̂T̂ EL̂T̂
1 SDSM 0.85374 0.85374 1.1786 1.4295 1.7149 1.7405 1.7405 1.9601 1.9741 2.1438
Ritz(trig.) [43] 0.8537 0.8537 1.1786 1.4295 1.7149 1.7405 – – – –

104 SDSM 1.7773 1.7773 2.1174 2.5922 2.9290 2.9470 2.9470 3.3529 3.5558 3.5558

Ritz(trig.) [43] 1.7773 1.7773 2.1174 2.5923 2.929 2.9471 – – – –

E
L
_

T
_E

L
_

T
_E

L
_

T
_E

L
_

T
_

1 SDSM 0.85374 0.85374 1.1786 1.4295 1.7149 1.7405 1.7405 1.9601 1.9741 2.1438
Ritz(trig.) [43] 0.8537 0.8537 1.1786 1.4295 1.7149 1.7405 – – – –

104 SDSM 1.7773 1.7773 2.1174 2.5922 2.9290 2.9470 2.9470 3.3529 3.5558 3.5558

Ritz(trig.) [43] 1.7773 1.7773 2.1174 2.5923 2.929 2.9471 – – – –
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where n 2 ½�L; L� is the local coordinate along the corresponding line

node. In addition, _ðÞ stands for fixed deformation, i.e., ðÞ 	 0. The
SDSM are computed with five significant figures, which all match
with those obtained by the Trigonometric Ritz method by Dozio
[43] wherever available.

Next, we will demonstrate the application of the SDSM to lam-
inated plates subject to both classical BCs and non-uniform elastic
supports. Table 5 includes the first ten inplane natural frequen-
cies of a square symmetric cross-ply plate for three cases whose
details are given in Fig. 2. The three cases include a fully clamped
case and two cases with non-uniform elastic supports as shown
in Fig. 2. All SDSM results are accurate to the last digit quoted.
It can be seen that all of the first four eigenvalues for the CCCC
case coincide with those obtained by Ritz (trig.) method [43]
wherever available.
7.2. Applications to engineering composite plate assemblies

So far, the SDSM has been applied to individual plates only. A
review of the literature reveals that all existing analytical work
has been limited to the free inplane vibration of individual plates,
there has been no existing work devoted to that of plate assem-
blies, let alone the modelling of arbitrary non-uniform elastic sup-
ports, mass attachments or coupling constraints. However, all
these kinds of problems can be modelled easily and efficiently by
the proposed method.

7.2.1. A stepped cantilever laminated plate
The first problem is a stepped cantilever laminated plate as

shown in Fig. 3 whose out-of-plane free vibration analysis has
already been reported in [56], and now we are focusing on its



Fig. 2. A square symmetric cross-ply plate (x
 y ¼ ½�a; a� 
 ½�b; b�) subject to three different boundary conditions. The plate is composed of five graphite-epoxy laminae [0�/
90�/0�/90�/0�] with the material properties: E1=E2 ¼ 20;G12 ¼ 0:6E2 and m12 ¼ 0:25. The stiffness constants of the elastic supports is l0 ¼ K�

0E1h=½að1� m12m21Þ�, where K�
0 is a

dimensionless stiffness constant taking 0;1 and 10 as in Table 5.
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Fig. 3. A stepped cantilever laminated plate subjected to uniform or non-uniform normal elastic supports (y 2 ½�b; b�).

Table 5
Dimensionless natural frequencies k ¼ xa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1� m12m21Þ=E1

p
of a square symmetric cross-ply plate under three different boundary conditions as illustrated in Fig. 2.

Cases K�
0 1 2 3 4 5 6 7 8 9 10

CCCC – 1.0646 1.1582 1.2654 1.3107 1.3532 1.4769 1.4956 1.6435 1.7024 1.8336
(Ref. [39]) 1.0646 1.1582 1.2654 1.3107 – – – – – –

E
L
_

_T
S2EL _TS2 0 0 0.27164 0.54329 0.81493 1.0547 1.0866 1.1607 1.2369 1.2751 1.3103

1 0.70859 0.72554 0.90925 1.0619 1.0915 1.1620 1.3061 1.3103 1.4947 1.5368
10 1.0637 1.1044 1.1086 1.1761 1.2409 1.3103 1.3813 1.4951 1.5565 1.7022

