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a b s t r a c t 

Feature selection is an important data preprocessing method. This paper studies a new 

multi-objective feature selection approach, called the Binary Differential Evolution with 

self-learning (MOFS-BDE). Three new operators are proposed and embedded into the 

MOFS-BDE to improve its performance. The novel binary mutation operator based on prob- 

ability difference can guide individuals to rapidly locate potentially optimal areas, the de- 

veloped One-bit Purifying Search operator (OPS) can improve the self-learning capability of 

the elite individuals located in the optimal areas, and the efficient non-dominated sorting 

operator with crowding distance can reduce the computational complexity of the selection 

operator in the differential evolution. Experimental results on a series of public datasets 

show that the effective combination of the binary mutation and OPS makes our MOFS- 

BDE achieve a trade-off between local exploitation and global exploration. The proposed 

method is competitive in comparison with some representative genetic algorithm-, particle 

swarm-, differential evolution-, and artificial bee colony-based feature selection algorithms. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Classification is an important topic in machine learning. By removing irrelevant or redundant features, a Feature Selection

(FS) algorithm can effectively reduce the dimension of data, shorten the learning time, and improve the classification per-

formance [13] . During the past decade, numerous FS algorithms have been proposed [30,31] . Among them, meta-heuristic

methods have shown a lot of advantages in dealing with feature selection problems, due to their powerful exploration ca-

pabilities. Meta-heuristic feature selection methods include genetic algorithms [7,10] , ant colony optimization [33] , particle

swarm optimization [4,42] , firefly algorithm [46] , memetic algorithm [27,47] , artificial bee colony [45] , grasshopper opti-

mization algorithm [24] , evolutionary gravitational search [3,35] , etc. 

Generally, feature selection can be modeled as a multi-objective combinatory optimization problem, which mainly con-

tains two objectives, i.e., the number of the selected features and the classification accuracy. In some cases, removing irrele-

vant and redundant features from the original datasets can improve the classification accuracy of classifiers. In other words,

the feature size can be reduced, while the classification accuracy is improved. However, when a dataset only contains the

key features that must be used by classifiers, deleting any feature may increase the error rate of these classifiers. Here, the

two objectives are conflicting with each other. Moreover, obtaining the report values of different features often needs dif-
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ferent level costs, such as time, money, or other resources. A large number of features usually mean a high cost. Therefore,

reducing the number of the selected features is also an important indicator. Moreover, formulating a feature selection prob-

lem as a multi-objective optimization one is beneficial in obtaining a set of optimal feature subsets so as to meet various

requirements of decision-makers. As we know that multi-objective evolutionary algorithms can seek multiple solutions lying

in the Pareto optimal front in a single run. The aforementioned algorithms have been widely applied in handling the feature

selection problems [17,38] . 

Because of its simplicity and efficiency [8,36] , Differential Evolution (DE) is a very popular evolutionary algorithm used

in the feature selection problems [1,2,16] . However, most of the current study focus on the single-objective case, i.e., maxi-

mizing the classification accuracy. There is little work on applying the DE to the multi-objective case. Xue et al. [37] firstly

used the multi-objective DE in feature selection, and designed a DE-based multi-objective feature selection algorithm. After

that, the multi-objective DE methods have been successfully employed to the multi-label feature selection [44] , entity ex-

traction in biomedical texts [32] , and facial expression recognition systems [25] . The results obtained show the effectiveness

of the multi-objective DE in handling the feature selection problems. However, these approaches have the following disad-

vantages. Firstly, most of them adopt the DE/rand/1/bin strategy to generate candidate individuals, where the base vector in

the mutation is randomly chosen from the population. Due to the randomness of the base vector, this strategy makes the

population yield a good exploration performance, but slows down the overall convergence. Secondly, the elite individuals in

the population only take responsibility for guiding the search of other individuals. Improving the self-learning ability of the

elite individuals may enhance the exploration of the whole population. Therefore, how to boost the global exploration of

the DE without sacrificing its convergence needs new effective strategies to be developed. 

To improve the capability of the original DE in dealing with the multi-objective feature selection, the present paper

studies a new binary differential evolution with a self-learning strategy, namely MOFS-BDE. In our algorithm, the DE is re-

sponsible for exploring the search space and finding potential regions, while a self-learning strategy is utilized to effectively

exploit these potential areas. The main contributions of this paper are as follows: 

(1) A binary differential evolution algorithm with a self-learning strategy, MOFS-BDE, is proposed to attack the multi-

objective feature selection problems. 

(2) A new binary mutation operator based on the probability difference is designed to generate fresh solutions. Since the

base vector is always the best one among the three randomly generated vectors, this operator can guide individuals

to locate potentially optimal areas in a fast way. 

(3) A new problem-specific self-learning strategy, namely one-bit purifying search, is proposed to refine the elite indi-

viduals in the population. Thus, the elite individuals not only take the responsibility of guiding the search of other

individuals, but also have the self-learning capability. 

(4) An efficient non-dominated sorting combined with crowding distance is employed to select appropriate parent indi-

viduals so as to reduce the time consumption of the selection operator in the regular differential evolution. 

The structure of our paper is as follows. Section 2 introduces the background of the feature selection problems, and

Section 3 reviews some of the existing evolutionary feature selection approaches. The standard and modified DE are dis-

cussed in details in Sections 4 and 5 , respectively. Section 6 presents experimental results of the proposed MOFS-BDE.

Finally, a few conclusions and remarks are given in Section 7 . 

