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a b s t r a c t

This paper proposes exact dynamic stiffness formulations for membranes and their as-
semblies under any arbitrary classical boundary conditions. First, by taking exact solutions
in one direction satisfying all possible opposite edge supports, we can derive exact general
solutions of the Helmholtz equation for membrane vibration. Then, generic force and
displacement boundary conditions in the other direction are expressed in terms of the
general solutions. Finally, the dynamic stiffness matrices of rectangular membrane ele-
ments are formulated, which can be assembled directly and allows applications of arbi-
trary boundary conditions. As an accurate and efficient modal solution technique, the
Wittrick-Williams (WW) algorithm is applied onto the global dynamic stiffness matrix
of the final structure. The most important issue of the WW algorithm, J0 count, has been
resolved with the analytical expressions derived for all possible cases. The proposed dy-
namic stiffness method (DSM) is then applied to several examples including individual
membranes and their assemblies. High accuracy and exactness of the proposed method
within the whole frequency range is demonstrated by comparison with the finite element
method. Besides, interesting findings have been observed on repeated eigenvalues with
distinct mode shapes corresponding to certain aspect ratio and tension ratio, where
physical and mathematical understanding has been provided.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Membrane structures have been widely used in nature and engineering. For example, due to the outstanding foldable,
inflatable and light-weighted merits, membranes are been increasingly used in space structures for antennae, reflectors and
solar arrays [1,2]. Since membrane's vibrations are very sensitive to acoustic excitations, they have been an ideal receiver and
measuring tool such as eardrums, sound transducers and sound field visualizers. Also, the vibrating properties of membranes
Safety on Track (Central South University), Ministry of Education, Central South University, Hunan,

rch Laboratory of Key Technology for Rail Traffic Safety, Central South University, Hunan, Changsha,

, zxy563675400@csu.edu.cn (X. Zhao), 174212084@csu.edu.cn (C. Xie).

mailto:xiangliu06@gmail.com
mailto:zxy563675400@csu.edu.cn
mailto:174212084@csu.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2020.115484&domain=pdf
www.sciencedirect.com/science/journal/0022460X
www.elsevier.com/locate/jsvi
https://doi.org/10.1016/j.jsv.2020.115484
https://doi.org/10.1016/j.jsv.2020.115484


X. Liu et al. / Journal of Sound and Vibration 485 (2020) 1154842
are made use of in generating sound in musical instruments, louder speakers, and for filtration purposes in ultrafiltration
membranes, etc. [3,4]. Therefore, investigations on the vibration characteristics of membrane structures relating to the above
important functionalities have been an inevitable topic in a diverse array of application fields.

There have been many attempts to investigate the vibration of membranes by many researchers in past decades. They
cover homogenous and non-homogenous models, simple and arbitrary shaped geometric configurations. Nevertheless,
existing exact solutions are only applicable to homogeneous membranes with a simple geometry such as a rectangle or circle
[5e9] and with certain boundary conditions. For membranes and their assemblies with non-homogeneous material and
tensile stresses or complex boundary conditions, however, we need to resort to approximate numerical or semi-analytical
solutions, including the collocation approach [10e12], Rayleigh-Ritz method [13,14], finite difference method [15], direct,
indirect and multipole Trefftz method [16e18], discrete singular convolution method [19e21], non-dimensional dynamic
influence function method [22e24], differential quadrature method [25], wave propagation method [26,27], boundary
element method [28e30], finite element method (FEM) [31e38], and spectral element method (SEM) [39,40], null-field
integral method for a specific group of membranes [41e44].

Among various different methods, the FEM is one of the most universally employed typical numerical method for complex
engineering structures. Nevertheless, more elements are required to achieve results with higher accuracy due to the adopted
approximate shape functions, which will increase the computational dramatically, particularly in higher frequency ranges.
Thus, the FEM is not suitable for analysis within mid to high frequency ranges.

In contrast to the FEM, there is an analytical method for vibration analysis known as the dynamic stiffness method (DSM).
In DSM, the shape functions are essentially the exact general solutions derived from the frequency-dependent governing
differential equations. Accordingly, exact modal analysis of the structures can be carried out within the whole frequency
range by using only one or few elements with very few degrees of freedom. Furthermore, an efficient and robust algorithm
proposed by Wittrick and Williams [45] is applied to compute natural frequencies with any required precision and it gua-
rantees that no natural frequency is missed. This is in a sharp contrast to existing analytical methods [6,26,40] and com-
mercial finite element software. In addition, another advantage over other analytical methods is that each individual element
in the DSM can be assembled directly, which is similar to the FEM. Therefore, structures with assembly, boundary conditions
and inhomogeneity can be modelled. Many researchers have devoted considerable efforts to dynamic stiffness (DS) theories
in the past. For example, Banerjee et al. [46e48] developed one-dimensional DS elements for a wide range of bars and beams
and produced a well-developed software called BUNVIS-RG [49]. For two-dimensional structures like plates, the DS
formulation for plate assemblies with Levy-type boundary conditions was developed by Wittrick and Williams [50] for the
first time, and then researchers developed the DS plate theory for the vibrations of Kirchhoff plates [51e53], Mindlin plates
[54], and composite plates [55e58] as well as buckling problems [59,60]. Despite of the importance of membrane vibration
and the advantages of the DSM, there have been no literature on the development of the DS matrix of membranes and their
assemblies subjected to arbitrary boundary conditions.