E _L�TCCC 0 1.0379 1.1029 1.2301 1.2652 1.3530 1.4001 1.4764 1.5963 1.6433 1.8127
1 1.0610 1.1447 1.2653 1.2848 1.3531 1.4574 1.4767 1.6432 1.6525 1.8335
10 1.0641 1.1561 1.2654 1.3066 1.3532 1.4769 1.4894 1.6434 1.6937 1.8336
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inplane vibration. The structure consists of three laminae with
stacking sequence [90�/0�/90�]. Each ply is 1 mm thick and made
of T-graphite/epoxy lamina. The top and bottom laminae extend
at 1 m from the cantilever edge whereas the middle laminae is
extended by a further 2 m. The plate is cantilevered on the left
hand edge, and subjected to seven different combinations of clas-
sical or non-classical BCs denoted by Cases 1 � 7 in Table 6. The
uniform or non-uniform elastic supports in the normal direction
are applied either along the right end or on the thickness step
between Part A and Part B as shown in Fig. 3. Two SDS elements
corresponding to Part A and Part B are used in the modelling.
The first eight natural frequencies are given in Table 6 for all seven
cases. It should be kept in mind that both the structure and the BCs
for all seven cases are symmetric with respect to the middle line
perpendicular to the clamped edge. A close inspection on the
results given in Table 6 will lead to the following conclusions:

(i) Any additional elastic support will increase all the natural
frequencies of the structure as expected.
(ii) In such a symmetric configuration, the increase in the natu-
ral frequency of the structure caused by the elastic supports is
in a descending order with respect to the stiffness distributions:

l0;l0½1� ðy=bÞ2� and l0ð1� jy=bjÞ. This is to be expected since
the average amplitudes of the above three distributions are in a
descending order.
(iii) The same normal elastic support applied along the right
end of the plate results in a larger increase in all of the natural
frequencies than that applied along the middle line at the thick-
ness step.

7.2.2. Coupled shear walls placed on an elastic foundation and
subjected to non-uniform mass attachments

Coupled shear walls are frequently encountered in high rise
buildings as an efficient design to resist the lateral forces coming
from wind or earthquake [63]. Of course, the FEM can be applied
for shear wall analysis but has never been popular due to its rela-
tively low efficiency and high computing cost. Therefore, many
attempts [16–18,64,20] have been made by using more efficient



Table 6
The first eight natural frequencies (Hz) of a stepped cantilever composite plate as shown in Fig. 3 for seven cases with different combinations of l1 ;l2 and GaðyÞ. In this table,
l0 ¼ E1t=½2bð1� m12m21Þ� where 2b ¼ 1 m;t ¼ 0:001 m, and the plate is made of T-graphite/epoxy lamina with the material properties:
E1 ¼ 185 GPa; E2 ¼ 10:5 GPa; G12 ¼ 7:3 GPa; m12 ¼ 0:28 and q ¼ 1600 kg=m3.

Cases l1 l2 GaðyÞ 1 2 3 4 5 6 7 8

1 0 0 – 143.50 444.90 730.09 876.31 1120.4 1278.2 1360.2 1407.8
2 l0 0 1 163.71 464.23 758.75 1175.2 1273.9 1297.2 1394.0 1461.3
3 l0 0 1� ðy=bÞ2 156.08 455.56 744.55 1153.2 1196.1 1282.1 1382.5 1459.0

4 l0 0 1� jy=bj 152.90 452.59 740.37 1141.1 1145.4 1281.5 1379.2 1455.3
5 0 l0 1 160.32 445.32 730.96 1049.4 1151.9 1280.5 1362.0 1479.5
6 0 l0 1� ðy=bÞ2 150.98 445.20 730.64 1002.3 1136.0 1280.2 1361.6 1453.0

7 0 l0 1� jy=bj 148.45 445.12 730.49 976.08 1131.1 1279.9 1361.3 1438.3

Fig. 4. Coupled shear walls placed on an elastic foundation. The front and back
yellow layers are either steel or CFRP sheets to reinforce Part A of the right shear
wall. The red springs indicate the elastic coupling constraints between the two
shear walls; the blue shaded areas denote the non-uniformly distributed line
masses which model the loading coming from floors. The characteristics of the
components are given in Table 7.
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methods, e.g., finite strip method [16], Rayleigh–Ritz method [17],
transfer matrix method [18], continuous-discrete approach [64]
and reduced finite element method [20]. Although many existing
work [16–18,64] focused on the effects caused by elastic founda-
tions on the shear walls, to the best of our knowledge, there has
been no research dealing with non-uniform line masses to model
the loading coming from floors. Nevertheless, these floor loadings
should never have been neglected since they generally change
the dynamic behaviour of the shear walls significantly. On the
Table 7
Eight different cases investigated for the coupled shear walls as shown in Fig. 4. In this tabl
Part A is reinforced by either steel or CFRP sheets (thickness t3 ¼ 0:006 m) which are app

Kf Kp m1 ðkg=mÞ
Case 1 Ect1=2 Ect1=5 –
Case 2 2Ect1 Ect1=5 –
Case 3 1 Ect1=5 –
Case 4 Ect1=2 Ect1 –
Case 5 Ect1=2 Ect1=5 5
 104½1� ðn=LÞ2�
Case 6 Ect1=2 Ect1=5 5
 104½1� ðn=LÞ2�
Case 7 Ect1=2 Ect1=5 5
 104½1� ðn=LÞ2�
Case 8 Ect1=2 Ect1=5 5
 104½1� ðn=LÞ2�
other hand, in many engineering cases such as earthquake
damaged buildings, shear walls need to be reinforced for example,
by steel sheets or carbon fibre-reinforced plastic (CFRP) sheets,
which have been proved to be mechanically effective. However,
there is very few work available in the literature, a recent work
was conducted by using the FEM [20]. It is exciting to see that
the proposed theory provides a convenient and efficient tool for
the modal analysis of coupled shear walls with the capability of
considering all above factors.