2. Problem formulation 

Suppose that S is a data set containing K samples and D features and Fset is the set of all the features, a FS problem

can be described as follows: to select d features ( d ≤ D ) from all the features so that some objective functions, such as the

classification error rate and classification accuracy, are optimized. Since the number of the selected features determines the

computational cost of a classification algorithm, it is also a key objective function [42] . This paper considers the following

two objective functions: minimizing the classification error rate ( Err ) and the number of the selected features. 

We use a binary string to encode a solution to the FS problems: 

X = ( x 1 , x 2 , . . . , x D ) , x j ∈ { 0 , 1 } (1)

where x j = 1 indicates that the j th feature is selected into the subset X ; otherwise, it is not. A multi-objective FS problem is

therefore formulated as: 

min Er r (X ) , min | X | 
s .t. X = ( x 1 , x 2 , . . . , x D ) , x j ∈ { 0 , 1 } , j = 1 , 2 , . . . , D, 

1 ≤ | X | ≤ D. (2) 

where | X | is the number of the features within set X . 

Generally, the two objectives, Err ( X ) and | X |, are conflicting with each other. Take the image analysis problem as an

example, the computational expense of the features refers to the time and space complexities of the feature acquisition

process. That is, the larger the number of the selected features is, the higher the computational cost of acquiring the values

of the features. However, a good value of Err ( X ) usually depends on more features. The purpose of the multi-objective FS
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problems is to minimize Err ( X ) and | X | simultaneously. Since this case has two conflicting objectives, there does exist a

unique solution to make these two objectives minimal at the same time. Thus, the algorithm proposed in this paper aims

at acquiring a group of the non-dominated optimal solutions or feature subsets. 

3. EA-based feature selection algorithms 

In principle, feature selection is an NP-hard combination problem, because the size of the search space increases expo-

nentially as the number of features increases [31 , 48] . Since the Evolutionary Algorithm (EA) can find the best solutions with

the global search strategies, it has been widely applied in dealing with the FS problems [12] . A detailed survey on these ap-

proaches can be found in [39] . This section only reviews some typical DE-based feature selection and multi-objective feature

selection methods. 

(1) DE-based single-objective feature selection approaches. Applying a float number-based DE algorithm in feature selec-

tion, Khushaba et al. [19] proposed a roulette wheel structure to make the solutions generated by the float-optimizer

suitable for the discrete feature selection. However, this algorithm lacks the ability of effectively reducing the size of

features, because it is limited to select feature subsets only with a predefined cardinality [37] . Al-Ani et al. [1] studied

a novel wheel-structure approach to narrowing down the search space without eliminating any feature, and Kumar

et al. [21] introduced a DE-based feature selection algorithm so as to solve the anaphora resolution in a resource-poor

language. These work indeed verified the effectiveness of the DE in handling feature selection problems. However, the

authors considered only one single objective, i.e., the classification accuracy. As mentioned above, formulating a fea-

ture selection problem as a multi-objective optimization one is beneficial to obtaining a set of the optimal feature

subsets in order to meet various requirements of decision makers. 

(2) Multi-objective feature selection approaches. For multi-objective feature selection problems, Oliveira et al. [28] made

the first attempt by using a multi-objective genetic algorithm to generate a set of alternative classifiers. Based on

the initial version of the NSGA, this method needs the sharing parameter to be specified. Following that, Hamdani

et al. [15] introduced the NSGA-II into feature selection, but the performance of their method has not been compared

with any other EA-based algorithms. During the recent years, more and more evolutionary algorithms have been used

to multi-objective feature selection problems. For example, Xue et al. [38] developed two improved multi-objective

feature selection algorithms by combining the crowding distance and Pareto dominance relationship together in the

particle swarm optimization. Hancer et al. [17] proposed a multi-objective feature selection approach using a new ar-

tificial bee colony algorithm integrated with the non-dominated sorting and genetic operators (MOABCFS), and imple-

mented two different versions, i.e., binary version B-MOABCFS and continuous version C-MOABCFS. Their experimental

results showed that the former outperformed the latter in most cases. Additionally, the EA-based multi-objective fea-

ture selection schemes have been applied to deal with real-world problems, such as facial expression recognition [25] ,

prediction of warfarin dosage [34] , online sales forecasting problems [18] , etc. 

The applications of the DE have been extended to the multi-objective optimization cases in the past decade. Xue et al.

[37] proposed a DE-based multi-objective method, namely DEMOFS. Sikdar et al. [32] studied a binary multi-objective fea-

ture selection algorithm using the DE (B-DEMOFS) for the entity extraction in biomedical texts. In this algorithm, a binary

coding strategy was introduced to transfer a continuous DE into the binary version. However, these approaches usually

suffer from the disadvantage of stagnating in the local optima, because they use the traditional DE operators, e.g., the

DE/rand/1/bin strategy, and generally are lack of the problem-oriented operators. 

4. Differential evolution 

In the DE, each individual represents a possible solution to the optimization problem. For a population with N individuals,

the first step of the DE is randomly generating N individuals (target vectors). For each target vector, a trial vector is next

obtained by using the mutation and crossover. The selection operator further generates a new parent population for the

successive generation based on these trial and target vectors. 

Mutation: In the mutation, the DE generates a new reference (mutation) vector by using the difference between two

random vectors. For the i th target vector X i ( t ), a new mutation vector V i ( t ) is generated as follows: 

V i (t) = X r1 (t) + F · ( X r2 (t) − X r3 (t)) , (3)

where t is the iteration step. The three vectors, X r 1 ( t ), X r 2 ( t ), and X r 3 ( t ), are randomly selected from the population, and

r 1 � = r 2 � = r 3 � = i . The parameter, F ∈ (0, 2], is a scale that amplifies the difference between X r 2 ( t ) and X r 3 ( t ). 