To fill this gap, the main aim of this paper is to propose dynamic stiffness (DS) formulations for rectangular membranes
and their assemblies subjected to any arbitrary boundary conditions. First, the exact general solution of differential equations
governing membrane vibration is obtained in the frequency domain by the method of separation of variables. Then, the force
and displacement relationship in the frequency domain is established in the form of DSmatrix by applying the corresponding
boundary conditions whilst eliminating the constant vector in the general solution. For membrane assemblies, the elemental
DS matrices of all membrane elements are assembled directly to form the global DS matrix of the overall structure. Any
arbitrary boundary conditions can be applied directly to the global DS matrix. Then, theWittrick-Williams (WW) algorithm is
applied onto the global DS matrix to compute the natural frequencies. One of the essential issues in the WW algorithm that
the natural frequencies of membrane elements clamped on all nodal edges is resolved analytically in this research. The
Fig. 1. Displacements and forces of a rectangular membrane element.
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exactness and high computational efficiency of the proposed DSM is validated by comparison with the conventional FEM in
several computational exercises.

This paper is organized as follows. Section 2 is devoted to the development of dynamic stiffness formulations and
implementation of the Wittrick-Williams (WW) algorithm. The governing differential equation and boundary conditions for
free vibration of a membrane are provided in Section 2.1. Then dynamic stiffness formulations for a rectangular membrane
element under different combinations of principal boundary conditions (PBCs) are derived in Section 2.2. Next, Section 2.3
describes the assembly procedure and the application of nodal boundary conditions. In Section 2.4, the WW algorithm is
applied with all J0 counts under different PBCs developed. Section 3 is the result section. Section 3.1 shows the application of
present theory to individual membranes and demonstrates the high efficiency and exactness; some interesting findings on
the mode shapes are also given. Section 3.2 applies the DSM to the modal analysis of a membrane assembly. Finally, con-
clusions are drawn in Section 4.

2. Theory

2.1. Governing differential equation and boundary conditions for free vibration of a membrane

2.1.1. Governing differential equation
Consider a homogeneous and flexible membrane shown in Fig. 1. The membrane is assumed to vibrate transversely, and

the deflection uðx; y; tÞ is assumed to be very small compared with the size of the membrane. Therefore, the linear free vi-
bration of membrane is studied based on the theory of small deflection. By using the Hamilton's principle, the governing
differential equation (GDE) for the transverse vibration of the membrane can be derived as follows.

Tx
v2u
vx2

þ Ty
v2u
vy2

� r
v2u
vt2

¼ 0 (1)

where Tx is the tension per unit length in the x directionwhereas Ty is that in the y direction. u ¼ uðx; y; tÞ is the deflection of
the membrane. r is the mass per unit area.

The equation governing membrane deflection can be assumed to be uðx; y; tÞ ¼ Uðx; yÞejut due to the free vibration, if the
following notations are introduced

b¼ Ty
Tx
; k ¼ u

c
; c ¼

ffiffiffiffiffi
Tx
r

s
(2)
then Eq. (1) can be transformed into the frequency domain as follows.

v2U
vx2

þ b
v2U
vy2

þ k2U ¼ 0: (3)
Particularly, b ¼ 1 when the membrane is subjected to equivalent bidirectional tensile forces.

2.1.2. Boundary conditions
Fig. 2 shows displacement and force boundary conditions (BCs) on four edges of a rectangular membrane, where b and l is

the length and width, respectively. Boundaries L 2 and L 4 serve as principal boundaries (PBs) whereas boundaries L 1 and
L 3 are denoted by nodal boundaries (NBs) which can be used for membrane assemblies. The displacement and force BCs on
four membrane edges can be expressed as

L 1：

8><
>:

U1ðyÞ ¼ Uðx ¼ b; yÞ

P1ðyÞ ¼ Tx
vU
vx

ðx ¼ b; yÞ
; L 3：

8<
:

U3ðyÞ ¼ Uðx ¼ 0; yÞ

P3ðyÞ ¼ �Tx
vU
vx

ðx ¼ 0; yÞ
; (4)

L 2：

8><
>:

U2ðxÞ ¼ Uðx; y ¼ lÞ

P2ðxÞ ¼ Ty
vU
vy

ðx; y ¼ lÞ
; L 4：

8><
>:

U4ðxÞ ¼ Uðx; y ¼ 0Þ

P4ðxÞ ¼ �Ty
vU
vy

ðx; y ¼ 0Þ ; (5)

where Pi and Ui were introduced respectively for the force and displacement BCs prescribed along the boundary L i(i ¼ 1, 2,
3, 4, see Fig. 2). More specifically, P2, U2 and P4, U4 are the principal boundary conditions (PBCs) along the boundary L 2 and
L 4 while P1, U1 and P3, U3 are the nodal boundary conditions (NBCs) along the boundary L 1 and L 3.



Fig. 2. Boundary conditions applied on four edges of a rectangular membrane.
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For each edge of the membrane, two boundary constraints, namely fixed or free, can be prescribed. The fixed or clamped
edge is denoted by the letter ‘C’ and the free edge is represented by the letter ‘F’. For a clamped edge, Ui ¼ 0(i ¼ 1, 2, 3, 4). For
a free edge, Pi ¼ 0(i ¼ 1, 2, 3, 4). For a membrane element, there are three combinations for the PBCs: C-C, C-F(F-C), F-F as
shown in Fig. 3, where C-F and F-C are equivalent (Note that a single membrane element also has three combinations for the
NBCs: C-C, C-F(F-C), F-F. Hence, there are in total nine combinations of BCs for a rectangular membrane: CCCC, FCFC, FCCC,
FFFF, CFCF, FFCF, CCCF, FCFF, FCCF). Next, the dynamic stiffness formulations of the rectangular membrane element under all
possible PBCs will be deduced and any arbitrary classical BCs can be prescribed along the NBs, therefore the formulation
developed in this paper can be applicable to the rectangular membrane under any arbitrary classical boundary conditions.
2.2. Dynamic stiffness formulation for a rectangular membrane element

Dynamic stiffness formulations will be derived based on the GDE of Eq. (3) (see Section 2.1.1) for three different combi-
nations of principal boundary conditions (PBCs) (see Section 2.1.2). Firstly, the exact shape functions of membrane vibration
with unknowns are obtained by solving the GDE of Eq. (3) under three different PBCs. Then, the unknown coefficients are
eliminated from the expressions of the displacement and force nodal boundary conditions (NBCs) in terms of the general
solutions. Subsequently, explicit expressions of the dynamic stiffness matrix for the membrane element under three different
PBCs can be obtained. Finally, the membrane elements can be assembled at shared nodal boundaries (NBs) and any arbitrary
BCs can be applied on the NBs (see Section 2.3.1).