The coupled shear wall to be investigated using the SDSM in
this paper is shown in Fig. 4. In this problem, the coupling between
the two shear walls is modelled as a uniform elastic coupling con-
straint (red spring in Fig. 4) with normal stiffness KL ¼ Kp and
shear stiffness KT ¼ 0 where Kp is given in Table 7. The coupled
shear walls are placed on an elastic foundation which has the same
stiffness in both vertical and horizontal directions: KL ¼ KT ¼ Kf

and Kf is also given in Table 7. The left shear wall (Part C) is further
subjected to a parabolically distributed mass (m1) on the floor and
a triangularly distributed mass (m3) on the roof. The floor of the
right shear wall (part A) is also subjected to mass m1 whilst the
second floor loading is modelled by a triangular mass m2. Here,
the non-uniform masses m1;m2 and m3 are given in Table 7, with
the assumption that all masses exert the same effects in the verti-
cal and horizontal directions, i.e., mL ¼ mT ¼ mi; i ¼ 1;2;3. The
material of the shear wall (Parts B, C and the main body of Part
A) has the properties: Ec ¼ 2 GPa; m ¼ 0:25; q ¼ 2400 kg=m3. Part
A is further reinforced on the front and back surfaces by either steel
sheets (E ¼ 200 GPa; m ¼ 0:3; q ¼ 7600 GPa) or CFRP sheets (E1 ¼
138GPa; E2 ¼8:96GPa; G12 ¼7:1GPa; m12 ¼0:3; q¼1560kg=m3). It
should be noted that the CFRP sheets are placed in such a way that
the direction corresponding to E1 is parallel to the vertical direction
to maximise the reinforcement.

Eight cases are considered by using the current SDSM. Different
cases have different combinations of foundation stiffness (Kf ), elas-
tic coupling stiffness (Kp), mass distribution (m1;m2 and m3) and
whether the shear wall (Part A) is reinforced or not, which are indi-
cated in Table 7. The first ten natural frequencies for the eight cases
are included in Table 8 and the first four mode shapes of Cases 1, 6
e, Ec ¼ 2 GPa and t1 ¼ 0:3 m. n represents either x or y, and 2L ¼ 6 m. In Cases 7 and 8,
lied on the front and back surfaces.

m2 ðkg=mÞ m3 ðkg=mÞ Reinforcement

– – none
– – none
– – none
– – none
– – none

2
 104ð1� jn=LjÞ 1
 104ð1� jn=LjÞ none

2
 104ð1� jn=LjÞ 1
 104ð1� jn=LjÞ Steel (t3)

2
 104ð1� jn=LjÞ 1
 104ð1� jn=LjÞ CFRP (t3)



Table 8
The first six natural frequencies (Hz) of the coupled shear walls for the eight cases described in Table 7.

1 2 3 4 5 6 7 8 9 10

Case 1 4.194 14.46 15.14 24.40 28.98 35.69 40.67 42.23 47.78 60.52
Case 2 4.679 15.97 16.67 25.44 35.20 37.65 43.67 46.12 49.49 62.29
Case 3 4.885 16.75 17.27 26.06 37.67 38.94 44.96 47.81 50.07 63.23
Case 4 4.276 14.60 15.14 27.59 29.05 37.37 42.21 43.19 48.38 60.86
Case 5 4.169 12.08 12.60 13.44 14.34 15.26 18.00 18.55 18.63 19.73
Case 6 3.531 9.556 9.965 13.27 14.14 14.67 15.80 16.80 18.53 18.96
Case 7 4.443 11.39 11.94 13.27 14.34 15.87 16.97 18.56 19.87 21.99
Case 8 4.214 11.14 11.23 13.27 14.26 15.09 16.18 18.54 19.76 20.05
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and 8 are shown in Fig. 5. The computed results can lead to the
following conclusions:

(i) The comparison among Cases 1, 2 and 3 reveals that larger
foundation stiffness will lead to higher natural frequencies as
expected.
(ii) The elastic coupling stiffness between the two shear walls
also exert a positive effect on improving the natural frequen-
cies. This is evident by comparing Cases 1 and 4.
Fig. 5. The first four mode shapes of coupled shear walls as shown
(iii) The floor loadings play a very important role on the natural
frequencies of the shear walls which therefore, should not have
been neglected in the previous investigations [16–18,64,20]. It
is clear from Table 8 that, compared to the unloaded case (Case
1), any mass attached onto the shear walls (Cases 5 and 6) will
decrease the natural frequencies; and the reduction in higher
frequencies (about 70% decrease) are more remarkable than
that in lower frequencies (up to 17% decrease). Moreover, the
masses placed onto the higher floor (m2 and m3 in Case 6) plays
in Fig. 4 for the Cases 1,6 and 8 as described in Table 7.