Crossover: The DE follows a discrete recombination approach, i.e., elements from the target vector X i ( t ) are combined

with those from the new mutation vector V i ( t ) to produce a trial vector U i ( t ), 

U i (t) = ( u i, 1 (t) , u i, 2 (t) , . . . , u i,D (t)) 

u i, j (t) = 

{
v i, j (t) , if U (0 , 1) < CR or j = h 

x i, j (t) , otherwise 
(4)
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where D is the variable dimension, U (0, 1) is a random value between 0 and 1, and CR ∈ [0, 1] is the crossover probability.

A random index h is applied here to guarantee that U i ( t ) always receives at least one element from V i ( t ). 

Selection: The DE uses a very simple selection procedure. If the fitness of the trial vector U i ( t ) is better than that of the

target vector X i ( t ), the target vector is set to be the trial vector U i ( t ) in the next generation, i.e. , X i (t + 1) = U i (t) ; otherwise,

X i (t + 1) = X i (t) . 

5. A new multi-objective feature selection algorithm 

In this section, our binary differential evolution algorithm with the self-learning strategy, MOFS-BDE, is described. First,

we present the binary mutation on the basis of the probability difference. The self-learning strategy, i.e., one-bit purifying

search, is also introduced to enhance the performance of MOFS-BDE. The improved selection operator combining the non-

dominated sorting and crowding strategy is next presented. Finally, the steps of the proposed MOFS-BDE are elaborated, and

its computational complexity is further discussed. 

5.1. The binary mutation with probability difference 

This section proposes a new binary mutation on the basis of the probability difference, which can improve the algo-

rithm’s convergence without sacrificing its global exploration ability. Different from the DE/rand/1/bin strategy used in the

existing DE-based feature selection algorithms [11] , the proposed mutation operator selects the best one among the three

random vectors as the base vector, and employs the difference between the remaining two vectors as a mutation probability

to be used on the base vector to generate a mutation vector for the next crossover operator. 

Consider the i th target vector in the population X i ( t ), the new mutation is given as follows: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

V i (t) = ( v i, 1 (t ) , v i, 2 (t ) , . . . , v i,D (t )) 

v i, j (t) = 

{
x best, j (t) , c i, j < rand 

1 − x best, j (t) , otherwise 

C i = 

{
σ, if X best (t) ≺ X i (t) 

min (1 , F · ( X r1 (t) � X r2 (t)) + σ ) , otherwise 

(5) 

where X best ( t ) refers to the best one among the three vectors randomly selected. X r 1 ( t ) and X r 2 ( t ) are the remaining two

among these three vectors. X best ( t ) ≺X i ( t ) indicates that X best ( t ) dominates X i ( t ). The symbol “�” is an XOR operator, and

C i = ( c i, 1 , c i, 2 , ..., c i,D ) is a probability vector produced by performing XOR on X r 1 ( t ) and X r 2 ( t ). The parameter σ is a small

turbulence coefficient. F ∈ (0, 1] is a scale parameter for controlling the learning rate of an individual from X best ( t ). The item

min (1 , F · ( X r1 (t) � X r2 (t)) + σ ) ensures that the value of F · ( X r1 (t) � X r2 (t)) + σ is less than 1. 

Compared with the conventional mutation in Eq. (3) , our mutation operator has the following characteristics: 

(1) It can generate mutation vectors with a good diversity. When X best ( t ) is inferior to X i ( t ), the probability difference, i.e . ,

min (1 , F · ( X r1 (t) � X r2 (t)) + σ ) , is used to produce a mutation vector V i ( t ). Since both X r 1 ( t ) and X r 2 ( t )are randomly

selected, adding their difference to X best ( t ) is beneficial for maintaining the diversity of the mutation vectors. 

(2) It can improve the convergence of the population. When X best ( t ) dominates X i ( t ), i.e ., X best ( t ) ≺X i ( t ), we directly set

X best ( t ) as the mutation vector of the i th target vector. Since the base vector X best ( t ) is superior to the target vector

X i ( t ), combining them together can make the newly generated solutions inherit good information from X best ( t ). 

(3) The turbulence coefficient σ is employed to guarantee that the mutation probability on the base vector is always

larger than 0. This will prevent new solutions from falling into local optima. As a matter of fact, a large value of σ can

improve the diversity of new solutions, but may destroy the useful information inherited from X best ( t ). On the other

hand, if the value of σ is set to be too small, it is difficult to enable individuals to escape from the local optima. Our

experimental results indicate that a small value within [0.001, 0.01] is appropriate. 

5.2. The one-bit purifying search 

To improve the self-learning ability of the elite individuals in the population, we design a new self-learning strategy by

utilizing the importance degree of features, namely the One-bit Purifying Search (OPS). In order to compare the importance

degree between any two features, the relative importance is first defined by comparing their influences on enhancing the

performance of a specified optimal solution. 