In order to satisfy the three different PBCs as shown in Fig. 3, the general solutions of Eq. (3) should take the forms as
follows.

Uðx; yÞ ¼

8>><
>>:

X∞
m¼1

XmðxÞsinðamyÞ; C� C or C� F

X∞
m¼0

XmðxÞcosðamyÞ; F� F
(6)

with
Fig. 3. Three combinations of principal boundary conditions (PBCs) for a rectangular membrane element.
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am ¼

8>>>>>>>>><
>>>>>>>>>:

mp

l
; m ¼ 1;2;3/; C� C

mp

l
; m ¼ 0;1;2/; F� F�

m� 1
2

�
p

l
;m ¼ 1; 2;3/; C� F

(7)

where m denotes the half wave number of a rectangular membrane element in the y direction.
Substituting Eq. (6) into Eq. (3) gives

d2Xm

dx2
� l2Xm ¼ 0 (8)

where
l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ba2m � k2

q
(9)
The general solution of Eq. (8) can be written as

XmðxÞ¼C1 cosh lxþ C2 sinh lx (10)

where C1 and C2 are constants.
The transverse component of the tension in the x direction of the membrane Pmðx; yÞ can be expressed as

Pmðx; yÞ ¼ Tx
vU
vx

¼
�
PmðxÞsinðamyÞ C� C or C� F
PmðxÞcosðamyÞ F� F (11)

where
PmðxÞ¼ Tx
dXm

dx
¼ TxlðC1 sinh lxþC2 cosh lxÞ (12)
Referring to Fig. 2, the displacement and force BCs on the nodal boundaries (NBs) can be recast as follows.

At x¼0; X ¼ U3; P ¼ �P3 (13)

At x¼ b; X ¼ U1; P ¼ P1 (14)
Substituting Eqs. (13) and (14) into Eqs. (10) and (12), the relationships between displacement vector and constant vector,
force vector and constant vector can be derived respectively.

d¼
�
U1
U3

�
¼

�
cosh g sinh g

1 0

��
C1
C2

�
(15)

�
P1

� �
sinh g cosh g

��
C1

�

f ¼ P3

¼ Txl 0 �1 C2
(16)

where
g¼ lb (17)

e
The constants C1 and C2 can now be eliminated from Eqs. (15) and (16) to give the relationship between force vector f and
displacement vector de, so the dynamic stiffness matrix can be derived taking the following form�

P1
P3

�
¼

�
a1 a2
a2 a1

��
U1
U3

�
(18)

or
f e ¼KeðuÞde (19)

where KeðuÞ is the dynamic stiffness matrix of a rectangular membrane element with
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a1 ¼
Tx
b
g coth g; a2 ¼ �Tx

b
gcschg (20)
The derivation of Eqs. (8)e(20) above is applicable to the membrane elements under all three kinds of PBCs in Eq. (7).

2.3. Assembly procedure and the application of nodal boundary conditions

After obtaining the dynamic stiffness matrix of the membrane element KeðuÞ, the global dynamic stiffness matrix KgðuÞ
can be obtained by assembling the membrane elements as illustrated in what follows.

Fig. 4 presents an example illustrating the assembly procedure of membrane elements. Suppose that there are three
membrane elements (E1 E2 and E3) to be assembled, and the dynamic stiffness matrices of each membrane element are KE1,
KE2 and KE3. Membrane elements E1 and E2 share nodal boundary 1(7) while membrane elements E2 and E3 share nodal
boundary 5(11). If f g and dg are the force and displacement vectors of the four nodal boundaries 3, 1(7), 5(11) and 9 of the
membrane assembly respectively, then the dynamic stiffness matrix of a membrane assembly takes the following form

f g ¼KgðuÞdg (21)
where

f g ¼ ff1 f2 f3 f4gT ; dg ¼ fd1 d2 d3 d4gT ;

KgðuÞ ¼

2
666666664

kE111 kE112 0 0

kE121 kE122 þ kE211 kE212 0

0 kE221 kE222 þ kE311 kE312

0 0 kE321 kE322

3
777777775

(22)
Once the assembly procedure is accomplished, any arbitrary classical BCs can be applied to the nodal boundaries of the
membrane assembly (3, 9 as shown in Fig. 4). If all four edges 3, 1, 5, 9 are free, which leads to Kgdg ¼ 0. If any degree of
freedom (DOF) is constrained, the rows and columns of the global dynamic stiffness matrix corresponding to the DOF whose
displacement is zero are removed. For example, if 3 and 9 are fixed edges while 1 and 5 are free edges, then the displacement
vector with prescribed constraints becomes df ¼ fd2 d3gT and the global dynamic stiffness matrix for the final structure with
prescribed boundary conditions K f ðuÞ can be written as

K f ðuÞ¼
2
4 kE122 þ kE211 kE212

kE221 kE222 þ kE311

3
5 (23)
Next, natural frequencies and mode shapes of either an individual membrane or membrane assemblies can be computed
from the global dynamic stiffness matrix for the final structure by using eigenvalue solution techniques as described next.
Fig. 4. Assembly procedure of membrane elements.
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2.4. Wittrick-Williams modal algorithm

Wittrick-Williams (WW) algorithm is a precise and efficient solution technique for free vibration analysis based on dy-
namic stiffness formulations. This algorithm also guarantees that no natural frequencies and mode shapes will be missed.
Suppose that u denotes the circular frequency of membrane vibration and u* represents a given trial frequency (u* � 0), then
according to the WW algorithm, the number of natural frequencies below the trial frequency J is given by

J¼ J0ðu*Þ þ sfKðu*Þg (24)

where sfKðu*Þg is the number of negative elements on the leading diagonal of KDðu*Þ, which is the upper triangular matrix
transformed by the Gauss elimination of KðuÞ at u ¼ u*, and J0ðu*Þ can be derived by

J0ðu*Þ¼
X
e
Je0mðu*Þ (25)

where Je0mðu*Þ is the number of natural frequencies below the trial frequency for each individual membrane element when its
nodal boundaries are clamped under a chosen value ofm. It is easily seen that, sfKðu*Þg is determined by the nodal boundary
conditions (NBCs) of the membrane elements (All the principal boundary conditions (PBCs) have been determined) and J0
depends on PBCs (All the nodal boundaries (NBs) of the membrane elements are fixed).