Table 9
The first ten dimensionless elastic natural frequency parameters for the plane strain free vibration of a prismatic orthotropic solid with square cross section subjected to three
types of classical BCs.

BCs k ¼ 2xa=p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q=Gxy

p
CCCC 1 2 3 4 5 6 7 8 9 10

1.6305 2.3210 2.7225 2.7575 3.1942 3.2238 3.2433 3.8104 3.9590 3.9729
FFFF 4 5 6 7 8 9 10 11 12 13

1.1106 1.2443 1.2897 1.6678 1.8024 2.0231 2.2794 2.4289 2.6193 2.6740
S2FS2F 2 3 4 5 6 7 8 9 10 11

0.67848 1.2897 1.6522 1.7265 2.1157 2.4298 2.6222 2.6305 2.6845 2.8175

1 cm 1 cm 1 cm 1 cm

1
c
m

C
ra

ck either T (ξ) = 0 or KT (ξ) prescribed
either L(ξ) = 0 or KL(ξ) prescribed

m(ξ) = m0

Fig. 6. A cracked infinite prismatic solid made of carbon fibre/epoxy material and
subjected to a partially distributed mass attachment. In this figure, n 2 ½�L; L� with
2L ¼ 1 cm.
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a more significant role (17% decrease) on the fundamental nat-
ural frequency than those placed on the lower floor (m1 in Case
5) with a very small reduction.
(iv) The reinforcements by the steel sheets (Case 7) and the
CFRP sheets (Case 8) result in a considerable increase
(20–26%) in the first natural frequencies compared to the unre-
inforced case (Case 6), but less so for higher natural frequencies.
In particular, the steel sheets lead to a slightly larger increase in
natural frequencies than the CFRP sheets.

7.3. Applications to plane strain free vibration of prismatic orthotropic
solids

As mentioned in the Introduction, the SDS formulation devel-
oped in this paper is applicable not only to the free inplane vibra-
tion of plate assemblies under plane stress assumption, but also
applicable to the cross-sectional free vibration of infinite prismatic
orthotropic solids under plane strain assumption. However, it
should be noted that the reduced stiffnesses in the plane strain
vibration problems will be different from that of plane stress ones,
see Appendix A. The constitutive relations of plane strain vibration
of orthotropic solids are determined by seven independent stiff-
ness constants, which is different from the plane stress vibration
determined by four elastic constants only.

Table 9 shows the first ten elastic natural frequencies for the
cross-sectional vibration of a prismatic orthotropic solid with
square cross section under three different classical BCs, e.g., fully
clamped (CCCC), completely free (FFFF) and another case
(S2FS2F). The material properties of the solid are: E2=E1 ¼ 4;
E3=E1 ¼ 40; G12=E1 ¼ 0:6; m21 ¼ 0:38; m31 ¼ 0:4; m32 ¼ 0:3. The
orthotropic material is placed in such a way that the 3 direction
in the material coordinate system is normal to the cross section
of the prismatic solid, whereas the 1 and 2 directions are coincide
with the x and y directions within the cross section. Again, the first
three natural frequencies of the completely free case (‘FFFF’) and
the first natufral frequency of the ‘S2FS2F’ case are zero correspond-
ing to rigid body modes, which are captured by the SDSM but not
shown in Table 9.

As the final example, we now apply the current SDSM to inves-
tigate the plane strain vibration of an infinite prismatic orthotropic
solid as shown in Fig. 6. The solid is made of carbon fibre/epoxy
material: E1 ¼ 161:0 GPa; E2 ¼ E3 ¼ 11:38 GPa; G12 ¼ 5:170 GPa;
m12 ¼ m13 ¼ 0:38; m23 ¼ 0:30; q ¼ 1560 kg=m3. The 1 direction in
the material reference system is placed horizontally. The cross sec-
tion of the solid is 4 cm wide and 1 cm high and is clamped on the
leftmost surface. Five cases with/without uniform mass and with/
without the presence of crack are considered: In Cases 2–5, there is
a uniformly distributed mass placed between 2 and 3 cm away
from the clamped surface, see Fig. 6; In Cases 3–5, there is a crack
located at 1 cm away from the clamped surface. The mass is
denoted by mðnÞ; and the cracks are modelled by elastic coupling
constraints with parabolically distributed stiffnesses: KTðnÞ and/
or KLðnÞ. Therefore, the five cases are described as following
Case1 : TðnÞ ¼ 0; LðnÞ ¼ 0; mðnÞ ¼ 0; ð64aÞ
Case2 : TðnÞ ¼ 0; LðnÞ ¼ 0; mðnÞ ¼ m0; ð64bÞ
Case3 : KTðnÞ ¼ KT0½1� ðn=LÞ2�; LðnÞ ¼ 0; mðnÞ ¼ m0; ð64cÞ
Case4 : TðnÞ ¼ 0; KLðnÞ ¼ KL0½1� ðn=LÞ2�; mðnÞ ¼ m0; ð64dÞ
Case5 : KTðnÞ ¼ KT0½1� ðn=LÞ2�; KLðnÞ ¼ KL0½1� ðn=LÞ2�;
mðnÞ ¼ m0; ð64eÞ