Relative importance: Let u 1 and u 2 be two feature bits randomly selected from a non-dominated solution, X =
( x 1 , x 2 , . . . , x D ) , which satisfy x u 1 = 1 and x u 2 = 0 . X X ( u 1 )=0 ,X ( u 2 )=1 is a new solution generated by setting the u 1 and u 2 
values of X to be 0 and 1, respectively. In addition, X X( u 1 )=0 is another solution generated by setting the u 1 value of X to be

0. We define that the u 1 -th feature is more important than the u 2 -th feature with respect to X , denoted as u 1 �imp u 2 , if the

degradation degree of the classification accuracy satisfies: ∣∣Cer ror ( X X( u 1 )=0 ) − Cer ror (X ) 
∣∣ > 

∣∣Cer ror ( X X( u 1 )=0 ) − Cer ror ( X X ( u 1 )=0 ,X ( u 2 )=1 ) 
∣∣, 



Y. Zhang, D.-w. Gong and X.-z. Gao et al. / Information Sciences 507 (2020) 67–85 71 

Fig. 1. An example of calculating the relative importance. 

Algorithm 1 

One-bit purifying search (OPS). 

Input: The population P t , and the set of non-dominated solutions S t ; 

Output: The new population P t . 

Step 1: Randomly select a solution from S t , and set it as the reference solution, X re f = ( x re f, 1 , x re f, 2 , ..., x re f,D ) ; 

Step 2: Randomly select two feature bits, u 1 and u 2 , from X ref , satisfying x re f, u 1 = 1 and x re f, u 2 = 0 ; 

Step 3: Judge the relative importance between the two feature bits u 1 and u 2 ; 

Step 4: For an optimal solution, X h ∈ S t , do 

Step 4.1: Generate a new individual X ′ 
h 

by checking the following four cases: (Without loss of generality, we 

suppose u 1 �imp u 2 ) 

Initialize X ′ 
h 

= X h 
(Case 1) If x h, u 1 = x h, u 2 = 1 , set x ′ 

h, u 2 
= 0 

(Case 2) else if x h, u 1 = x h, u 2 = 0 , set x ′ 
h, u 1 

= 1 

(Case 3) else if x h, u 1 = 1 , x h, u 2 = 0 , set x 
′ 
h, u 1 

= 0 

(Case 4) else set x ′ 
h, u 1 

= 1 , x ′ 
h, u 2 

= 0 . 

End if 

Step 4.2: If X ′ 
h 

dominates X h , population P t saves X ′ 
h 

to replace X h ; if X 
′ 
h 

is dominated by X h , the 

population keeps X h unchanged; otherwise, it saves both X ′ 
h 

and X h into P t . 

End for 

Step 5: If the size of P t is larger than N, remove | P t | − Nindividuals with high ranks, and reduce the crowding distances from P t using the method in 

Section 5.3 ; 

Step 6: Output population P t 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where Cerror () represents the classification error rate. | Cer ror ( X X( u 1 )=0 ) − Cer ror (X ) | describes the chang e

degree of the classification performance, when the u 1 th feature is added into the subset X X( u 1 )=0 , and

| Cer ror ( X X( u 1 )=0 ) − Cer ror ( X X ( u 1 )=0 ,X ( u 2 )=1 ) | describes the change degree of the classification performance, when the

u 2 th feature is added into the subset X X( u 1 )=0 . The method of calculating the error rate of classification is given in

Section 6.1 . 

Fig. 1 provides an example of calculating the relative importance. Assume that X = (110100) , and the two selected feature

bits are u 1 = 2 and u 2 = 5 , respectively, we have X X ( u 1 )=0 ,X ( u 2 )=1 = (100110) and X X( u 1 )=0 = (100100) . 

Algorithm 1 shows the calculation procedure of the OPS. Firstly, we randomly select a reference solution X ref from the

non-dominated set. Secondly, two feature bits among X ref , i.e. ,u 1 and u 2 , are randomly selected in Step 2, and Step 3 compares

their relative importance degrees. Next, for a non-dominated individual, X h ∈ S t , h = 1 , 2 , ..., | S t | , the OPS operator is used to

generate a new individual X ′ 
h 

by checking the following four cases in Step 4.1. Suppose that u 1 �imp u 2 , and the initial value

X ′ 
h 

= X h , the detailed explanations of these four cases are given as follows. 

Case 1: if the values of X ′ 
h 

on both u 1 and u 2 are equal to 1, the value of X ′ 
h 

on u 2 is set to be 0, i.e., removing the

u 2 -thfeature with less importance degree from X ′ 
h 
. 

Case 2: if the values of X ′ 
h 

on both u 1 and u 2 are equal to 0, the value of X ′ 
h 

on u 1 is set to be 1, i.e., adding the u 1 -th

feature with more importance degree into X ′ 
h 
. 

Case 3: if the values of X ′ 
h 

on u 1 and u 2 are equal to 0 and 1, respectively, the value of X ′ 
h 

on u 2 is set to be 0 and that

of X ′ 
h 

on u 1 to be 1, i.e., adding the u 1 th feature with more importance degree into X ′ 
h 
, and removing the u 2 th feature with

less importance degree from X ′ 
h 
. 

Case 4: if the values of X ′ 
h 

on u 1 and u 2 are equal to 1 and 0, respectively, the value of X ′ 
h 

on u 1 is set to be 0, i.e.,

removing both these two features from X ′ 
h 
. 

Fig. 2 shows an example of the one-bit purifying search, where u 1 and u 2 are two random feature bits, and “?” is a wild

card character. X i (i = 1 , 2 , 3 , 4) is a candidate solution from the population, and X ′ 
i 
(i = 1 , 2 , 3 , 4) is a new individual gener-

ated by modifying the value of the candidate solution on u 1 and u 2 . Fig. 2 (a) and (b) illustrate the process of performing

the one-bit purifying search, when u 1 �imp u 2 and u 2 �imp u 1 , respectively. 
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Fig. 2. An example of the OPS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Repeating the above procedure on the elitist individuals, the one-bit purifying search can generate some new individuals.

