
Mechanical Systems and Signal Processing 150 (2021) 107264
Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier .com/locate /ymssp
An exact dynamic stiffness method for multibody systems
consisting of beams and rigid-bodies
https://doi.org/10.1016/j.ymssp.2020.107264
0888-3270/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: j.r.banerjee@city.ac.uk (J. Ranjan Banerjee), danhancheng@csu.edu.cn (H.-C. Dan).
Xiang Liu a,b,c, Chengli Sun a,b,c, J. Ranjan Banerjee d, Han-Cheng Dan e,⇑, Le Chang a,b,c

aKey Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha, China
b Joint International Research Laboratory of Key Technology for Rail Traffic Safety, Central South University, Changsha, China
c State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China
d School of Mathematics, Computer Science and Engineering, City University London, London EC1V 0HB, UK
e School of Civil Engineering, Central South University, Changsha, China

a r t i c l e i n f o
Article history:
Received 28 April 2020
Received in revised form 31 July 2020
Accepted 29 August 2020
Available online 16 September 2020

Keywords:
Multibody system
Dynamic stiffness method
Wittrick-Williams algorithm
Exact modal analysis
Rigid body
Rayleigh-Love theory and Timoshenko
theory
a b s t r a c t

An exact dynamic stiffness method is proposed for the free vibration analysis of multi-body
systems consisting of flexible beams and rigid bodies. The theory is sufficiently general in
that the rigid bodies can be of any shape or size, but importantly, the theory permits con-
nections of the rigid bodies to any number beams at any arbitrary points and oriented at
any arbitrary angles. For beam members, a range of theories including the Bernoulli-
Euler and Timoshenko theories are applied. The assembly procedure for the beam and rigid
body properties is simplified without resorting to matrix inversion. The difficulty generally
encountered in computing the problematic J0 count when applying the Wittrick-Williams
algorithm for modal analysis has been overcome. Applications of different beam theories
for both axial and bending vibrations have enabled the examination of the role played
by rigid-body parameters on the multi-body system’s dynamic behaviour. Some exact
benchmark results are provided and compared with published results and with finite ele-
ment solutions. This research provides an exact and highly efficient analysis tool for multi-
body system dynamics which is for the free vibration analysis, ideally suited for
optimization and inverse problems such as modal parameter identification.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Multi-body system is a system in which a certain number of rigid and deformable bodies are connected together in some
prearranged way [1,2]. The applications of multi-body systems are wide ranging which include military, aerospace, rail
transportation, satellite launch systems, aircraft, spacecraft, cars, trains, robotics, amongst many other areas of engineering.
The dynamic behaviour of multi-body systems plays a vital, if not crucial role in their design. It is well known that different
types of attachments for flexible and rigid parts of a multibody system can affect the overall dynamic behaviour of the com-
bined system significantly. In this respect, many theories have been proposed in recent years to deal with multi-body sys-
tems, particularly those consisting of beams and rigid bodies [3–6]. Based on the literature review carried out by the authors,
the published research in the area can be broadly classified in two groups, of which one relies on numerical methods
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whereas the other focuses on analytical methods. The advantages and disadvantages of these two approaches have been out-
lined in the literature [1,2].

From a numerical perspective, one of the commonly used commercial software ANSYS provides an option to model a
beam and rigid-body connection when representing a built-up structure, but the application of this kind of software for
multibody system is not always reliable or effective. This is because numerical instabilities might occur when using such
software due to marked differences in the mass and stiffness properties of rigid and deformable bodies, particularly when
higher natural frequencies are of interest. This has inspired researchers to explore various alternative routes using both
numerical and non-numerical methods. For instance, Yoo et al. [2] used a computer simulation method to demonstrate
the validity of the absolute node coordinate formula (ANCF) on large displacement and large deformation problems. The
authors showed that their method can be applied to practical multi-body systems, as encountered in engineering problems.
Many other simulation models [7,8] have also been proposed to address significant practical engineering problems involving
multibody systems. Evidently the existing research in many ways, proved that numerical methods can be suitably adapted to
dynamic analysis of various multi-body systems. Wu [9] presented an elastic-and-rigid-combined beam element model, in
which the finite element method was basically used. In a follow up paper, Wu [10] proposed an improved finite element
method of rigid bars supported by several elastic beams. On the above numerical models, dynamic analysis was performed
by using well-established numerical solvers which can be applied to a wide range of problems. However, in most of the
above numerical methods, the beam members have been discretized into elements that are represented by approximate
shape functions and the modelling process requires many elements to idealise a realistic structure and achieve acceptable
accuracy. This inevitably incurs lot of computational efforts and may introduce inaccuracies, particularly when computing
higher natural frequencies and mode shapes. Therefore, methods predominantly based on numerical techniques are not
always suitable for modal analysis in the high frequency range [11].

To circumvent the above problem, many analytical models have been proposed for beam structures connected to various
types of attachments such as lumped concentrated mass [12–16] and/or rotatory inertia [17], spring and damper [18], single
spring-mass [14,19–26], double spring-mass [27–32], spring-mass chain [33,34] which all have wide ranging applications in
engineering. The attachment as lumped mass used in these publications is by and large assumed to be a concentrated point
mass without any consideration to the size or dimension of the mass or its mass moment of inertia. It was therefore, much
easier for these earlier investigators to realise an analytical model of a multibody system using such a simplistic approach. Of
course, for the problems with attachments represented by two or more degrees of freedom together with the consideration
of their physical dimensions, the analytical formulation will be much more complex, see for example the attachment of a
two-degree-of-freedom systems [35–37], mass-spring-mass-damper [38] and two-part beam-mass [39–47]. It should be
recognised at this stage that one of the accurate and popular methods of modelling a multi-body system is the transfer
matrix method [29,46,48–50], which is relatively simple to use and is seemingly efficient, particularly when analysing
chain-like multi-body systems. However, the method can become complicated and even unimplementable for branch-like
multi-body systems. One of the downsides of the transfer matrix method is that numerical errors can easily build up and
accumulate during the successive matrix manipulation process which may, of course may lead to numerical ill-
conditioning or inaccuracy in results. It is evident from the existing literature that the flexible beam members used in mod-
elling multibody systems are mainly based on classical Euler-Bernoulli theory when dealing with bending and axial vibration
problems [51]. This is rather restrictive because the theory is suitable only for slender beam members, but not for thicker or
shorter ones. For short and thick beam members which are often encountered in engineering applications, more advanced
theories are needed, e.g. Timoshenko theory [52–54] which considers the effects of shear deformation and rotatory inertia in
bending vibration and Rayleigh-Love theory [54] which accounts for transverse inertia in axial vibration. The importance of
applying the Timoshenko theory to model beam members in multibody systems has recently been emphasised by some
authors [15,34,47,55], although apparently not much attention has been paid on the effects of considering advanced beam
theories in the multibody dynamics. However, it has to be mentioned in passing that there are well-developed dynamic stiff-
ness theories for beam elements in the literature [36,52–54,56–60] which are relevant and can be helpful in this context.