It can be seen from Eq. (24) that J0 count is a crucial step in the application of WW algorithm. In the following, the
derivation of the expression of J0 with different PBCs and fixed NBs is introduced in detail. Firstly, according to the BCs of the
membrane, the expressions between the natural frequency unm andm, n are obtained under different PBCs,m and n stand for
the half wave number in the x and y directions respectively. Then, the solution of n is derived by solving the expression of unm

with respect to m and n at a certain trial frequency. Consequently, Je0mðu*Þ is obtained by the definition given in Eq. (25) and
further J0 problem can be derived.

(1) C-C PBC

When the BCs of the membrane element is CCCC, the eigenfunction or mode shape Unmðx; yÞ corresponding to the natural
frequency unm is given by

Unmðx; yÞ ¼ Cnm sin
npx
b

sinðamyÞ; m; n ¼ 1; 2;/ (26)
The general solution of Eq. (3) takes the following form

Uðx; yÞ¼
X∞
n¼1

X∞
m¼1

Cnm sin
npx
b

sinðamyÞ (27)
Substituting Eq. (27) into Eq. (3) gives the relationship between unm and m, n under C-C PBC.

ucc
nm ¼ pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	n
b


2
þ b

	m
l


2r
; m; n ¼ 1; 2;/ CCCC (28)
(2) F-F PBC

When the BCs of the membrane element is CFCF, mode shape Unmðx; yÞ can be expressed as

Unmðx; yÞ ¼ Cnm sin
npx
b

cosðamyÞ; m ¼ 0;1;/; n ¼ 1;2;/ (29)
The general solution of Eq. (3) takes the following form

Uðx; yÞ¼
X∞
n¼1

X∞
m¼0

Cnm sin
npx
b

cosðamyÞ (30)
Substituting Eq. (30) into Eq. (3), the relationship between unm and m, n under F-F PBC is given by
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uFF
nm ¼ pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	n
b


2
þ b

	m
l


2
r

; m ¼ 0;1;/; n ¼ 1;2;/ CFCF (31)
(3) C-F PBC

When the BC of the membrane element is CCCF, mode shape Unmðx; yÞ becomes

Unmðx; yÞ ¼ Cnm sin
npx
b

cosðamyÞ; m; n ¼ 1;2;/ (32)
The general solution of Eq. (3) takes the following form

Uðx; yÞ¼
X∞
n¼1

X∞
m¼1

Cnm sin
npx
b

cosðamyÞ (33)
Substituting Eq. (33) into Eq. (3), the relationship between unm and m, n under C-F PBC can be written as

uCF
nm ¼ pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	n
b


2
þ b

0
B@m� 1

2
l

1
CA

2
vuuuuut ; m; n ¼ 1;2;/ CCCF (34)

e *
After obtaining the expressions between unm and m, n under different PBCs and fixed nodal boundaries, J0mðu Þ can now
be deduced. According to the definition of Je0mðu*Þ in Eq. (25), Je0mðu*Þ is actually the number of triangles in the red shaded part
of the region covered by the curve l1 or l2(see Fig. 5), therefore, the expressions of Je0mðu*Þ under different PBCs can be ob-
tained by solving Eqs. (28), (31) and (34) to get the n at a certain trial frequency respectively.

Je0mðu*Þ¼
$
Re

"
b
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	u*

c


2 � ba2m

r #%
(35)

where Re½x� means the real part of x and PxR is the floor function indicating the largest integer not greater than x.

3. Results

The theory in Section 2 is implemented into an efficient Matlab program, for the exact modal analysis of individual
membranes and membrane assemblies. In this section, unless otherwise stated, mass per unit area r ¼ 7.805 kg= m2, the
magnitudes of tension per unit length in both x and y directions are equal to T ¼ 13800 N=m, and the boundary conditions
(BCs) are listed in the anticlockwise sense of L 1 � L 2 � L 3 � L 4 as described in Section 2.1.2. Section 3.1 applies the dy-
namic stiffness method (DSM, see Section 2.2) to the modal analysis of individual membranes. Section 3.2 illustrates the
application of DSM to a membrane assembly.
Fig. 5. Je0mðu*Þ under three different principal boundary conditions (PBCs).
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3.1. Individual membranes

In this section, exact free vibration analysis of individual membranes by using the dynamic stiffness method (DSM) is
discussed. Section 3.1.1 demonstrates the high efficiency and accuracy of the DSM. Section 3.1.2 focuses on the effects of aspect
ratio h and tension ratio b on the results. Section 3.1.3 explores some interesting characteristics of free vibration mode shapes
together with mathematical and physical interpretations.