The new individuals will be saved into the population P t in Step 4.2, and the method in Section 5.3 is employed to prune

the new population in case its size is larger than N . 

Actually, the OPS operator is a small-scale refinement process with the purpose of improving the quality of non-

dominated solutions (elite individuals among the population). Nevertheless, the DE also performs a large-scale search in

the variable space. By incorporating the OPS operator into the modified DE, our new algorithm can achieve an appropriate

trade-off between the exploitation and exploration. 

5.3. The selection based on an efficient non-dominated sorting 

The Fast Non-dominated Sorting (FNS) [9] , as an effective selection method, has been applied to rank the optimal indi-

viduals in DEMOFS [37] . However, this technique is computationally intensive, and its time complexity is O ( M × N 

2 ), where

N is the population size, and M is the number of the objectives. The Efficient Non-dominated Sorting (ENS) [41] is a new

comparison technique, which has a lower complexity of O ( M × N × log N ). In this section, we introduce an improved selection

operator by combining the ENS with the crowding distance. 

Let the set of the target vectors (or parent individuals) at the t th generation be P t , the set of the trial vectors (or offspring

individuals) produced by the crossover and mutation be Q t , and the new population be P t+1 = ∅ . The selection process is

explained as follows. Firstly, the individuals in P t are examined. For an individual X i ( t ) in P t , if it is dominated by a trial

vector, U i ( t ) ∈ Q t , U i ( t ) will be saved into P t+1 ; if it dominates U i ( t ), X i ( t ) will be saved into P t+1 ; otherwise, both U i ( t ) and

X i ( t ) will be saved into P t+1 . If the size of P t+1 is larger than the population size N , these solutions in the population P t+1 will

be sorted in an ascending order according to the first objective function value. If two solutions have the same values for the

first objective function, they are sorted using the second objective function. Secondly, the ENS is applied by assigning each

individual with a rank and classifying each into a rank set. Finally, the new population is formed by selecting the individuals

based on the order of their ranks. If two solutions have the same rank, the one with a higher crowding distance wins. For

the calculation of the crowding distance of a solution, refer to [9] . 

5.4. Procedure and computational complexity of MOFS-BDE 

The proposed MOFS-BDE is explained in details in Algorithm 2 . In this algorithm, when determining the base vector

for an individual, if the three random vectors include more than one optimal solution, the one with the largest crowding
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Algorithm 2 

MOFS-BDE. 

Parameters: The maximal iteration times T max , the population size N, the frequency of implementing OPS T loc , the scale F, and the crossover 

probability CR . 

Input: The dataset for classification. 

Output: The Pareto-optimal solutions with each corresponding to a feature subset. 

Step 1: Initialize a number of individuals, P 0 = { X 1 , X 2 , ..., X N } T 
Step 2: Let t = 0. //Iteration steps 

Step 3: Iteration 

Set the set P t+1 = ∅;
for i = 1 , 2 , …, N , do 

Step 3.1: Randomly select three vectors from the population P t , denoted as X r 1 ( t ), X r 2 ( t ), and X r 3 ( t ), r 1 � = r 2 � = r 3 � = i ; 

Step 3.2: Select the best one from the three vectors as the base vector, X best ( t ); 

Step 3.3: Generate a new mutation vector V i ( t ) for the i th individual according to Eq. (5) ; 

Step 3.4: Generate a trial vector U i ( t ) for the i th individual according to Eq. (4) ; 

Step 3.5: Evaluate the fitness of the trial vector U i ( t ); 

Step 3.6: Compare the i th individual X i ( t ) with U i ( t ).If X i ( t ) dominates U i ( t ), save X i ( t ) into P t+1 ;if 
U i ( t ) dominates X i ( t ), save U i ( t ) into P t+1 ;otherwise, save both U i ( t ) and X i ( t ) into P t+1 . 

Endfor 

Step 3.7: If the size of P t+1 is larger than N, remove | P t+1 | − N individuals with higher ranks and shorter crowding distances from P t+1 using the 

method in Section 5.3 ; 

Step 3.8: If t/ T loc = 
 t/ T loc � , run the problem-specific local search (refer to Algorithm 1 for details); 

Step 4: If t < T max , let t ++ , and return back to Step 3; otherwise, terminate the algorithm, and output the Pareto-optimal solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

distance will be selected as the base vector X best ( t ). Additionally, a parameter T loc is employed to control the frequency of

implementing the OPS operator in Algorithm 1 . 

The scale factor F , the basic crossover probability CR , and the parameter T loc play key roles in our MOFS-BDE. The param-

eter F is a scale factor determining the difference between the generated offspring and X best ( t ). The higher the value of F ,

the more the diversity of the generated offspring. Like in the standard DE [8] , 0 < F < 1 is usually a good and reliable choice.

The parameter CR is a probability within [0,1]. Similar to the mutation probability in the genetic algorithms, it determines

how many feature bits under expectation are inherited from the target vector. A low value of CR indicates that a small

number of feature bits are changed and the exploration capability of the population is weak. On the contrary, increasing

the value of CR can enhance the exploration ability of the population. In the MOFS-BDE, the OPS operator is designed to

improve the self-learning ability of the elite individuals. In other words, it is used to further exploit the potential areas, and

the value of T loc is capable of controlling the frequency of exploitation. Therefore, a small value of T loc can lead to a better

exploitation capability of the population, although frequently applying this operator may increase the computational cost of

the MOFS-BDE. 