Although different analytical models have been proposed for multibody systems, unfortunately, they are not all suffi-
ciently well-equipped with efficient, accurate and robust solution techniques which are really necessary. Thus, there are
some difficulties to apply these existing methods to complex multibody systems. For example, unlike the numerical method
where the stiffness and mass matrices can be formulated separately [9], almost all existing analytical methods [45–50,2,6
,13,52,14,15,22–24,26,27,29–31,55,32–35,37–40,42,44,61,62] apply the usual determinant method for non-trivial solution
of the eigenvalue problem for which the determinant of the coefficient matrix vanishes. The determinant method needs
the evaluation of the determinant numerically for one frequency at a time. Deciding the step size to find the zeroes of
the frequency-determinant and avoid the poles is far from being trivial. The problem arises because a small step size leads
to unnecessary computational cost whereas a large step size increases the possibility of missing some genuine natural fre-
quencies. This is especially true for complex structures and when computing higher order natural frequencies. The problem
is further compounded by the fact that the frequency determinant often involves complex and irregular transcendental func-
tions such as the hyperbolic functions. Some efforts have been made in the literature to convert the zero-finding procedure
to an optimisation problem [49] and also to reduce the matrix size [37] when solving the eigenvalue problem. Nevertheless,
the potential pitfalls and drawbacks of the determinant method as mentioned above, still exist. Furthermore, extra efforts
are needed to compute the mode shapes and also to apply general boundary conditions [9]. Against this background, there
is an accurate, efficient and robust solution technique, called the Wittrick-Williams algorithm [19], which extracts eigenval-
2
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ues with certainty from analytical dynamic stiffness formulations. This powerful algorithm has been utilized previously with
great success when solving free vibration problems of plane frames [53,54,56] and with attachments such as concentrated
mass, spring mass [57] and two-degree-of-freedom system [36]. However, the application of the Wittrick-Williams algo-
rithm may encounter some difficulty in solving complex multibody system such as a two-part beam-mass system [41,57]
where the so-called J0 count of the condensed system is not readily available.

The main purpose of this paper is to propose an accurate, efficient, reliable and versatile analytical method for the free
vibration analysis of multibody systems involving rigid bodies coupled with beam elements, for the most general case.
The proposed method has the following attributes and novel features: 1) The formulation is versatile because any number
of rigid bodies can be connected to any number of beam members at any arbitrary points and at any arbitrary angles. 2) The
assembly procedure is straightforward to make the method easy to implement in a computer program and thus, suitable for
modelling complex beam-rigid body built-up structures (there is no restriction on the theories to be applied for beam mem-
bers), 3) The formulation does not cause extra difficulties to the solution technique based on the Wittrick-Williams algo-
rithm, particularly the J0 count problem, ensuring the solution technique to be both efficient and robust. 4) Both the
formulation and solution technique do not involve matrix inversion or determinant evaluation and hence, avoid introducing
any undesirable numerical instability or inaccuracy. This research provides the basis of a general framework for modelling
complex multibody structures in engineering installation by using an exact analytical dynamic stiffness formulation. The
proposed method is ideally suited for optimization and inverse problems [63–65] such as modal parameter identification.

The paper is organized as follows. Following this Introduction, Section 2 highlights the application ranges of the theory,
the analytical formulation, assembly procedure and the solution technique. Then, Section 3 validates the proposed method
and demonstrates its wide application range through some illustrative practical engineering applications. Finally, Section 4
concludes the paper. The Appendix briefly summarizes the dynamic stiffness formulations of different types of beam
elements.

2. Theory

This section describes the exact dynamic stiffness formulation of a multi-body system consisting of flexible beams and
rigid bodies. The model is sufficiently general in which the rigid bodies can be of any shape and size and they can be con-
nected to any number of flexible beams at any number of arbitrary points with the orientation of any arbitrary angles. The
multi-body system studied here is shown in Fig. 1, where the line segments represent beam elements, which can undergo
both axial and bending deformations. The axial vibration can be described either by classical theory or by Rayleigh-Love the-
ory; whereas the bending vibration is governed by the Bernoulli-Euler theory or by the Timoshenko theory. The dynamic
stiffness formulations for the above four theories [51,53,54,66] have been developed by previous researchers , which lead
to four possible combinations of the application of these theories when interfaced with rigid-body dynamics. For illustrative
purposes, the shaded areas in Fig. 1 represent rigid bodies, whose physical characteristics are represented by mass and mass
moment of inertia [48].

In order to demonstrate the dynamic stiffness formulation procedure, we adopt for convenience a multi-body system
with one rigid body element ④ connecting three flexible beam elements (①, ② and ③) at points (nodes) 2, 4 and 6 respec-
tively, as shown in Fig. 2. First, the dynamic stiffness matrices of the three beammembers are formulated from the governing
differential equations based on a choice of the different beam theories given in the Appendix. Then, the geometrical and
equilibrium relationships of the rigid body and each beam member are formulated using a matrix transformation process,
and the dynamic stiffness matrix of each beam member is transformed where the beam node connecting to the rigid body
is shifted to the mass centre of the rigid body (this procedure has been performed here for the three elements connecting 3-1,
1-5 and 1-7 segments, only for convenience, but the theory is sufficiently general so that segments can be added). Finally, the
overall dynamic stiffness matrix of the multi-body system is assembled directly from the adjacent node 1, and by applying
the corresponding boundary conditions.
Fig. 1. Schematic diagrams for different ways that rigid bodies are connected to any number of flexible beams at arbitrary points with any arbitrary angles.
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Fig. 2. The rigid body ④ is connected to three beam elements (①, ② and ③) at nodes 2, 4 and 6, respectively.
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In order to help the readers, understand the steps used in the proposed method, a flow chart demonstrating the dynamic
stiffness modelling procedure for a multibody system is shown in Fig. 3.
2.1. Dynamic stiffness matrix of a beam

The dynamic stiffness (DS) formulations for free vibration of plane frames incorporating the axial and bending deforma-
tions have already been developed by many authors based on different theories. For example, the DS formulations for axial
vibration of a beam member based on different theories such as classical theory [51], Rayleigh-Love theory [54], Rayleigh-
Bishop theory [54] are readily available in the literature. The DS formulations for bending vibration include, but not limited
to the Bernoulli-Euler theory [51], the Timoshenko theory [54] and the higher-order shear deformation theory [58]. For beam
members with more complex cross-sections and/or made of composite materials, the axial vibration and bending vibration
may be coupled due to the fibrous nature of anisotropic composites. For all these beam theories, the dynamic stiffness matrix
can be written in the following general form.
Fx1

Fy1

M1

Fx2

Fy2

M2

2
66666664

3
77777775
¼

k11 k12 k13 k14 k15 k16
k21 k22 k23 k24 k25 k26
k31 k32 k33 k34 k35 k36
k41 k42 k43 k44 k45 k46
k51 k52 k53 k54 k55 k56
k61 k62 k63 k64 k65 k66

2
666666664

3
777777775

u1

w1

h1
u2

w2

h2

2
66666664

3
77777775

ð1Þ
where Fx,Fyand M with suffices 1 and 2 represent the axial force, shear force, and bending moment at the two end nodes (1
and 2) of the beammember, respectively; u,w and hwith suffices 1 and 2 represent amplitudes of the axial displacement, the
vertical or bending displacement, and the angular or bending rotation of the beam cross-section at the two end nodes of the
beam member, respectively. Note that the 6 � 6 stiffness matrix shown in Eq. (1) must be symmetric.

Although the theory proposed in this paper is general so that it can be applied to any type of beam element considering
both axial and bending vibrations [67], for demonstration purposes, we adopt here, the case when the axial vibration and
bending vibration of the beam are uncoupled in local coordinates. For clarity and completeness and importantly to make
the paper self-contained, analytical expressions [36,51,54,56] for the dynamic stiffness coefficients of the beams under con-
Fig. 3. Dynamic stiffness modelling procedure for a multibody system.
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sideration are provided in the Appendix. The element dynamic stiffness matrix of Eq. (1) takes the following form for the
uncoupled case.
Fx1

Fy1

M1

Fx2

Fy2

M2

2
66666664

3
77777775
¼

a1 0 0 a2 0 0
0 d1 d2 0 d4 �d5

0 d2 d3 0 �d5 d6

a2 0 0 a1 0 0
0 d4 �d5 0 d1 �d2

0 �d5 d6 0 �d2 d3

2
666666664

3
777777775

u1

w1

h1
u2

w2

h2

2
66666664

3
77777775

ð2Þ
where a1; a2 are the dynamic stiffness coefficients for axial vibration and d1 � d6 are the dynamic stiffness coefficients for
bending vibration. Note that two theories are provided in the appendix for axial vibration, namely, the classical theory [51]
and the Rayleigh-Love theory [54]; and two theories are provided for bending vibrations, namely, the Bernoulli-Euler theory
[51] and the Timoshenko theory [54,56]. For the first time, these theories have been used in all possible combinations to
investigate the free vibration characteristics of multi-body systems.