3.1.1. Accuracy, efficiency and general applicability of boundary conditions (BCs)
In order to demonstrate the efficiency and accuracy of dynamic stiffness method (DSM), comparisons are made for in-

dividual membranes by using the DSM and the finite element method (FEM) in three different mesh sizes (100 � 100, 200 �
200 and 400 � 400). Table 1 exhibits the first 5 and the 50th, 100th and 200th natural frequencies of free vibration for a
square membrane (l ¼ b ¼ 1 m) under FCFC and FFFF BCs computed by the DSM and commercial software ANSYS. Each
particular natural frequency, the eigenvalue unm, corresponds to a combination of half wave numbers n and m values as
shown in Table 1. It can be seen from Table 1 that the difference between the first three natural frequencies computed by the
DSM and FEM is very small (within 0.02%). The discrepancy become enlarged for highermodes. As themesh become finer, the
FEM results gradually converge to the exact results computed by the DSM. For example, when the FE mesh size is 400 � 400,
the difference between the 200th natural frequency computed by twomethods is within 0.1%; however, the FEM takes as long
as 410 s to compute the first 200 modes of a square membrane under FCFC BCs while the DSM only costs 0.3 s. It is apparent
that the DSM gives exact results covering low to high frequency ranges with much higher efficiency than the FEM. Fig. 6
shows the 1st, 4th and 5th mode shapes of free vibration for a FCFC square membrane computed by the DSM, which
match well with those from ANSYS.

Besides, the DSM mentioned in this paper is applicable to the accurate modal analysis of an individual rectangular
membrane under all possible combinations of BCs. In Table 2, the first 8 natural frequencies are computed for an individual
rectangular membrane (l ¼ 1 m, b ¼ 2 m) under all nine possible combinations of BCs. Note that the first frequency is zero
under FFFF BCs and the corresponding mode is the rigid body mode, this is due to the reason that the Wittrick-Williams
algorithm has been applied to ensure that no natural mode is missed.

3.1.2. Effects of aspect ratio and tension ratio on natural frequencies of rectangular membrane
To investigate the dependence of aspect ratio h on the modal properties, the first 8 natural frequencies of an individual

equally stretched rectangular membrane under three typical boundary conditions (BCs) with h ¼ l=b ¼ 0.1, 0.5, 1, 2, 4 are
computed in Table 3. As can be seen from Table 3, when the length of one side is fixed and the other side is increased, the
natural frequencyunm will always decrease. As for mode shapes, the half sinewave numberwill increase first along the longer
direction. For example, when l=b ¼ 0.1, the half sinewave number in the x direction increases first while that in the y direction
remains unchanged.

To study the influence of tension ratio b on the free vibration behaviours, the first 8 natural frequencies of an individual
unequally stretched rectangular membrane (Tx ¼ 13800 N=m, b ¼ Ty=Tx ¼ 0.1, 0.5, 2, 10, l ¼1, b ¼ 2) under three typical BCs
Table 1
The first 5 and the 50th, 100th and 200th natural frequencies u(Hz) of free vibration for a square membrane (1 m � 1 m) under FCFC and FFFF BCs by using
the DSM and FEM. The results of FEM are obtained by using the SHELL41 element in ANSYSwith three different mesh sizes (100 � 100, 200 � 200 and 400 �
400).

Method Time (s) Mode

1 2 3 4 5 50 100 200

FCFC (0,1) (1,1) (0,2) (2,1) (1,2) (1,8) (5,10) (15,6)

DSM 0.3 21.024 29.733 42.049 47.012 47.012 169.50 235.06 339.66
FEM (R.E. %) 100 � 100 9 21.023 29.731 42.050 46.970 47.056 169.71 236.36 341.25

(-0.01) (-0.01) (0.00) (-0.09) (0.09) (0.12) (0.55) (0.47)
200 � 200 50 21.025 29.734 42.051 46.992 47.037 169.51 235.45 340.36

(0.00) (0.00) (0.01) (-0.04) (0.05) (0.00) (0.16) (0.21)
400 � 400 410 21.023 29.731 42.047 46.998 47.021 169.47 235.17 339.81

(-0.01) (-0.01) (0.00) (-0.03) (0.02) (-0.02) (0.05) (0.04)
FFFF (0,0) (0,1) (1,0) (1,1) (0,2) (4,6) (8,7) (3,15)

DSM 0.3 0 21.024 21.024 29.733 42.049 151.61 233.49 321.61
FEM (R.E. %) 100 � 100 9 0 21.020 21.030 29.772 41.999 152.01 224.08 323.15

(0) (-0.02) (0.02) (0.13) (-0.12) (0.27) (0.26) (0.48)
200 � 200 54 0 21.023 21.027 29.754 42.023 151.78 223.67 322.47

(0) (-0.01) (0.01) (0.07) (-0.06) (0.12) (0.08) (0.27)
400 � 400 380 0 21.022 21.024 29.741 42.033 151.68 223.53 321.84

(0) (-0.01) (0.00) (0.03) (-0.04) (0.05) (0.02) (0.07)



Fig. 6. The 1st, 4th and 5th natural modes of an individual square membrane (1 m � 1 m) under FCFC BCs, where the natural modes computed by DSM are
shown in the top whereas the bottom ones are computed by the FE software ANSYS.

Table 2
The first 8 natural frequencies u(Hz) of free vibration for an individual rectangular membrane (2 m � 1 m) under 9 classical BCs.

BCs 1 2 3 4 5 6 7 8

CCCC (1,1) (2,1) (3,1) (1,2) (4,1) (2,2) (3,2) (5,1)
23.506 29.733 37.902 43.343 47.012 47.012 52.561 56.610

FCFC (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (4,1)
21.024 23.506 29.733 37.902 42.049 43.343 47.012 47.012