whereKT0 ¼ KL0 ¼ 1
 1013 Pa andm0 ¼ 40 kg=m2. In particular, Case
1 is auncracked solidwithoutmass attachment; Case2 is auncracked
solid with mass attachment; in Case 3, the normal displacements
along the crack are assumed to be continuous but the tangent dis-
placement are elastically coupled; in Case 4, the normal displace-
ments along the crack are elastically coupled but the tangent ones
are assumed to be continuous; and in Case 5, both normal and tan-
gent displacements on both sides of the crack are elastically coupled.
In the SDSM implementation, four square SDSMelements are used to
model inplane vibration of the cracked prismatic solids. The first ten
inplane natural frequencies for the five cases are given in Table 10
with four significant figures. It is clear that the mass attachment
decreases all natural frequencies especially for higher ones. The pres-
ence of the crack also lead to a decrease for all natural frequencies.
More specifically, the coupling constraint in the normal direction
(Case 4) reduces the natural frequenciesmore significantly than that
in the tangent direction (Case 3) with the same stiffness distribution.
The first six mode shapes of the cross section for Case 5 are shown in
Fig. 7. The crack is clearly seen from the 3rd, 4th and the 5thmodes. In
addition, the uniform mass attachment causes local vibrations for
higher modes, e.g., the 4th, 5th and the 6th modes.



Table 10
The first ten natural frequencies for the plane strain vibration of a prismatic orthotropic solid made of carbon fibre/epoxy material as depicted in Fig. 6. Five cases as described in
Eq. (64) are considered.

Cases Modes (kHz)

1 2 3 4 5 6 7 8 9 10

1 7.431 25.31 49.68 63.76 71.84 94.50 109.6 121.8 139.4 141.1
2 5.527 20.74 37.91 38.53 45.22 55.92 66.41 73.13 77.64 79.24
3 5.487 20.60 37.89 38.50 45.21 55.88 66.31 72.48 77.41 79.00
4 3.926 18.35 29.69 37.63 43.74 55.81 65.43 67.68 73.01 78.39
5 3.913 18.17 29.68 37.61 43.74 55.77 65.41 67.54 72.41 78.04

Fig. 7. The first six mode shapes of a cracked prismatic orthotropic solid (depicted in Fig. 6) for Case 5 as given by Eq. (64e).

X. Liu / Composite Structures 158 (2016) 262–280 277
8. Conclusions

This paper has presented a novel analytical spectral dynamic
stiffness method (SDSM) for exact inplane modal analysis of sym-
metric cross-ply plate assemblies and prismatic orthotropic solids
subject to arbitrary boundary conditions, arbitrary non-uniform
elastic supports, mass attachments and coupling constraints. The
exact shape function of the inplane governing differential equation
is first derived by using two types of 1D modified Fourier series.
Eventually, the spectral dynamic stiffness (SDS) matrix for the
inplane vibration of an element is formulated in a mixed-variable
form, which can then be assembled directly to form the global
SDS matrix for either the inplane vibration of composite plate
assemblies or the cross-sectional vibration of prismatic orthotropic
solids. In both cases, the structures can be subjected to any arbi-
trary classical boundary conditions. Furthermore, the additional
inplane SDS matrices generated by any arbitrary non-uniform elas-
tic supports, mass attachments and coupling constraints are for-
mulated in a strong form. Those additional inplane SDS matrices
are then superposed directly to the global inplane SDS matrix of
the parent structures. Finally, as the solution technique, the
Wittrick-William algorithm is enhanced by resolving the mode
count problem of a fully clamped element in an elegant and effi-
cient manner. It has been demonstrated that the SDSM method
gives exact solutions with prominent computational efficiency.
This is attributed to the factor that the inplane vibration of the
structures is described accurately in the proposed SDSM by using
an extremely few DOFs. Then, the versatility of the method has
been further demonstrated by applying the method to a wide
range of engineering problems. All results obtained by the SDSM
are accurate up to the last digit presented, therefore will serve as
benchmark solutions. The current SDSM offers an efficient and
accurate technique for the parametric and optimisation analysis
on the inplane vibration of a wide range of composite structures.
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Appendix A. The constitutive relations for orthotropic materials
in plane stress and plane strain deformation