The complexity of Algorithm 2 mainly depends on Step 3, because Steps 1, 2, and 4 can be finished in linear time scale.

Step 3 includes the following four parts: the mutation operator from Steps 3.1 to 3.3, the crossover operator in Step 3.4, the

selection operator in Steps 3.6 and 3.7, and the OPS operator in Step 3.8. In fact, the mutation operator executes O ( N ) basic

operations, and the crossover operator does O ( N ) basic operations. Therefore, their computational complexities are O ( N ).

Since the ENS has the complexity of O ( M × N × logN ), and that of the crowding distance is O ( M × N × logN ), the selection

operator has the complexity of O ( M × N × logN ). For the self-learning OPS operator in Algorithm 1 , its complexity is in Steps

4 and 5, because Steps 1, 2, 3, and 6 can be implemented with linear time scale. Step 4 executes O (| S t |) basic operations

to generate new individuals, and when the number of the individuals in P t is larger than N, Step 5 needs O ( M × N × logN )

basic operations to prune the population. Given the fact that | S t | ≤ N , the computational complexity of the OPS operator is

O ( M × N × logN ). 

Fig. 3 shows the complexities in the MOFS-BDE compared with that in the DEMOFS. The framework of a multi-objective

DE is divided into six parts: initialization (Step 1 in Algorithm 2 ), mutation (Steps 3.1, 3.2, and 3.3 in Algorithm 2 ),

crossover (Step 3.4 in Algorithm 2 ), self-learning operator (Step 3.8 in Algorithm 2 ), evaluation of the individuals (Step

3.5 in Algorithm 2 ), and selection (Steps 3.6, 3.7 in Algorithm 2 ). Note that for evaluating the individuals, i.e., Step 3.5 in

Algorithm 2 , the above analysis only considers the number of the individuals evaluated in each iteration. It can be found

out that the overall complexity of our MOFS-BDE is O ( M × N × logN ). 

As aforementioned, the multi-objective DE-based feature selection algorithm (DEMOFS) [37] , the NSGA-II-based feature

selection algorithm (NSGAFS) [15] , the particle swarm optimization-based feature selection algorithm (MOPSOFS) [38] , the

binary multi-objective DE-based feature selection algorithm (B-DEMOFS) [32] , and the Pareto front feature selection algo-

rithm based on artificial bee colony optimization (B-MOABCFS) [17] are five representative algorithms for feature selection.

Since the B-MOABCFS, DEMOFS, and NSGAFS all use the non-dominated sorting strategy to update their populations, they

have the same computational complexity, O ( M × N 

2 ). The B-DEMOFS and MOPSOFS have the same computational complexity

of O ( M × N × logN ), because they adopt the crowding distance to prune the archive. Therefore, the computational complexity

of the proposed MOFS-BDE is competitive compared with the above five evolutionary FS algorithms. 

However, as we know that these five EA-based algorithms all need a classifier to calculate the objective values of the

individuals, i.e., the classification performance of the feature subsets. Additionally, calculating the classification performance



74 Y. Zhang, D.-w. Gong and X.-z. Gao et al. / Information Sciences 507 (2020) 67–85 

Fig. 3. The computational complexities in MOFS-BDE and DEMOFS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of a feature subset often results in a high computational cost. More importantly, different feature subsets or individuals

usually cause different computation costs for the same problem, because these subsets include different numbers of features.

Like the four EA-based algorithms, i.e., DEMOFS, NSGAFS, MOPSOFS, and B-MOABCFS, in case of high-dimensional datasets,

the real running time of the MOFS-BDE mainly depends on the evaluation of the individuals in Fig. 3 , which is the process

of calculating the objective values of the individuals. This is the reason why the real running time of the six algorithms in

Table 9 does not accord with the computation cost from the theoretical analysis in Section 5.4 . 

6. Experimental study 

This section evaluates our new feature selection algorithm on a total of 20 standard datasets. These datasets are from

the website of the UCI repository [26] . They have been processed by the providers in advance. The proposed algorithm and

other methods in comparison are implemented using Matlab language. All the experiments are conducted on an Intel Core

(TM) i5-3470 CPU with 4 GB of RAM. 

6.1. Algorithms and performance metric 

To validate the performance of the proposed MOFS-BDE algorithm, four popular feature selection algorithms, DEMOFS

[37] , NSGAFS [15] , MOPSOFS [38] , and B-MOABCFS [17] , are used in comparison. To our best knowledge, the DEMOFS is the

first attempt to employ the multi-objective DE for feature selection. Since the NSGA-II is one of the most widely employed

multi-objective evolutionary algorithms, the NSGAFS has been considered as a benchmark method here. The MOPSOFS is a

well-known multi-objective particle swarm optimization-based feature selection algorithm. The B-MOABCFS is a relatively 

new multi-objective feature selection approach. 

Moreover, a novel multi-objective evolutionary algorithm, namely multi-objective evolutionary algorithm based on the l 2-

norm Tchebycheff decomposition and maximal fitness improvement (MOEA/D-2TMFI) [23] , is also selected for effectiveness

comparison. Proposed by Zhang and Li [40] , the multi-objective evolutionary algorithm based on decomposition (MOEA/D)

is one of the classic multi-objective evolutionary methods. The MOEA/D-2TMFI is an enhanced version of the MOEA/D. In

order to apply MOEA/D-2TMFI in coping with binary feature selection problems, the following strategy is used to transform

a real individual to the binary version: if an element of a new individual is more than or equal to 0.5, its value is set to be

1; otherwise, this element is set to be 0. Note that employing MOEA/D-2TMFI to the binary feature selection problem may

fail to demonstrate its real advantages, because it is originally proposed for continuous optimization problems. 