FCCC (1,1) (2,1) (3,1) (4,1) (1,2) (2,2) (3,2) (5,1)
21.671 26.280 33.655 42.376 42.376 44.908 49.586 51.767

FFFF (0,0) (1,0) (0,1) (2,0) (1,1) (2,1) (3,0) (0,1)
0 10.512 21.024 21.024 23.506 29.733 31.537 37.902

CFCF (1,0) (2,0) (1,1) (2,1) (3,0) (3,1) (4,0) (1,2)
10.512 21.024 23.506 29.733 31.537 37.902 42.049 43.343

FFCF (1,0) (2,0) (1,1) (3,0) (2,1) (3,1) (4,0) (4,1)
5.2561 15.768 21.671 26.280 26.280 33.655 36.793 42.376

CCCF (1,1) (2,1) (3,1) (1,2) (2,2) (4,1) (3,2) (4,2)
14.866 23.506 33.242 33.242 37.902 43.343 44.599 52.561

FCFF (0,1) (1,1) (2,1) (0,2) (1,2) (3,1) (2,2) (4,1)
10.512 14.866 23.506 31.537 33.242 33.242 37.902 43.343

FCCF (1,1) (2,1) (3,1) (1,2) (2,2) (4,1) (3,2) (5,1)
11.753 18.951 28.305 31.972 35.259 38.265 41.051 48.459
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are computed in Table 4. It can be seen from Table 4 that, when the tension in one direction remains constant while that in the
other direction increases, the natural frequency unm will increase. As for the mode shapes, the half sine wave number in the
direction with smaller tensile force will increase first. For example, when Ty=Tx ¼ 10, the half sine wave number in the x
direction increases first while that in the y direction remains unchanged.

Take CCCC BCs as an example, the natural frequency of a rectangular membrane is essentially the function of aspect ratio,
tension ratio, half wave numbers in the x direction and y direction, namely, uðh;b;m;nÞ(see Eq. (28)). If i) b ¼ Ty= Tx ¼ 1, b[ l
or ii) h ¼ l=b ¼ 0.5, Ty[Tx, then the natural frequency is negligibly influenced by changes in the n value and is most
influenced by variations in the m value, therefore, low frequency vibration is more likely to occur in the direction of longer
edge or in the direction with smaller tension. It also can be explained from the physical sense, longer length and smaller
tension represent higher flexibility and therefore result in more low frequency vibration modes. Hence, the vibration char-
acteristics of a rectangular membrane can be improved by adjusting the aspect ratio h and tension ratio b according to unmðh;
bÞ.



Table 3
The first 8 natural frequencies u(Hz) of an individual equally stretched rectangular membrane with different aspect ratio h (h¼l=b ¼ 0.1, 0.5, 1, 2, 4, b¼ 1 m)
under three typical BCs.

BCs l=b 1 2 3 4 5 6 7 8

CCCC 0.1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)
211.29 214.41 219.50 226.44 235.06 245.18 256.64 269.24

0.5 (1,1) (2,1) (3,1) (1,2) (4,1) (2,2) (3,2) (5,1)
47.012 59.466 75.804 86.686 94.024 94.024 105.12 113.22

1 (1,1) (2,1) (1,2) (2,2) (3,1) (1,3) (3,2) (2,3)
29.733 47.012 47.012 59.466 66.485 66.485 75.804 75.804

2 (1,1) (1,2) (1,3) (2,1) (2,2) (1,4) (2,3) (1,5)
23.506 29.733 37.902 43.343 47.012 47.012 52.561 56.610

4 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (1,7)
21.671 23.506 26.280 29.733 33.655 37.902 42.376 42.376

FFFF 0.1 (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)
0 21.024 42.049 63.073 84.098 105.12 126.15 147.17

0.5 (0,0) (1,0) (0,1) (2,0) (1,1) (2,1) (3,0) (3,1)
0 21.024 42.049 42.049 47.012 59.466 63.073 75.804

1 (0,0) (0,1) (1,0) (1,1) (0,2) (2,0) (1,2) (2,1)
0 21.024 21.024 29.733 42.049 42.049 47.012 47.012

2 (0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (0,3) (1,3)
0 10.512 21.024 21.024 23.506 29.733 31.537 37.902

4 (0,0) (0,1) (0,2) (0,3) (0,4) (1,0) (1,1) (1,2)
0 5.2561 10.512 15.768 21.024 21.024 21.671 23.506

FCFC 0.1 (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)
210.24 211.29 214.41 219.50 226.44 235.06 245.18 256.64

0.5 (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (4,1)
42.049 47.012 59.466 75.804 84.098 86.686 94.024 94.024

1 (0,1) (1,1) (0,2) (1,2) (2,1) (2,2) (0,3) (1,3)
21.024 29.733 42.049 47.012 47.012 59.466 63.073 66.485

2 (0,1) (0,2) (1,1) (1,2) (0,3) (1,3) (0,4) (2,1)
10.512 21.024 23.506 29.733 31.537 37.902 42.049 43.343

4 (0,1) (0,2) (0,3) (0,4) (1,1) (1,2) (0,5) (1,3)
5.2561 10.512 15.768 21.024 21.671 23.506 26.280 26.280

Table 4
The first 8 natural frequencies u(Hz) of an individual unequally stretched rectangular membrane with different tension ratio b (b¼Ty=Tx ¼ 0.1, 0.5, 2, 10,
Tx ¼ 13800 N=m, l ¼ 1 m, b ¼ 2 m) under three typical BCs.

Mode 1 2 3 4 5 6 7 8

CCCC
Ty=Tx ¼ 0:1 (1,1) (1,2) (2,1) (1,3) (2,2) (1,4) (2,3) (3,1)

12.438 16.950 22.051 22.546 24.876 28.596 28.980 32.230
Ty=Tx ¼ 0:5 (1,1) (2,1) (1,2) (3,1) (2,2) (3,2) (4,1) (1,3)

18.208 25.749 31.537 34.865 36.415 43.343 44.599 45.822
Ty=Tx ¼ 2 (1,1) (2,1) (3,1) (4,1) (5,1) (1,2) (2,2) (3,2)

31.537 36.415 43.343 51.499 60.388 60.388 63.073 67.311
Ty=Tx ¼ 10 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1) (8,1)

67.311 69.730 73.585 78.666 84.752 91.643 99.172 107.20
FFFF
Ty=Tx ¼ 0:1 (0,0) (0,1) (1,0) (1,1) (0,2) (1,2) (0,3) (2,0)