2.2. Dynamic stiffness formulation for the combinations of beams and rigid bodies

The dynamic stiffness formulation for any combination of beams and rigid bodies for plane structures can be effectively
carried out by considering essentially two possible cases, each requiring independent treatment. In the first case (Case-1)
described in Section 2.2.1, the higher numbered node of a beam is connected to an arbitrary nodal point on a rigid body
which may not necessarily be its centre of gravity (see Figs. 4 and 5) whereas in the second case (Case-2) an arbitrary nodal
point on a rigid body which may not necessarily be its centre of gravity is connected to the lower numbered node of a beam
(see Figs. 6 and 7). A substantial majority of engineering applications are covered by these two cases.

2.2.1. Case-1: Dynamic stiffness formulation for beam- rigid body combinations
As shown in Fig. 6, nodes 1 is the mass centre of the rigid body④whereas the nodes 2 and 3 are the two ends of the beam

member. Beam① is rigidly connected to the rigid body④ at node 2. The task is to develop the dynamic stiffness formulation
for the combined structures of beam ① and rigid body ④ by focusing on the two nodes 3 and 1, eliminating the displace-
ments of node 2, i.e. node 2 is condensed. This is achieved by shifting successively the force boundary conditions (BCs) and
displacement BCs of the beam ① at node 2 to node 1, a standard technique used in the transfer matrix method.

As shown in Fig. 6, DX1 and DY1 are the relative coordinates of node 1 (mass centre of rigid body④with respect to node 2
of beam ① in the global coordinate system XOY. In order to shift the BCs of beam ① to the mass centre of the rigid body ④
directly, we first need to transfer the afore-mentioned global relative coordinates DX1 and DY1 into local coordinate system
of the beam. Without any loss of generality, we assume the angle of the beam member (from node 3 to node 2) in the global
coordinate system is u1. Through the coordinate system transformation, the relative coordinates Dx1 and Dy1 between node
1 and node 2 in the local coordinate system can be obtained by Eq. (3), and Dx1 and Dy1 as follows, see Fig. 3 for details.
Dx1 ¼ DX1cosu1 � DY1sinu1

Dy1 ¼ DX1sinu1 þ DY1cosu1

�
ð3Þ
Next, the relationship of the force and displacement BCs between node 2 and node 1 can be obtained through the equi-
librium and geometrical relationships, as given below in Eq. (4).
Fx1 ¼ Fx2

Fy1 ¼ Fy2

M1 ¼ M2 � Fy2Dx1 þ Fx2Dy1
u2 ¼ u1 þ h2Dy1
w2 ¼ w1 � h2Dx1
h2 ¼ h1

9>>>>>>>>=
>>>>>>>>;

ð4Þ
Fig. 4. Beam ① and rigid body ④ are connected at node 2.
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Fig. 5. Boundary conditions for displacements and forces at beam node 2 and rigid body mass centre 1 for the flexible beam-rigid body coupling member
3-1.

Fig. 6. Rigid body ④ and beam ② are connected at node 4.

X. Liu et al. Mechanical Systems and Signal Processing 150 (2021) 107264
Eq. (4) can be rewritten in matrix form, see Eqs. (5) and (6). This is equivalent to using the force and displacement of node
2 to represent the force and displacement of node 1. We can then formulate the dynamic stiffness matrix between node 3
and node 1 through matrix operations, as shown in Eq. (7).
Fig. 7.
1-5.
Boundary conditions for displacements and forces at beam node 4 and rigid body mass centre 1 for the rigid body-flexible beam coupling member
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Fx3

Fy3

M3

Fx1

Fy1

M1

2
66666664

3
77777775
¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 Dy1 �Dx1 1

2
666666664

3
777777775

Fx3

Fy3

M3

Fx1

Fy1

M1

2
66666664

3
77777775

ð5Þ

u3

w3

h3
u2

w2

h2

2
66666664

3
77777775
¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 Dy1
0 0 0 0 1 �Dx1
0 0 0 0 0 1

2
666666664

3
777777775

u3

w3

h3
u1

w1

h1

2
66666664

3
77777775

ð6Þ

Fx3

Fy3

M3

Fx1

Fy1

M1

2
66666664

3
77777775
¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 Dy1 �Dx1 1

2
666666664

3
777777775
Kr

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 Dy1
0 0 0 0 1 �Dx1
0 0 0 0 0 1

2
666666664

3
777777775

u3

w3

h3
u1

w1

h1

2
66666664

3
77777775

ð7Þ
where K① is dynamic stiffness matrix of the beam①; which takes different formulations for different beam theories with the
general form already given in Eq. (1). Thus, for the general form, Eq. (7) can be written as follow.
Fx3

Fy3

M3

Fx1

Fy1

M1

2
66666664

3
77777775
¼

k11 k12 k13 k14 k15 k�16
k21 k22 k23 k24 k25 k�26
k31 k32 k33 k34 k35 k�36
k41 k42 k43 k44 k45 k�46
k51 k52 k53 k54 k55 k�56
k�61 k�62 k�63 k�64 k�65 k�66

2
666666664

3
777777775

u3

w3

h3
u1

w1

h1

2
66666664

3
77777775

ð8Þ
where
k�16 ¼ k16 þ Dy1k14 � Dx1k15
k�26 ¼ k26 þ Dy1k24 � Dx1k25
k�36 ¼ k36 þ Dy1k34 � Dx1k35
k�46 ¼ k46 þ Dy1k44 � Dx1k45
k�56 ¼ k56 þ Dy1k54 � Dx1k55
k�66 ¼ k66 þ Dy1k46 � Dx1k56 þ Dy1k64 þ Dy1

2k44 � Dx1Dy1k54 � Dx1k65 � Dx1Dy1k45 þ Dx12k55
k�61 ¼ k61 þ Dy1k41 � Dx1k51
k�62 ¼ k62 þ Dy1k42 � Dx1k52
k�63 ¼ k63 þ Dy1k43 � Dx1k53
k�64 ¼ k64 þ Dy1k44 � Dx1k54
k�65 ¼ k65 þ Dy1k45 � Dx1k55

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð9Þ
In particular, for beam elements with uncoupled axial and bending vibrations in local coordinates, the dynamic stiffness
of Eq. (8) takes the following form.
Fx3

Fy3

M3

Fx1

Fy1

M1

2
66666664

3
77777775
¼

a1 0 0 a2 0 Dy1a2
0 d1 d2 0 d4 d�

5

0 d2 d3 0 �d5 d�
6

a2 0 0 a1 0 Dy1a1
0 d4 �d5 0 d1 �d�

2

Dy1a2 d�
5 d�

6 Dy1a1 �d�
2 d�

3

2
666666664

3
777777775

u3

w3

h3
u1

w1

h1

2
66666664

3
77777775

ð10Þ
7
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where
d�
5 ¼ d5 � Dx1d4

d�
6 ¼ d6 þ Dx1d5

d�
2 ¼ d2 þ Dx1d1

d�
3 ¼ d3 þ 2Dx1d2 þ Dx21d1 þ Dy1

2a1

9>>>=
>>>;