Since all the algorithms belong to the wrapper approaches, they need some learning algorithms to calculate the classifi-

cation error ratio of a feature subset (solution). It is worth pointing out that many classifiers can be used including artificial
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neural networks and SVM. Since the type of the classifier selected influences the feature selection results, the same clas-

sifier, K -Nearest Neighbor ( K -NN), is utilized for all the above algorithms. As one of popular learning algorithms, K -NN has

been applied in numerous EA-based FS approaches [43] . In this paper, we use the Leave-One-Out Cross Validation (LOOCV)

of K -NN to calculate the classification error ratio of a feature subset (solution). In the LOOCV, a sample from the original

dataset is chosen as the testing datum, and the remaining samples are considered as the training data. The K -NN classifier

can predict the class label of this testing datum. If the prediction result is incorrect, the number of the incorrectly pre-

dicted samples is increased by one. Each sample in the dataset is used only once. The error rate of a feature subset is the

proportion of those incorrectly predicted samples to all the samples. 

For the K -NN classifier, the optimal value of K has a close relation with the dataset under consideration, and is often

estimated based on the training samples available [14] . A large value of K is beneficial to decrease the influence of noises

on the classification accuracy, whereas the boundary between the classes becomes less distinct [6] . Moreover, we target at

validating the capability of MOFS-BDE of seeking the optimal feature subset instead of investigating the impact of K on its

performance. Therefore, for the sake of simplicity, the 1-NN classifier is used in our simulations. 

In the NSGAFS [38] , the bit-flip mutation and single-point crossover are employed with the mutation rate being 1/D and

the probability of crossover being 0.9. Based on the suggestions given in [37] , in the DEMOFS, we set the crossover rate

and scaling factor to be 0.3 and 0.5, respectively. The inertia weight w is set to be a random value within [0.1, 0.5], the

acceleration constants, c 1 and c 2 , are two random values within [1.5, 2.0], and the mutation rate is 1/D in the MOPSOFS

[38] . In the B-MOABCFS [17] , the number of the colony size is set to be 50, the number of food sources equals to the

half of the colony size, and the limit trial parameter is set to be 5. For the MOEA/D-2TMFI [23] , the DE and polynomial

mutation are used to generate new individuals, where the mutation rate, the crossover rate, and the selection probability of

the neighborhoods are set to be 1/D, 0.3, and 0.9, respectively. The scale factor is randomly set to be within [0, 1]. In our

MOFS-BDE, we choose the scale factor F to be 0.5 ∗rand, the crossover probability to be 0.3, and T loc to be 5. For all these six

algorithms, both the population size and archive size are set to be 50, and the maximal number of evaluations is set to be

50 0 0 for the datasets with less than 100 features and 15,0 0 0 for the other datasets. Moreover, Table 2 gives the parameter

configurations of the above algorithms. 

In order to evaluate the performance of a multi-objective feature selection algorithm, the Hyper-Volume (HV) metric

[20] is used in our experiments. Take a set of Pareto optimal solutions, Z, as an example, HV is applied to calculate the

hyper-volume of the region enclosed by Z and a reference point, where the reference point is a vector dominated by all

the solutions obtained. Since the HV metric can simultaneously evaluate the distribution and convergence of solutions, it

has been widely employed in evaluating the multi-objective evolutionary algorithms [5 , 22 , 29] . Moreover, the Set Coverage

(SC) [49] is utilized to compare the convergence of Pareto optimal solutions obtained by two algorithms. Let A1 and A2

be two sets of the Pareto optimal solutions, the value C(A1,A2) = 1 means that all the solutions of A2 are dominated by or

equal to some solutions of A1 and the convergence of A2 is no better than that of A1. The number of feature subsets (FN)

is used to compare the diversity of solutions obtained by an algorithm. The value of FN is the average of the number of

the feature subsets found by an algorithm in 30 runs. Therefore, a higher FN value implies that there are more diversified

feature subsets for the decision makers to choose from. 

6.2. Analyses of the proposed operators 

As previously discussed, our paper employs two new operators, i.e., modified binary mutation and OPS operator, to im-

prove the performance of MOFS-BDE. This section performs an extensive analysis on these two key operators. Table 3 shows

the average HV values of MOFS-BDE, MOFS-BDE without OPS, and DEMOFS for the eight typical datasets taken from Table 1 .

We first investigate the effectiveness of the modified binary mutation in improving the performance of MOFS-BDE. The

main difference between DEMOFS and MOFS-BDE is the mutation and selection. As aforementioned, DEMOFS and MOFS-

BDE adopt the FNS- and ENS-based selection, respectively. Although ENS has a lower computational complexity than that

of FNS, both these two strategies get the same results for each input. Therefore, it is reasonable to validate the modified

binary mutation operator by comparing MOFS-BDE without OPS with DEMOFS. It can be discovered from Table 3 that MOFS-

BDE without OPS achieves larger HV values than that of DEMOFS for six out of the eight datasets, which suggests that the

proposed binary mutation is more effective in improving the proposed algorithm. 

Next, we explore the OPS operator by comparing MOFS-BDE with MOFS-BDE without OPS. Table 3 demonstrates that

the two algorithms can obtain similar HV values for the datasets with small features, i.e., Vowel, Vehicle, and Ionosphere.

However, for those with more features, MOFS-BDE with OPS yields better performances than the one without OPS with

respect to the HV metric. That is, the OPS operator plays an important role in the MOFS-BDE. 