The constitutive law for an orthotropic material in the lamina
reference system can be cast in the following compliance matrix
form.

e11
e22
e33
2e12

26664
37775 ¼

1=E1 �m21=E2 �m31=E3 0
�m12=E1 1=E2 �m32=E3 0
�m13=E1 �m23=E2 1=E3 0

0 0 0 1=G12

26664
37775

r11

r22

r33

r12

26664
37775 ðA:1Þ

where

m21
m12

¼ E2

E1
;

m13
m31

¼ E1

E3
;

m32
m23

¼ E3

E2
: ðA:2Þ

The constitutive equation of an orthotropic material given
above will be reduced two special cases under plane deformation,
namely, plane stress and plane strain. Both cases can be written in
the same matrix form as below

r11

r22

r12

264
375 ¼

Q11 Q12 0
Q21 Q22 0
0 0 Q66

264
375 e11

e22
2e12

264
375; ðA:3Þ

but with different expressions for the reduced stiffnesses Qij, which
are given as follows.

During plane stress deformation, r33 ¼ 0. Therefore, the first
three rows of Eq.(A.1) are reduced to

e11
e22

� �
¼ 1=E1 �m21=E2

�m12=E1 1=E2

� � r11

r22

� �
: ðA:4Þ

Taking the inverse of the coefficient matrix in Eq. (A.4) and that
of 1=G12 in Eq. (A.1), the plane-stress reduced stiffness matrix [59] in
Eq. (A.3) becomes
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Q11 Q12 0
Q21 Q22 0
0 0 Q66

264
375¼

E1=ð1�m12m21Þ m21E1=ð1�m12m21Þ 0
m12E2=ð1�m12m21Þ E2=ð1�m12m21Þ 0

0 0 G12

264
375:
ðA:5Þ

In view of Eq. (A.2), there are four independent engineering con-
stants (e.g., E1; E2; m12 and G12) in the reduced stiffness matrix for
plane stress deformation.

In plane strain deformation e33 ¼ 0, thus the first three rows of
Eq. (A.1) are reduced to

e11
e22

� �
¼ 1=E1 � m13m31=E1 �m21=E2 � m23m31=E2

�m12=E1 � m13m32=E1 1=E2 � m23m32=E2

� � r11

r22

� �
ðA:6Þ

By taking the inverse of the coefficient matrix in Eq. (A.6) and
that of 1=G12 in Eq. (A.1), the plane-strain reduced stiffness matrix
in Eq. (A.3) becomes

Q11 Q12 0
Q21 Q22 0
0 0 Q66

264
375¼

E1ð1�m23m32Þ=D E1ðm21þm23m31Þ=D 0
E2ðm12þm13m32Þ=D E2ð1�m13m31Þ=D 0

0 0 G12

264
375

ðA:7Þ
where D ¼ 1� m12m21 � m13m31 � m23m32 � 2m12m23m31. According to
Eq. (A.2), it can be found that the constitutive relation of an
orthotropic material in plane strain depend on seven independent
engineering constants (e.g., E1; E2; E3; m12; m13; m23;G12), and also the
stiffness matrix in Eq. (A.7) is a symmetric matrix.
Appendix B. Two sets of modified Fourier basis functions and
the corresponding modified Fourier series

The following two sets of modified Fourier basis functions are
adopted in the spectral dynamic stiffness formulation of this paper.

T lðclsnÞ ¼
cosðclsnÞ l ¼ 0
sinðclsnÞ l ¼ 1


; ðB:1aÞ

T �
l ðclsnÞ ¼

sinðclsnÞ l ¼ 0
cos clsnð Þ l ¼ 1


; ðB:1bÞ

where cls ¼ ðsþ l=2Þp=L with l 2 f0;1g s 2 N;N ¼ f0;1;2; . . .g and
n 2 ½�L; L�. Accordingly, two modified Fourier series related to the
two sets of basis functions of Eq. (B.1) are given as follows. For
any arbitrary 1D function hðnÞ; n 2 ½�L; L� subject to Dirichlet-type
BC (with arbitrary hð�LÞ, but dnhð�LÞ ¼ 0), one can write

hðnÞ ¼
X
s2N

l2f0;1g

Hls
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; Hls ¼

Z L

�L
hðnÞ T lðclsnÞffiffiffiffiffiffiffi

flsL
p dn; ðB:2Þ

where fls ¼ 2 when l ¼ s ¼ 0 and fls ¼ 2 otherwise. For any arbitrary
1D function hðnÞ; n 2 ½�L; L� subjected to Dirichlet-type BC (with arbi-
trary dnhð�LÞ, but hð�LÞ ¼ 0), one can write