0 6.6485 10.512 12.438 13.297 16.950 19.945 21.024
Ty=Tx ¼ 0:5 (0,0) (1,0) (0,1) (1,1) (2,0) (2,1) (0,2) (3,0)

0 10.512 14.866 18.208 21.024 25.750 29.733 31.537
Ty=Tx ¼ 2 (0,0) (1,0) (2,0) (0,1) (3,0) (1,1) (2,1) (4,0)

0 10.512 21.024 29.733 31.537 31.537 36.415 42.049
Ty=Tx ¼ 10 (0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (0,1)

0 10.512 21.024 31.537 42.049 52.561 63.073 66.485
FCFC
Ty=Tx ¼ 0:1 (0,1) (1,1) (0,2) (1,2) (0,3) (2,1) (1,3) (2,2)

6.6485 12.438 13.297 16.950 19.945 22.051 22.546 24.876
Ty=Tx ¼ 0:5 (0,1) (1,1) (2,1) (0,2) (1,2) (3,1) (2,2) (3,2)

14.866 18.208 25.750 29.733 31.537 34.865 36.415 43.343
Ty=Tx ¼ 2 (0,1) (1,1) (2,1) (3,1) (4,1) (0,2) (5,1) (1,2)

29.733 31.537 36.415 43.343 51.499 59.466 60.388 60.388
Ty=Tx ¼ 10 (0,1) (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (7,1)

66.485 67.311 69.730 73.585 78.666 84.752 91.643 99.172
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Fig. 7. Mode shapes of an individual equally stretched square membrane (l ¼ b ¼ 1 m) corresponding to repeated frequencies u10(¼u01) and u21(¼u12) under
FFFF BCs.

Fig. 8. Mode shapes for specific combinations of distinct natural modes U10 and U01, U21 and U12.
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3.1.3. Some characteristics of free vibration mode shapes of individual rectangular membranes
From Sections 3.1.1 and 3.1.2, it can be found that the natural frequencies un1m1 and un2m2 can sometimes be equal. Without

loss of generality, according to un1m1 ¼ un2m2 , if the aspect ratio h and tension ratio b are rational numbers, the values of
nonnegative integers m1, n1, m2 and n2 will satisfy the following equations
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Take the case of CCCC boundary conditions (BCs) as an example, according to Eq. (28) (other BCs have similar expressions),

un1m1 ¼ pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
n1
b


2
þ b1

	
m1
l


2
r

and un2m2 ¼ pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	
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b


2
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l


2
r

, then h21n
2
1 þ b1m2

1 ¼ h22n
2
2 þ b2m2

2 can be derived from

un1m1 ¼ un2m2 as shown in Eq. (36). This means that the same frequency un1m1 (¼un2m2 ) corresponds to two different
eigenfunctions Un1m1 ðx; yÞ and Un2m2 ðx; yÞ. Next, this modal feature of rectangular membranes will be discussed in detail
below.

(1) Repeated eigenvalues with distinguishing mode shapes for equally stretched square membranes

When aspect ratio h ¼ 1, tension ratio b ¼ 1, based on Eq. (36), the relationship unm ¼ umn can be obtained under CCCC,
FCFC, FFFF, CFCF, FCCF BCs. Fig. 7 displays themode shapes of an individual equally stretched squaremembrane (l ¼ b ¼ 1m)
corresponding to repeated frequencies u10(¼u01) and u21(¼u12) under FFFF BCs. It can be seen that the corresponding
natural modes U10 and U01, U21 and U12 are different. When the mode shapes are computed by the FE software ANSYS, the
results, however, are linear combinations of natural modes U10 and U01, U21 and U12. It is not difficult to see from Fig. 8 that
the mode shapes computed by ANSYS corresponding to repeated frequencies u10(¼u01) and u21(¼u12) can be represented as
U01±U10 and U12±U21. Therefore, if there are repeated natural frequencies unm and umn, any linear combination (U ¼ AUnmþ
BUmn) of the corresponding distinct natural modes Unm and Umn can also be a natural mode of the membrane, which can be
taken advantage of to transfer the energy from one mode to another.

(2) Repeated eigenvalues with distinguishing mode shapes for equally stretched rectangular membranes
Table 5
Mode shapes of individual equally stretched rectangular membranes (aspect ratio h ¼ l=b) corresponding to repeated frequencies under four representative
BCs.
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In order to demonstrate two distinct natural modes Un1m1 and Un2m2 correspond to the same frequency un1m1 (¼un2m2 ) in
equally stretched rectangular membranes, Table 5 exhibits the mode shapes of individual equally stretched rectangular
membranes corresponding to repeated frequencies under CCCC, FCCC, CCCF and FCCF BCs. For instance, it can be seen from
Table 5, the 3rd natural frequency u31 where h1 ¼ l=b ¼ 0.5 is equal to the 8th natural frequency u23 where h2 ¼ l= b ¼ 1
under CCCC BCs, but the corresponding natural modes are different.

(3) Repeated eigenvalues with distinguishing mode shapes for unequally stretched rectangular membranes

In order to demonstrate two distinct natural modes Un1m1 and Un2m2 correspond to the same frequency un1m1 (¼un2m2 ) in
unequally stretched rectangular membranes, Table 6 presents the mode shapes of individual unequally stretched rectangular
membranes (l ¼ 1 m, b ¼ 2 m, b ¼ Ty=Tx ¼ 0.1, 0.5, 2, 10, Tx ¼ 13800 N=m) corresponding to repeated frequencies under
CCCC, FCCC, CCCF and FCCF BCs. According to Table 6, for example, the 3rd natural frequency u12 where b1 ¼ Ty= Tx ¼ 0.5 is
equal to the 1st natural frequency u11 where b2 ¼ Ty=Tx ¼ 2 under CCCC BCs, but the corresponding natural modes are
different.
3.2. Membrane assembly