ð11Þ
2.2.2. Case-2: Dynamic stiffness formulation for rigid body-beam combination
Using the same procedure as above, the dynamic stiffness formulation can be developed for the 1-5-segment of Fig. 7. The

relative coordinates Dx2 and Dy2 of node 1 with respect to node 4 in the local coordinate system can be obtained through the
coordinate system transformation matrix of Eq. (12) as given below.
Dx2 ¼ DX2cosu2 � DY2sinu2

Dy2 ¼ DX2sinu2 þ DY2cosu2

�
ð12Þ
Next, the relationship of the force and displacement BCs between node 1 and node 4 can be obtained through the equi-
librium and geometrical relationships as follows.
Fx1 ¼ Fx4

Fy1 ¼ Fy4

M1 ¼ M4 þ Fy4Dx2 þ Fx4Dy2
u4 ¼ u1 þ h1Dy2
w4 ¼ w1 þ h1Dx2
h4 ¼ h1

9>>>>>>>>=
>>>>>>>>;

ð13Þ
Now, Eq. (13) can be rewritten in matrix forms, as shown in Eqs. (14) and (15). In this way, we can formulate the dynamic
stiffness matrix between nodes 1 and 5 through matrix operations outlined in Eq. (16).
Fx1

Fy1

M1

Fx5

Fy5

M5

2
66666664

3
77777775
¼

1 0 0 0 0 0
0 1 0 0 0 0

Dy2 Dx2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775

Fx4

Fy4

M4

Fx5

Fy5

M5

2
66666664

3
77777775

ð14Þ

u4

w4

h4
u5

w5

h5

2
66666664

3
77777775
¼

1 0 Dy2 0 0 0
0 1 Dx2 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775

u1

w1

h1
u5

w5

h5

2
66666664

3
77777775

ð15Þ

Fx1

Fy1

M1

Fx5

Fy5

M5

2
66666664

3
77777775
¼

1 0 0 0 0 0
0 1 0 0 0 0

Dy2 Dx2 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775
Ks

1 0 Dy2 0 0 0
0 1 Dx2 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
666666664

3
777777775

u1

w1

h1
u1

w5

h5

2
66666664

3
77777775

ð16Þ
Fig. 8. A two-beam assembly connected with an eccentric rigid body.
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where K② is dynamic stiffness matrix of the beam②; which takes different formulations for different beam theories with the
general form already given in Eq. (1). For the general form, Eq. (16) can be written as follows.
Fx1

Fy1

M1

Fx4

Fy4

M4

2
66666664

3
77777775
¼

k11 k12 k�13 k14 k15 k16
k21 k22 k�23 k24 k25 k26
k�31 k�32 k�33 k�34 k�34 k�36
k41 k42 k�43 k44 k45 k46
k51 k52 k�53 k54 k55 k56
k61 k62 k�63 k64 k65 k66

2
666666664

3
777777775

u1

w1

h1
u4

w4

h4

2
66666664

3
77777775

ð17Þ
where
k�13 ¼ k13 þ Dy2k11 � Dx2k12
k�23 ¼ k23 þ Dy2k21 � Dx2k22
k�33 ¼ k33 þ Dy2k13 � Dx2k23 þ Dy2k31 þ Dy2

2k11 � Dx2Dy2k21 � Dx2k32 � Dx2Dy2k12 þ Dx22k22
k�43 ¼ k43 þ Dy2k41 � Dx2k42
k�53 ¼ k53 þ Dy2k51 � Dx2k52
k�63 ¼ k63 þ Dy2k61 � Dx2k62
k�31 ¼ k31 þ Dy2k11 � Dx2k21
k�32 ¼ k32 þ Dy2k12 � Dx2k22
k�34 ¼ k34 þ Dy2k14 � Dx2k24
k�35 ¼ k35 þ Dy2k15 � Dx2k25
k�36 ¼ k36 þ Dy2k16 � Dx2k26

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð18Þ
In the case when the axial and bending vibrations of the beam element are not coupled, the above dynamic stiffness for-
mulation takes the following degenerate form.
Fx1

Fy1

M1

Fx5

Fy5

M5

2
66666664

3
77777775
¼

e1 0 Dy2e1 e2 0 0
0 f 1 f �2 0 f 4 f 5

Dy2e1 f �2 f �3 Dy2e2 �f �5 f �6
e2 0 Dy2e2 e1 0 0
0 f 4 �f �5 0 f 1 �f 2
0 f 5 f �6 0 �f 2 f 3

2
666666664

3
777777775

u1

w1

h1
u5

w5

h5

2
66666664

3
77777775

ð19Þ
where
f �5 ¼ f 5 � Dx2f 4
f �6 ¼ f 6 þ Dx2f 5
f �2 ¼ f 2 þ Dx2f 1
f �3 ¼ f 3 þ 2Dx2f 2 þ Dx22f 1 þ Dy2

2e1

9>>>=
>>>;

ð20Þ
To distinguish between different beam elements, the vectors e and f are used to represent the correlation coefficient of the
axial stiffness and bending dynamic stiffness of the beam②. Finally, we obtain the dynamic stiffness matrices of the flexible
beam-rigid body coupled elements 15 and 17 according to Eqs. (19) and (20) and Eqs. (21) and (22) respectively
Fx1

Fy1

M1

Fx7

Fy7

M7

2
66666664

3
77777775
¼

g1 0 Dy3g1 g2 0 0
0 h1 h�

2 0 h4 h5

Dy3g1 h�
2 h�

3 Dy3g2 �h�
5 h�

6

g2 0 Dy3g2 g1 0 0
0 h4 �h�

5 0 h1 �h2

0 h5 h�
6 0 �h2 h3

2
666666664

3
777777775

u1

w1

h1
u7

w7

h7

2
66666664

3
77777775

ð21Þ
where
h�
5 ¼ h5 � Dx3h4

h�
6 ¼ h6 þ Dx3h5

h�
2 ¼ h2 þ Dx3h1

h�
3 ¼ h3 þ 2Dx3h2 þ Dx23h1 þ Dy3

2g1

Dx3 ¼ DX3cosu3 � DY3sinu3

Dy3 ¼ DX3sinu3 þ DY3cosu3

9>>>>>>>>=
>>>>>>>>;

ð22Þ
9
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and Dx3 and Dy3 are the relative coordinates of node 1 and node 6 in the local coordinate system, which can be obtained
by the coordinate system transformation matrix. The vectors g and h are used to represent the correlation coefficient of the
axial stiffness and bending dynamic stiffness of the beam ③.

2.3. Assembly procedure and the application of boundary conditions

After the dynamic stiffness formulations have been completed for all beam-rigid body coupled members and rigid body-
beam coupled members, they can now be assembled to form the global dynamic stiffness matrix of the final structure. The
assembly process is like that of the finite element method. The most obvious advantage of the assembly process here is that
it is very simple and does not require the inverse process as commonly used in the transfer matrix method. Thus the pro-
posed technique avoids the possibility of numerical problems such as singularity. Moreover, since in the proposed method
the beam-rigid body and rigid body-beam segments take the same J0 count of the corresponding bare beams in the Wittrick-
Williams algorithm, the number of dynamic stiffness elements is much smaller than that required for the finite element
method, which greatly reduces the matrix size of the overall structure. Finally, the ease of assembly in the present theory
is much more apparent when compared with many existing theories used for example in a two-part beam-mass system
[39–43,45,55] where the mass can only be connected between two beam members.