hðnÞ ¼
X
s2N

l2f0;1g

Hls
T �

l ðclsnÞffiffiffiffiffiffiffi
flsL

p ; Hls ¼
Z L

�L
hðnÞ T

�
l ðclsnÞffiffiffiffiffiffiffi
flsL

p dn: ðB:3Þ

Note that
ffiffiffiffiffiffiffi
flsL

p
appearing in Eqs. (B.2) and (B.3) provides the

symmetry of the forward and inverse Fourier transformation and
therefore the dependence on the length of integral range ½�L; L� is
eliminated. The hyperbolic functions HlðCnÞ and its conjugate
H�

l ðCnÞ encountered when formulating Eq. (37) can be transformed
into modified Fourier series by using Eqs. (B.2) and (B.3), respec-
tively. In this way,
HlðCnÞ
X
s2N

2ð�1ÞsCH�
l ðCLÞffiffiffiffiffiffiffi

flsL
p

ðC2 þ c2lsÞ
T lðclsnÞffiffiffiffiffiffiffi

flsL
p ; ðB:4aÞ

H�
l ðCnÞ ¼

X
s2N

2ð�1Þsþlþ1clsH
�
l ðCLÞffiffiffiffiffiffiffi

flsL
p

ðC2 þ c2lsÞ
T �

l ðclsnÞffiffiffiffiffiffiffi
flsL

p ; ðB:4bÞ

where H�
l ðCnÞjn¼L was defined by Eq. (26).

Appendix C. Expressions of the coefficient matrices in the
mixed-variable formulation of Eq. (37)

This appendix provides the analytical expressions for the coef-
ficient matrices in Eq. (37). After symbolic manipulation and using

the identities of Eq. (23), the four coefficient matrices Akj
TL;A

kj
TS;A

kj
NL

and Akj
NS can be expressed in an extremely concise form as follows,

which applies for all of the four ðk; jÞ cases with k; j 2 f0;1g.

Akj
TL ¼

gjdiagn½bjnðD21!21�D22!22Þ
R2

� gj½bjnR3R7�n;m
gk½akmR4R8�m;n

gkdiagm½akmðD11!11�D12!12Þ
R1

�

2664
3775

ðC:1aÞ

Akj
TS ¼

diagn½C21!21�C22!22
R2

� �gjgka31½akmbjnR7�n;m
�gjgka31½akmbjnR8�m;n

diagm½C11!11�C12!12
R1

�

24 35 ðC:1bÞ

Akj
NL ¼

�diagn½D21d22!21�D22d21!22
a31R2

� ½R5R7�n;m
½R5R8�m;n �diagm½D11d12!11�D12d11!12

a31R1
�

" #
ðC:1cÞ

Akj
NS ¼ �

gjdiagn½bjnðD21!21�D22!22Þ
R2

� gk½akmR4R7�m;n

gj½bjnR3R8�n;m gkdiagm½akmðD11!11�D12!12Þ
R1

�

24 35
ðC:1dÞ

where a31 ¼ a3 þ 1; gj ¼ ð�1Þ j; gk ¼ ð�1Þk and

!2i ¼ HkðrijnaÞ=ðH�
kðrijnaÞrijnÞ; !1i ¼ HjðtikmbÞ=ðH�

j ðtikmbÞtikmÞ;

d2i ¼ a1r2ijn þ a3b
2
jn þ j; d1i ¼ a2t2ikm þ a3a2

km þ j;

D2i ¼ a1r2ijn þ a3ðb2
jn � jÞ; D1i ¼ a2t2ikm þ a3ða2

km � jÞ;

C2i ¼ a1r2ijn � b2
jn þ j; C1i ¼ a2t2ikm � a2

km þ j;

R2 ¼ a1ðr21jn � r22jnÞ; R1 ¼ a2ðt21km � t22kmÞ;

R3 ¼ ða3a31 � a1a2Þa2
km þ a2ðj� b2

jnÞ;
R4 ¼ ða3a31 � a1a2Þb2

jn þ a1ðj� a2
kmÞ;

R5 ¼ ða1a2 � a23Þa2
kmb

2
jn � a3jða2

km þ b2
jn � jÞ;

R8 ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

q
a1ðr21jn þ a2

kmÞðr22jn þ a2
kmÞ

h i
;

R7 ¼ R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fkmfjnab

q
a2ðt21km þ b2

jnÞðt22km þ b2
jnÞ

h i
;

where R0 ¼ 2ð�1Þmþn, and the hyperbolic functions H and H� were
defined in Eq. (26). In Eq. (C.1), ‘diagn½��’ represents a diagonal
matrix whose diagonal terms are expressed by ‘�’ with the subscript
n varying from 0 to 1, whereas ‘½��n;m’ stands for a matrix whose
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entries are ‘�’ with n (row number) and m (column number) taking
from 0 to 1. Similarly, it is easy to understand the notations
‘diagm½��’ and ‘½��m;n’. It should be emphasised that since the DOFs
corresponding to Saj0; Taj0 (when j ¼ 0) and Sbk0; Tbk0 (when k ¼ 0)
in Eq. (38)) have been removed, the corresponding rows and col-

umns of the Akj matrices also should be removed accordingly.