Consider a membrane assembly composed of seven membrane elements as shown in Fig. 9 (b1 and Ty1 are the length and
tension per unit length in the y direction of membrane elements E1, E3, E5 and E7 whereas b2 and Ty2 are those of membrane
elements E2, E4 and E6, the magnitudes of r for each membrane element are equal to facilitate the comparisonwith the finite
element method (FEM), L1, L2, L3 and L4 are the four sides of themembrane assembly and L1 ¼ L3 ¼ l ¼ 2m, L2 ¼ L4 ¼ 4b1þ
3b2, b1 ¼ 2 m, b2 ¼ 1 m, Tx ¼ Ty2 ¼ 13800 N=m, Ty1 ¼ 6900 N=m, r ¼ 7.805 kg=m2). There are also nine classical boundary
conditions for a membrane assembly and Table 7 shows the first 8 natural frequencies of free vibration for the membrane
Table 6
Mode shapes of individual unequally stretched rectangular membranes (h1¼h2 ¼ l=b ¼ 0.5, b ¼ 2 m, b ¼ Ty=Tx , b1sb2) corresponding to repeated
frequencies under four representative BCs.

Fig. 9. Membrane assembly.



Table 7
The first 8 natural frequencies u(Hz) of free vibration for a membrane assembly (r ¼ 7.805 kg=m2, Tx ¼ Ty2 ¼ 13800 N=m, Ty1 ¼ 6900 N=m, l ¼ 2 m, b1 ¼
2 m, b2 ¼ 1 m) under all nine BCs by using the DSM and FEM.

BCs Method 1 2 3 4 5 6 7 8

CCCC DSM 17.318 18.554 20.651 21.722 25.577 28.567 32.039 32.713
FEM 17.544 18.728 20.630 22.238 25.455 28.414 31.452 34.193

FCFC DSM 16.227 16.340 17.861 19.526 23.702 25.596 28.344 30.928
FEM 16.369 16.535 18.146 19.968 23.183 25.444 28.343 31.178

FCCC DSM 16.278 17.538 19.032 21.204 24.356 26.978 29.974 30.928
FEM 16.385 17.765 19.289 21.439 24.090 26.875 29.904 31.189

FFFF DSM 0 3.8226 7.6452 11.468 15.290 16.227 16.340 17.861
FEM 0 3.8225 7.6448 11.466 15.275 16.352 16.503 18.103

CFCF DSM 3.8226 7.6452 11.468 15.290 17.318 18.554 19.113 20.652
FEM 3.8225 7.6446 11.466 15.286 17.483 18.672 19.102 20.606

FFCF DSM 1.9113 5.7339 9.5565 13.379 16.265 16.984 17.202 18.779
FEM 1.9113 5.7337 9.5558 13.376 16.359 17.716 17.195 19.228

CCCF DSM 9.3708 11.502 14.449 17.128 20.864 24.446 25.156 25.915
FEM 9.3979 11.488 14.344 17.274 20.830 24.345 25.736 26.612

FCFF DSM 8.3173 8.9612 11.133 13.924 17.758 20.906 23.649 23.660
FEM 8.3484 8.9901 11.185 14.033 17.551 20.830 23.858 24.085

FCCF DSM 8.5238 10.130 12.683 15.776 19.166 22.642 23.654 25.224
FEM 8.5394 10.145 12.694 15.774 19.103 22.574 23.871 25.705

Fig. 10. Some mode shapes of the membrane assembly under three typical BCs by using the DSM and FEM.
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assembly under all nine BCs (the BCs are listed in the anticlockwise sense of L1 � L2 � L3 � L4) computed by the DSM and FEM
(mesh size is 550 � 100). It takes 76 s for the FEM to compute the first 200 modes of the membrane assembly while the DSM
only takes 0.25 s but gives exact results, therefore, the DSM still has higher computational efficiency in amembrane assembly.
Some representative mode shapes are shown in Fig. 10.

It can be seen from Table 7 and Fig. 10 that the results computed by the DSM and FEM agree very well. It is obvious that the
DSM can be applied to the membrane assemblies in a quite general sense, such as the assembly of membrane elements with
different density, tension and length, which covers a very wide application scope in engineering problems.
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4. Conclusions

A dynamic stiffness (DS) matrix has been developed for free vibration of rectangular membranes subjected to any arbitrary
boundary conditions. The dynamic stiffness formulation formembrane elements is based on the exact general solutions of the
governing differential equation under three different principal boundary conditions (PBCs). The force and displacement
boundary conditions on the nodal boundaries (NB) are correlated in the form the dynamic stiffness matrices by eliminating
unknown coefficients from the general solutions. The explicit expressions of DS matrices for membrane elements under all
three kinds of PBCs are obtained. Then, the membrane elements are assembled to form the global DS matrix of the final
complex structure and any nodal boundary conditions can be applied. Then, the well-known Wittrick-Williams (WW) al-
gorithm is applied to compute the natural frequencies. The analytical expressions of J0 count in the WW algorithm under all
PBCs are derived.

An accurate and computationally efficient program has been developed using the DSM for membranes and their as-
semblies. Several numerical examples have been conducted to compute the natural frequencies and representative mode
shapes for all possible combinations of boundary conditions. Results are validated against those obtained by the conventional
FEM. It can be concluded that the proposed DSM can give exact results for both individual membranes and complex as-
semblies by using very few number of membrane elements. Thus, the proposed method has the advantage over the con-
ventional FEM in high computational efficiency, exactness and robustness. In addition, note that the obtained mode shapes
corresponding to the repeated natural frequency are completely different, which are related to certain aspect ratio and
tension ratio. The DSM presented in this study can be extended to more 2D domains with other geometry such as circular,
annular, sectorial, elliptical and complex shaped membrane structures and with arbitrary classical [52,58,61,62] and
nonclassical [63,64] boundary conditions. Furthermore, this method sheds lights on future studies on acoustic cavity, heat
transfer, as well as harbor resonance problems.
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