For the multi-body structures as shown in Fig. 2, we have formulated the dynamic stiffness matrices of segments 3-1
(combination of beam ① and rigid body ④, 1-5 (combination of rigid body ④ and beam ②) and 1-7 (combination of rigid
body ④ and beam ③). (Defective sentence. Rewrite and reword) We express them with the simplified matrices as following
Eq. (23), where k①, k② and k③ represent the dynamic stiffness matrices of segments 3-1, 1-5, and 1-7, respectively.
kr ¼ kr33 kr31
kr13 kr11

" #
; ks ¼ ks11 ks15

ks51 ks55

" #
; kt ¼ kt11 kt17

kt71 kt77

" #
ð23Þ
which can be assembled directly at the mass centre 1 of the rigid body to give
K ¼

kr33 kr31 0 0

kr13 kr11 þ ks11 þ kt11 ks15 kt17
0 ks51 ks55 0

0 kt71 0 kt77

2
66664

3
77775 ð24Þ
where K represents a global dynamic stiffness matrix of the above two element dynamic stiffness matrices. For a coupling

system consisting of beam elements①,② and rigid body④, kr11 þ ks11 þ kt11 shown in Eq. (25). Note thatm and Ia here are the
mass and moment of inertia of the rigid body. Thus
kr11 þ ks11 þ kt11 ¼
a1 þ e1 þ g1 �mx2 0 Dy1a1 þ Dy2e1 þ Dy3g1

0 d1 þ f 1 þ h1 �mx2 �d2
� þ f 2

� þ h2
�

Dy1a1 þ Dy2e1 þ Dy3g1 �d2
� þ f 2

� þ h2
� d3

� þ f �3 þ h�
3 � Iax2

2
64

3
75 ð25Þ
Of course, here we have shown only the assembly of the beam elements connecting rigid bodies. The assembly procedure
of other beammembers at any conventional nodes without rigid bodies can be easily performed following routine procedure
[56] and is omitted here for brevity.

After assembling the overall dynamic stiffness of the final structure in global or datum coordinates, any boundary con-
ditions can be easily applied directly just as the normal cases, and the resulting matrix can be used to perform subsequent
modal or response analysis in the frequency domain.

2.4. Modal analysis by using the Wittrick-Williams algorithm

The most efficient, efficient and reliable method in the dynamic stiffness framework currently available is the application
of the Wittrick-Williams (W-W) algorithm, which can be exploited to compute the natural frequencies and mode shapes of
the structure. The algorithm uses the Sturm sequence property of the dynamic stiffness matrix and ensures that no natural
frequencies of the structure is missed. The core content of this algorithm is as follows [68]:
j ¼ j0 þ s Kf

� � ð26Þ

For a given trial frequencyx�, j is the number of natural frequencies passed as x is increased from zero tox�. The matrix

Kf , the overall dynamic stiffness matrix of the final structure whose elements all depend on x , is evaluated atx = x⁄ ; s Kf

� �
is the number of negative elements on the leading diagonal of KD

f , and KD
f is the upper triangular matrix obtained by applying

the usual form of Gauss elimination to Kf .j0 is the number of natural frequencies of the structure still lying betweenx = 0 and
x =x� when the displacement components to which Kf corresponds are all zeroes. It is worth emphasizing that the proposed
method in this paper doesn’t cause any difficulties regarding the j0 count which often happens with other methods. The
10
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problem here is overcome due to the reason that each beam-rigid body/or rigid body-beam coupled member are treated by
shifting the BCs at the connecting beam node to the mass centre of the rigid body, and the coupled members are assembled
at the mass centre. The concentrated mass and rotatory inertia are also finally attached to the mass centre. Therefore, the j0
count of each beam-rigid body/or rigid body-beam coupled member is exactly the same as the bare beamwithout connected
to any rigid bodies. For example in Ref. [43], the rigid bodies are condensed, the j0 count is not easy to be computed and
therefore, one has to refine the mesh to make the j0 count equal to zero which leads to unnecessary extra computational
costs and possibly numerical instabilities. On the contrary, one of the merits of the present theory lies in the fact that the
j0 count already available in the literature [36,54,56] for the axial and bending vibration of beam elements can be directly
used to compute the natural frequencies of the structure. This no-doubt makes the proposed theory highly efficient and
accurate and importantly, easy to use.

The process of solving the mode shape of the multi-body system composed of rigid bodies and beams, is divided into two
parts. First, the natural frequency computed by the W-W algorithm is substituted into the global dynamic stiffness method;
by assigning a value to a proper element of the displacement vector, one can solve all other elements of the displacement
vector. Next, the nodal displacements of all members can be obtained including beam members without rigid bodies and
beam-rigid body coupling members. For the latter, the elemental displacement in the global coordinates will be transformed
to the local coordinates, and the mode shape of the beam segments and the displacement of the mass centres of the rigid
bodies can be calculated. Following an inverse process in Section 2.2, the mode shapes of the beam segments can be
recovered.

It is worth emphasising that there are several works using W-W algorithm based on the dynamic stiffness models of
multibody systems consisting of beams and rigid-bodies, such as Su and Banerjee [43] and Ilanko [45]. However, their work
developed the dynamic stiffness models for two-part beam-mass systems, in which the associated j0 count has not been
resolved. The normal practice of applying the WW algorithm in their work need to discretise the beam sections to be small
enough to ensure that the j0 is zero. This is not convenient especially when higher natural frequencies are of interest. In com-
parison, the proposed method has resolved the j0 count of all beam sections and there is no need to discretise into smaller
beam elements.
3. Results

The theory presented in this paper has been implemented into a Matlab code to compute numerical results. To demon-
strate the exactness, efficiency and reliability of the method, some representative examples are chosen for modal analysis.
Some results are compared with those available in the literature as well as with those computed by the authors using the
finite element package ANSYS. In addition, different theories are applied for both axial and bending vibrations of beammem-
bers to discuss the validities of the beam theories when combined with rigid bodies.
3.1. Validation of results for representative cases

First, we compare results computed by the proposed theory for a specially designed case (see Fig. 8) for which the same
results can also be computed directly by using conventional beam dynamic stiffness formulation. As shown in Fig. 8, two
beammembers with ends (nodes) 1 and 4 are fixed and the other ends are rigidly connected at node 2, to which a rigid body
with its mass centre at node 3 is attached. The vertical distance between the mass centre of the rigid body and node 2 is Dy.
Of course, this structure can be also considered by the usual dynamic stiffness formulation of beams only by adding a mass
and/or rotatory inertia eccentrically to node 2 of the two-beam assembly. The specific parameters used for the structure are
as follows:

For the beam elements: Young’s modulus of the beam segments: E ¼ 1:2� 1012 N=m2, beam section diameter:
D ¼ 0:02 m, mass density: q = 10000 kg/m3, Poisson’s ratio: m= 0.3, shear correction k = 1,l1 ¼ 1 m; l2 ¼ 1 m:For the rigid
body: M = 5 kg,Ia = 5kg m2, Dx1 ¼ Dx2 ¼ 0 m;Dy1 ¼ Dy2 ¼ 0:2 m.

The results computed by both the present method and those by the classical dynamic stiffness (DS) method are compared
in Table 1. The present method models the eccentrical mass (with rotatory inertia) by using the procedure described in Sec-
tion 2.2; whereas in the classical DS method, the eccentrical mass and rotatory inertia are superposed directly to the com-
mon node 2 of the two-beam-assembly as shown in Fig. 8. It can be seen from Table 1 that the results from the proposed
theory match exactly with those computed by the classical DS method, as expected.

Now, we adopt the example in Ref. [46] as the second example, see Fig. 9. It is a two-part beam connected to a rigid body
in the middle. The left end of the structure is fully fixed (clamped or built-in) and the right end is simply supported. The
computed results are compared with those by the transfer matrix method (TMM) [46] as well as by the FEM. The data used
in the analysis taken from [46] are as follows:

For the beam elements: E ¼ 2:069� 1011 N=m2, beam section diameter: D ¼ 0:05 m, mass density: q=7.8367�103 kg/m3,
l1 ¼ 0:8 m; l2 ¼ 1:2 m: For the rigid body: M = 15.387 kg, Ia = 12.31kg m2,Dx1 = 0.4 m,Dx2 =

0.2 m,Dy1 ¼ Dy2 ¼ 0:02 m. The first three dimensionless frequency coefficients ki ¼
ffiffiffiffiffiffiffiffiffiffiffi
xiqAL

2

EI
4
q

ðL ¼ l1 þ l2 ¼ 2 mÞ.
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Table 1
The first five natural frequencies of the model (Hz).