Now if we introduce the notations Akjði; :Þ ¼ ½� and Akjð:; lÞ ¼ ½� to
denote respectively the removal of the ith row and the lth column

of the matrix Akj, the removal should be applied as follows

Akj
T�ð1; :Þ ¼ ½� when j ¼ 0; Akj

T�ðN þ 1; :Þ ¼ ½� when k ¼ 0; ðC:2aÞ

Akj
�Sð:;1Þ ¼ ½� when j ¼ 0; Akj

�Sð:;N þ 1Þ ¼ ½� when k ¼ 0; ðC:2bÞ
where the subscript ‘�’ in Eq. (C.2a) stands for either L or S; the ‘�’ in
Eq. (C.2b) represents either T or N.

Appendix D. The analytical expressions of Ga matrices for some
typical functions

This appendix provides the analytical expressions of the Ga

matrices for some typical functions based on Eq. (53). (The corre-
sponding expressions based on Eq. (52) have been already given
in Appendix A of [58].) The notations used here will follow the
same fashion as in [58]. If S terms are adopted in the series solution
(s 2 ½0; S� 1�), then diagð�ÞS1 is used to denote a diagonal matrix
with the integer ‘s’ in expression ‘�’ taking s 2 ½1; S� 1�. Similarly,
½��S0 ;S1 stands for a matrix with ‘�’ taking r 2 ½0; S� 1� and
s 2 ½1; S� 1�; ½��S1 ;S1 denotes a matrix with ‘�’ taking
r 2 ½1; S� 1�; s 2 ½1; S� 1� and so on. Similar to [58], for symmetric
distribution functions GaðnÞ;Ga

01 ¼ O;Ga
10 ¼ O whereas Ga

00 and Ga
11

are derived from Eq. (53), whose analytical expressions are given
below for some typical symmetric (even) functions GaðnÞ.

(1) For constant function GaðnÞ ¼ 1;Ga
00 ¼ diagð1ÞS1 and

Ga
11 ¼ diagð1ÞS0 .

(2) For parabolic function GaðnÞ ¼ ðn=LÞ2,
Ga

00 ¼ 8ð�1Þrþsrs

pðr2�s2Þð Þ2
� �

S1 ;S1
except for the diagonal terms

Ga
00ðr; sÞ ¼ 1=3� 1=ð2p2s2Þ� �

for r ¼ s 2 ½1; S� 1�; and

Ga
11 ¼ 2ð�1Þrþsð1þ2rÞð1þ2sÞ

pðr�sÞð1þrþsÞð Þ2
h i

S0 ;S0
except for the diagonal terms

Ga
11ðr þ 1; sþ 1Þ ¼ 1=3� 2=ðps2Þ2

h i
for r ¼ s 2 ½0; S� 1� and

where s2 ¼ 1þ 2s.
(3) For cosine function GaðnÞ ¼ cosðpn=ð2LÞÞ,
Ga

00 ¼ � 32ð�1Þrþsrs

pð16r4þð1�4s2Þ2�8r2ð1þ4s2ÞÞ

h i
S1 ;S1

except for the diagonal terms

Ga
00ðr; sÞ ¼ �32s2= pð1� 16s2Þ� �

for r ¼ s 2 ½1; S� 1�; and

Ga
11 ¼ 8ð�1Þrþsð1þ2rÞð1þ2sÞ

p 4ðr�sÞ2�1ð Þð1þ2rþ2sÞð3þ2rþ2sÞ

� �
S0 ;S0

except for the diagonal

terms Ga
11ðr þ 1; sþ 1Þ ¼ 8ð1þ 2sÞ= pð1þ 4sÞð3þ 4sÞ½ � for

r ¼ s 2 ½0; S� 1�.

For antisymmetric distribution functions GaðnÞ;Ga
00 ¼ O;Ga

11 ¼ O
whereas Ga

01 and Ga
10 are derived from Eq. (53), whose analytical

expressions are given below for some typical antisymmetric
(odd) functions GaðnÞ.

(1) For linear function GaðnÞ ¼ n=L,

Ga
01 ¼ �32ð�1Þrþs4s2= pð�4r2 þ s22Þ

� �2h i
S1 ;S0

.

(2) For sine function GaðnÞ ¼ sinðpn=ð2LÞÞ, Ga
01 ¼ diagð�1=2ÞS0 .
For above two odd functions, the removal procedure as in Eq.
(C.2) should also be applied such that: Ga

01ð1; :Þ ¼ ½�, and finally

Ga
10

T ¼ Ga
01.
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