Mode Present method Normal DSM

1 19.0488 19.0488
2 27.8945 27.8945
3 195.637 195.637
4 211.017 211.017
5 535.762 535.762

Fig. 9. Elastic beam carrying a rigid body.

X. Liu et al. Mechanical Systems and Signal Processing 150 (2021) 107264
It can be clearly seen from the results in Table 2 that the theory of this paper is significantly more accurate than the trans-
fer matrix method (TMM) of Ref. [46] when compared with the FE results using a very refined mesh. The error between the
present theory and the FE results are within 0.04% whilst the error between the TMM and the FEM is larger than 14%. The
reason for this is probably due to the fact that the transfer matrix method uses intensive matrix inversions one after another,
which introduce numerical problems leading to errors in the results.

In order to make an assessment of the accuracy of different beam theories when combined with rigid bodies, we perform
the modal analysis over a very wide frequency range covering small, medium and high frequency ranges for a carefully cho-
sen problem shown in Fig. 10. The specific parameters of the structure are as follows:

For beam element of type Ⅰ:EI ¼ 6510 Nm2,EA ¼ 1:25� 108 N,qA = 4.9 kg/m, m = 0.3,k = 1. For beam element of type
Ⅱ:EI ¼ 2666 Nm2,EA ¼ 8� 107 N,qA = 3.14 kg/m, m = 0.3, k = 1. For the rigid body: M = 4 kg,Ia = 0.08 kg m2,Dx1
=Dx2 = 0.25 m,Dy1 ¼ 0:25 m;Dy2 ¼ 0:5 m. Coordinates of the centroid in the global coordinate system: (1.25, 0.25).

We now focus on four combinations of beam theories, two different theories for axial vibration, i.e. the classic theory and
the Rayleigh-Love theory, and two different theories for bending vibration, i.e. the Bernoulli-Euler theory and the
Timoshenko theory (see the appendix for details). The results are tabulated in Table 3 where the letters ‘C’ and ‘R’ represent
respectively the classical theory and Rayleigh-Love theory for axial vibration, and, the letters ‘E’ and ‘T’ represent respectively
the Bernoulli-Euler theory and the Timoshenko theory for bending vibration. All results are compared with well converged
FE results with fine mesh using 60, 100 and 500 elements to guarantee the accuracy provided in the results. Apart from the
computation of the lower natural frequencies, higher order natural frequencies were sparingly and sparsely chosen in order
to cover low, medium and high frequency range of the natural frequencies. Obviously, the higher the order of the frequency,
the greater the error between the current theory and the FEM results. The computation of both DSM and FEM results in this
paper was performed on a PC equipped with a 2.4 GHz Intel 4-core processor and 8 GB of memory. It’s worth noting that, the
Fig.10. A rigid body is carried by two stagger cantilevered beams.
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Table 2
Comparison on the results computed by the present method, the transfer matrix method [46] as well as the finite element method(FEM).

Mode Present theory TMM [46] FEM Rel. Err. (TMM [46] vs FEM) Rel. Err. (present vs FEM)

1 2.40079 2.81093 2.39981 14.63% 0.04%
2 3.85796 4.68603 3.85681 17.70% 0.03%
3 5.89858 6.99522 5.89747 15.69% 0.02%

Table 3
Comparisons of natural frequencies (Hz) computed by using the proposed method and the FEM.

Frequency ranges Mode FEM (Element Nos.) DSM Theories(axial + bending)

60 100 500 CE RE CT RT

Low 1 24.0371 24.0371 24.0371 24.0621
(0.10%)

24.0621
(0.10%)

24.0409
(0.02%)

24.0409
(0.02%)

3 188.572 188.572 188.572 189.445
(0.46%)

189.445
(0.46%)

188.692
(0.06%)

188.692
(0.06%)

5 396.096 396.101 396.131 398.821
(0.67%)

398.821
(0.67%)

396.464
(0.08%)

396.464
(0.08%)

Medium 50 17685.2 17663.3 17659.0 20687.9
(14.64%)

20665.4
(14.55%)

17898.7
(1.34%)

17882.9
(1.25%)

100 44053.4 43954.2 43919.1 58,110
(24.42%)

57,426
(23.52%)

45492.4
(3.46%)

45160.6
(2.75%)

High 200 85972.1 84300.4 84146.3 151,495
(44.46%)

144,197
(41.64%)

88480.4
(4.90%)

88279.3
(4.68%)

400 115,660 144,582 156,490 363,457
(56.94%)

278,544
(43.82%)

162,729
(3.83%)

158,734
(1.41%)

Comp. Time (s) 16.48 20.32 30.31 0.09 0.09 0.10 0.09
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computational time of both ANSYS and the proposed method arecompared by calculating all the natural frequencies of the
structure within low, medium and high frequency ranges on a directly comparable basis. Therefore, the comparison is fair
and convincing.

It can be found from Table 3 that the relative error of the combination of Rayleigh-Love (axial) and Timoshenko (bending)
theories is the smallest. Even for the 400th order natural frequency in the high frequency range, the largest relative error is
within 4.68%. Interestingly it should be noted that the four-theory combination of results are listed with a descending order
of accuracy in Table 3. The combination of Rayleigh-Love and Timoshenko theory gives the most accurate results, but the
error progressively increases when the combination of classical-Timoshenko, Rayleigh-Love-Bernoulli-Euler and classical-
Euler-Bernoulli theories are used. In terms of computational efficiency, the present DSM giving exact solutions is over
300 times faster than the commercial finite element software ANSYS which gives approximate solutions. The significantly
higher computational efficiency using the DSM and the W-W algorithm arises mainly from the fact that the matrix size
in the dynamic stiffness model is much smaller than the one generally encountered in the FE model. If the W-W algorithm
is applied to an FE model using K½ � �x2 M½ � ¼ 0, then the computation efficiency would not be expected to be so great.
3.2. Applications to more practical structures

We now focus on a significantly complex multi-body system to illustrate the applicability of the proposed theory to prac-
tical engineering problems. Fig. 11 shows a plane frame carrying two rigid bodies. For this problem, some selective natural
frequencies covering low, mid to high frequency ranges are provided in Table 4 and the first, third, and fifth mode shapes are
shown in Fig. 12. Each member of the frame has the same uniform geometrical, cross sectional and material properties; Each
member of the rigid body has the same mass, moment of inertia, and size in local coordinates. Then, the data used in the
analysis are as follows.

For the beam elements :EI ¼ 4� 106 N m2, EA ¼ 8� 108 N, qA=30 kg/m, m = 0.3, k = 1. For the two rigid body elements:
M = 22.5 kg, Ia = 1.875 kg m2,Dx1=Dx2 = 0.5 m, Dy1 ¼ Dy2 ¼0.1 m. Coordinates of the centroid in the global coordinate sys-
tem: Ⅰ (4.5, 4.1); Ⅱ (9.1, 2).

Based on Table 4, the relative error between the results for the low frequency range computed by the present theory
based on Rayleigh–Love and Timoshenko theories and those by the finite element method is within 2%; and within 7% in
the middle and high frequency ranges. The computational efficiency of the DSM is of course much higher than the commer-
cial FE package ANSYS. As can be seen from Table 4, the DSM efficiency is as high as over 120 times of the commercial FE
software package ANSYS.

The last example is shown in Fig. 13. It is a well-thought-out problem which brings quite a lot of the efficacy and elegance
of the theory. The frame in Fig. 13 has four beam elements and a rigid body element. The beam elements have two different
13



Fig.11. A plane frame carrying two rigid bodies.
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types of beam cross sections, i.e. type I and II. The two beam members on the left are of type I whereas the two on the right
are of type II. The parameters for the two types of beam cross sections.

For beam element of type Ⅰ:EI ¼ 16 N m2, EA ¼ 4� 104 N, qA = 1.6 kg/m, m = 0.3, k = 1. For beam element of type Ⅱ:
EI ¼ 8 N m2, EA ¼ 8� 104 N;qA ¼ 1:4 kg=m; m=0.3, k = 1.

For the rigid body:M = 55 kg, Ia = 7.5 kg m2, Dx1 = 0.3601m, Dx2 = 0.2846m, Dy1 ¼ �0:0171 m; Dy2 ¼ �0:2214 m. Coor-
dinates of the centroid in the global coordinate system: (1.5, 1.8).

The results in Table 5 clearly shows that in the range of medium and high frequencies, the accuracy of the proposed DSM
based on classical and Timoshenko theories is much better than the others. When the natural frequency is up to the 400th
order, the error of the Timoshenko beam relative to the ANSYS results is only about 3.91%. The computational time of the
DSM is at least two orders of magnitude lower than that of the commercial FE package ANSYS. For illustration, the first,
Table 4
Comparisons of natural frequencies (Hz) computed by using the proposed method and the FEM.

Frequency ranges Mode FEM (Element Nos./member) DSM Theories (axial + bending)

60 100 500 CE RE CT RT

Low 1 35.8961 35.8961 35.8961 36.2299
(0.92%)

36.2299
(0.92%)

35.9543
(0.16%)

35.9543
(0.16%)

3 42.4952 42.4952 42.4952 42.9851
(1.14%)

42.9851
(1.14%)

42.5778
(0.19%)

42.5778
(0.19%)

5 56.6970 56.6970 56.6970 57.1752
(0.84%)

57.1752
(0.84%)

56.7736
(0.13%)

56.7736
(0.13%)

Medium 50 584.902 584.902 584.902 620.786
(5.78%)

620.743
(5.77%)

589.569
(0.79%)

589.544
(0.79%)

100 1384.71 1384.71 1384.71 1627.75
(14.93%)

1627.28
(14.91%)

1406.87
(1.58%)

1406.55
(1.55%)

High 200 3311.42 3311.01 3311.01 4298.61
(22.97%)

4284.84
(22.73%)

3413.08
(2.99%)

3412.09
(2.96%)

400 6922.21 6920.13 6920.13 11025.8
(37.24%)

10731.4
(35.52%)

7328.47
(5.57%)

7319.63
(5.46%)

Comp. Time (s) 33.62 45.10 207.21 0.27 0.35 0.31 0.29

Fig. 12. The 1st and 100th mode shapes of the multi-body plane frame.

14



Fig.13. A rigid body is connected to two cantilevered binodal beams.
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and 100th mode shapes of the structure are shown in Fig. 14. It is evident that both the long- and short-wavelength modes
are captured accurately by the proposed method which is normally a challenge issue for computational mechanics, see e.g.,
[69–71].
4. Conclusions

An exact dynamic stiffness formulation for a multi-body system consisting of beam and rigid body assemblies is proposed
for the free vibration analysis of complex structures. The Wittrick-Williams algorithm is used as the solution technique to
investigate the free vibration behaviour of complex structures consisting of multi-body systems with beams and rigid mass
Table 5
Comparisons of natural frequencies (Hz) computed by using the proposed method and the FEM.

Frequency ranges Mode FEM (Element Nos./member) DSM Theories (axial + bending)

60 100 500 CE RE CT RT

Low 1 0.42105 0.42105 0.42105 0.42197
(0.22%)

0.42197
(0.22%)

0.42154
(0.12%)

0.42154
(0.12%)

3 1.72571 1.72571 1.72571 1.73981
(0.81%)

1.73981
(0.81%)

1.72881
(0.18%)

1.72882
(0.18%)

5 4.21682 4.21682 4.21682 4.25174
(0.82%)

4.25174
(0.82%)

4.22307
(0.15%)

4.22309
(0.15%)

Medium 50 281.431 281.391 281.381 339.106
(17.02%)

339.088
(17.02%)

290.421
(3.11%)

290.398
(3.11%)

100 707.512 706.510 706.342 941.174
(24.95%)

933.603
(24.34%)

718.84
(1.74%)

718.610
(1.71%)

High 200 1350.90 1346.21 1346.01 2453.44
(45.14%)

2250.01
(40.18%)

1392.95
(3.37%)

1365.85
(1.45%)

400 2128.70 2630.50 2613.12 5897.32
(55.69%)

3751.59
(30.35%)

2719.39
(3.91%)

2443.90
(6.92%)

Comp. Time (s) 22.51 45.43 85.26 0.09 0.09 0.10 0.10
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Fig. 14. The 1st and 100th mode shapes of the combined structure of rigid body and beam.
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connected in a very general way. For beam element representation classic theory, the Rayleigh-Love theory, the Bernoulli-
Euler theory and the Timoshenko theory are used. The frequency decomposition and modal distribution are captured using
several illustrative examples. The proposed theory predicts very accurately the natural frequencies in the low, medium and
high frequency ranges. The theory can be further extended to complex structures in real engineering applications, so that the
natural frequencies and mode shapes can be computed within any required frequency bands. The proposed theory is based
on the exact solution of the governing differential equations, and it is demonstrated that the proposed theory is more accu-
rate than the finite element solutions. Furthermore, the method is not only capable of handling more complex built-up struc-
tures than the transfer matrix method, but also is capable of computing results in a much more efficient and accurate
manner due to the application of the Wittrick-Williams algorithm. This theory provides an accurate, efficient and versatile
analytical method for vibration analysis and design of rigid-flexible structures. The theory is also expected to be extended to
other analytical vibrational models such as membranes [72], plates [73–78], shells [79–81], solids [82] for the vibration and
buckling analysis [83,84] by using associated techniques, e.g., [85–87]. Besides, the analytical nature of this proposed
method facilitates the consideration of uncertainties that may occur during the manufacturing and assembly procedure, such
as the uncertainties in rigid bodies (mass, rotatory inertia), the beam sections [88–90] (Young’s modulus, density, cross sec-
tion and etc), their connections (relative positions) and more complex engineering problems [91]. Also, in the context of
inverse problems [63–65,92] for which accuracy and efficiency predictions in higher frequencies ranges are essential, the
proposed method will be most useful when compared with other methods.

CRediT authorship contribution statement

Xiang Liu: Conceptualization, Methodology, Writing - review & editing, Supervision, Project administration, Funding
acquisition. Chengli Sun: Investigation, Data curation, Writing - original draft, Writing - review & editing. J. Ranjan Baner-
jee: Supervision, Writing - review & editing. Han-Cheng Dan: Writing - review & editing. Le Chang: Investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors appreciate the supports from the National Natural Science Foundation (Grant No. 11802345), State Key Lab-
oratory of High Performance Complex Manufacturing (Grant No. ZZYJKT2019-07), the Hunan Transportation Science and
Technology Foundation (Grant No. 201622) and Initial Funding of Specially-appointed Professorship (Grant No.
502045001) which made this research possible.

Appendix

For demonstrating purposes, we use beam element with uncoupled axial and bending vibrations. The dynamic stiffness
matrix of such a beam member can be expressed as follows.
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Fx1

Fy1

M1

Fx2

Fy2

M2

2
66666664

3
77777775
¼

a1 0 0 a2 0 0
0 d1 d2 0 d4 �d5

0 d2 d3 0 �d5 d6

a2 0 0 a1 0 0
0 d4 �d5 0 d1 �d2

0 �d5 d6 0 �d2 d3

2
666666664

3
777777775

u1

w1

h1
u2

w2

h2

2
66666664

3
77777775

ð27Þ
where a1; a2 are the correlation dynamic stiffness coefficients for axial vibration and defined in Eqs. (10), (19) and
(21);d1�6 are the correlation dynamic stiffness coefficients for bending vibration and are defined in Eqs. (11), (20) and
(22), respectively.

1. Axial vibration

A uniform beam of length l is shown in Fig. 15 with the x-axis coinciding with the axis of the beam. Two theories for axial
vibration are adopted in this paper, namely, Classical theory and Rayleigh-Love theory [36,54,57].

The governing differential equation (GDE) of Classical theory for free axial vibration of a beam (as shown in Fig. 15) is
given by
EA
@2u
@x2

� qA
@2u
@t2

¼ 0 ð28Þ
where EA and qA are the axial (or extensional) rigidity and mass per unit length of the beam respectively, and u x; tð Þ is the
axial displacement of the cross-section at a distance x, and t is time.

According to the derivation described in Ref. [57], the dynamic stiffness coefficient a1 and a2 in Eq. (27) are given as
a1 ¼ EA
l
lcotl; a2 ¼ EA

l
lcscl ð29Þ
where
l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAx2l2

EA

s
ð30Þ
The GDE of Rayleigh-Love theory for axial vibration of a beam is given as follows:
EA
@2U
@x2

� qA
@2U
@t2

þ qIPm2
@4U

@x2@t2
¼ 0 ð31Þ
where q is the density of the beam element material, A is the cross-sectional area of the beam element so that qA rep-
resents the mass per unit length, IP is the polar second moment of area so that qIP represents the polar mass moment of
inertia per unit length, E is the Young’s modulus of the beam element material so that represents the axial or extensional
rigidity, EI and EA represents the axial or extensional bending stiffness and rigidity of the beam element and m is the Poisson’s
ratio of the beam element material, UðxÞ is the amplitude of axial vibration. Based on Ref. [54], the dynamic stiffness coef-
ficient a1 and a2 of Eq. (28) can be given as follows.
a1 ¼ EA
l
c 1� b2� �

cotc; a2 ¼ EA
l
c 1� b2� �

cscc ð32Þ
where
c2 ¼ a2

1� b2 ;a
2 ¼ qAx2l2

EA
;b2 ¼ qIPm2x2

EA
ð33Þ
2. Bending vibration

Similarly, two theories for bending vibration are adopted in this paper, namely, Euler-Bernoulli theory and Timoshenko
theory [52–54,56–58] (see Fig. 16).
Fig. 15. Boundary conditions for displacements and forces in axial vibration.
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Fig. 16. Boundary conditions for displacements and forces in bending (flexural) vibration.
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The GDE of Euler-Bernoulli theory for bending vibration of a beam is given as follows:
EI
@4w
@x4

þ qA
@2w
@t2

¼ 0 ð34Þ
where EI and qA are the bending (or flexural) rigidity and mass per unit length of the beam respectively, and wðx; tÞ is the
bending (or flexural) displacement of the cross-section at a distance x and t is time.
d1 ¼ R3k
3 sin kð Þcosh kð Þ þ cos kð Þsinh kð Þð Þ=d

d2 ¼ R2k
2sin kð Þsinh kð Þ=d

d3 ¼ R1k sin kð Þcosh kð Þ � cos kð Þsinh kð Þð Þ=d
d4 ¼ �R3k

3 sin kð Þ þ sinh kð Þð Þ=d
d5 ¼ R2k

2 cosh kð Þ � cos kð Þð Þ=d
d6 ¼ R1k sinh kð Þ � sin kð Þð Þ=d

9>>>>>>>>>=
>>>>>>>>>;

ð35Þ
where
R1 ¼ EI
l
;R2 ¼ EI

l2
;R3 ¼ EI

l3
ð36Þ

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx2L2

EI

4

s
; d ¼ 1� cosðkÞcoshðkÞ ð37Þ
The GDE of Timoshenko theory for bending vibration of a beam is given as follows.
�qA @2w
@t2

þ kAG
@

@x
ð@w
@x

� hÞ ¼ 0 ð38Þ

�qI @
2h

@t2
þ EI

@h2

@x2
þ kAG

@

@x
ð@w
@x

� hÞ ¼ 0 ð39Þ
where q is the density of the beam element material, A is the cross-sectional area of the beam element so that qA rep-
resents the mass per unit length, IPis the polar second moment of area so that qIP represents the polar mass moment of iner-
tia per unit length, E is the Young’s modulus of the beam element material so that represents the axial or extensional rigidity,
EI and EA represents the axial or extensional bending stiffness and rigidity of the beam element and m is the Poisson’s ratio of
the beam element material. kAG is the shear rigidity of the beam with k being the shear correction (also known as the shape
factor) .

The natural boundary conditions are as follows.
Shear Force:
v ¼ kAG
@w
@x

� h

� 	
¼ �qI @

2h

@t2
þ EI

@h2

@x2
ð40Þ
Bending Moment:
m ¼ �EI
@h
@x

ð41Þ
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d1 ¼ W3b
2CðCSþ gSCÞ=ðK/Þ

d2 ¼ W2ZC /þ jgKð ÞSS� K� g/ð Þ 1� CC

 �n o

= Kþ g/ð Þ

d3 ¼ W1C SC � jgCS

 �

d4 ¼ �W3b
2C Sþ gS


 �
= K/ð Þ

d5 ¼ W2ZC C � C

 �

d6 ¼ W1C jgS� S

 �

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð42Þ
with
W1 ¼ EI
l
;W2 ¼ EI

l2
;W3 ¼ EI

l3
ð43Þ

b2 ¼ qAx2l4

EI
; r2 ¼ I

Al2
; s2 ¼ EI

kAGl2
; b2r2s2 ¼ qIx2

kAG
ð44Þ

/2 ¼ b2ðr2 þ s2Þ
2

þ b2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2ð Þ þ 4

b2 ð1� b2r2s2Þ
s

ð45Þ

K2 ¼
� b2 r2þs2ð Þ

2 þ b2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2ð Þ þ 4

b2
1� b2r2s2


 �r
j

ð46Þ

j ¼ 1forb2r2s2 < 1; j ¼ �1forb2r2s2 > 1 ð47Þ

C ¼ ðKþ g/Þ= 2g 1� CC

 �

þ 1� jg2� �
SS

n o
ð48Þ

S ¼ sin/;C ¼ cos/
S ¼ sinhK;C ¼ coshK

S ¼ sinK;C ¼ cosK

9>=
>; ð49Þ

Z ¼ /� b2s2

/
;g ¼ Z

jKþ b2s2
K

ð50Þ
3. Mode count of fully clamped beam element for Wittrick-Williams algorithm

The j0 count in Eq.(26) for beam based on different theories are given as follows.
For the classic theory:
j0 ¼ highestinteger <
l
p

ð51Þ
For the Rayleigh–Love theory:
j0 ¼ highestinteger <
c
p

ð52Þ
For the Euler-Bernoulli theory:
j0 ¼ i� 1
2

1� �1ð ÞisignðdÞ
n o

ð53Þ
where i is the highest integer < l=pand sign (d) is 1 or �1 depending on the sign of d.
For the Timoshenko theory:
j0 ¼ jc � 2� sign d3f g � sign d3 � d6
2

d3

( )" #
ð54Þ
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where sign{} is + 1 or � 1 depending on the sign of the quantity within the curly bracket, and jc is given by
jc ¼ jdforb
2r2s2 < 1

jc ¼ jd þ jeforb
2r2s2 � 1

)
ð55Þ
with
jd ¼ highestinteger < /
p

jd ¼ highestinteger < K
p þ 1

)
ð56Þ
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