Moreover, an optimal learning strategy on the best base vector has been designed to improve the convergence of the

population. We can modify Eq. (5) as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

V i (t) = ( v i, 1 (t ) , v i, 2 (t ) , ∞ . . . , v i,D (t)) 

v i, j (t) = 

{
x r3 , j (t) , c i, j < rand 

1 − x r3 , j (t) , otherwise 

C i = min (1 , F · ( X r1 (t) � X r2 (t)) + σ ) 

(6)
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Table 1 

Basics of test databases. 

Datasets The number of samples The number of classes The number of features 

Vowel 990 11 10 

Wine 178 3 14 

Zoo 101 7 17 

Vehicle 846 4 18 

WDBC 569 2 32 

Ionosphere 351 2 34 

Satellite 856 7 37 

SPECTF 160 2 44 

Parkinson 240 2 46 

Sonar 208 2 60 

Libras Movement 360 15 90 

Hill-valley 606 2 100 

Urban land cover(ULC) 507 9 148 

Musk 476 2 167 

SCADI 70 7 206 

LSVT 126 2 309 

CNAE-9 540 9 857 

Yale_64 165 15 1024 

SRBCT 83 4 2308 

DLBCL 45 2 5469 

Table 2 

Parameters of comparison algorithms. 

Algorithms Values of related parameters 

NSGAFS The mutation rate = 1/ D , and the crossover probability y = 0.9. 

DEMOFS The crossover rate CR = 0.3, and the scaling factor F = 0.5. 

MOPSOFS The inertia weight w = 0.1 + 0.4 × rand, the acceleration constants, c 1 = c 2 = 1.5 + 0.5 × rand, the mutation rate 1/ D , 

and the archive size = 50. 

B-MOABCFS The colony size N = 50, the number of food sources = N /2, and the limitation trial parameter = 5. 

MOEA/D-2TMFI The mutation rate = 1/ D , the crossover rate CR = 0.3, the selection probability of neighborhoods = 0.9, and the scale 

factor F = rand . 

MOFS-BDE The scale factor F = 0.5 × rand, the basic crossover probability CR = 0.3, the parameter T loc = 5, and the turbulence 

coefficient σ = 0.01. 

Table 3 

The average HV values of MOFS-BDE, MOFS-BDE without OPS, and DEMOFS. 

Algorithms Vowel Vehicle Ionosphere Sonar Hill-valley ULC LSVT CNAE-9 

MOFS-BDE 0.8262 0.6964 0.9300 0.9175 0.6681 0.8873 0.8163 0.8381 

DEMOFS 0.8260 0.6894 0.9296 0.9038 0.6517 0.8788 0.7510 0.8113 

MOFS-BDE without OPS 0.8264 0.6936 0.9286 0.9105 0.6590 0.8833 0.7975 0.8209 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where, X r 1 ( t ), X r 2 ( t ), and X r 3 ( t ) are randomly selected from the population, and r 1 � = r 2 � = r 3 � = i . We denote MOFS-BDE

with Eq. (6) as MOFS-BDE/random. Take the data sets Vowel, Ionosphere, Hill-valley, and LSVT as examples, Fig. 4 shows

the HV curves obtained by MOFS-BDE and MOFS-BDE/random. We can find out that for Vowel and Ionosphere, the optimal

learning strategy obviously accelerates the convergence speed of the population at the early stage of MOFS-BDE. For the

datasets with more features, Hill-valley and LSVT, with the help of this optimal learning strategy, MOFS-BDE shows a better

convergence than that of MOFS-BDE/random. Hence, the proposed optimal learning strategy is regarded as another strength

of our MOFS-BDE. 

6.3. Sensitivity analysis on key parameters 

In our algorithm, the two new parameters, i.e., the frequency of implementing OPS T loc , and the turbulence coefficient

σ , both play important roles. This section aims at analyzing the sensitivity of the algorithm to these two parameters. We

change the value of T loc in the range of {1, 3, 5, 7, 9}, and alter the value of σ in range of {0.0 01, 0.0 05, 0.01, 0.02, 0.05,

0.1}. A total of four datasets, Vowel, Ionosphere, Hill-valley, and LSVT, are used as test beds. Table 4 shows the HV values

obtained by MOFS-BDE with different T loc values. Clearly, for the two simple datasets, Vowel and Ionosphere, the proposed

algorithm provides good HV values, when the value of T loc varies from 1 to 9. For the other two datasets, Hill-valley and

LSVT, it gives satisfactory HV values, only when the value of T loc changes from 1 to 5. Since frequently implementing the

OPS operator can increase the algorithm’s computational cost, we set T to be only 5 in the simulations. 
loc 
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Fig. 4. The HV curves obtained by MOFS-BDE and MOFS-BDE/random. 

Table 4 

The HV values obtained by the proposed algorithm with different T loc (Average/Std.). 

Datasets T loc = 1 T loc = 3 T loc = 5 T loc = 7 T loc = 9 

Vowel 0.8264/0.0004 0.8262/0.0005 0.8262/0.0004 0.8260/0.0003 0.8261/0.0005 

Ionosphere 0.9293/ 0.0020 0.9303/ 0.0016 0.9300/0.0030 0.9298/ 0.0034 0.9297/ 0.0021 

Hill-valley 0.6662/0.0024 0.6692/ 0.0035 0.6681/0.0029 0.6612/0.0039 0.6601/0.0040 

LSVT 0.8134/0.0272 0.8197/ 0.0228 0.8163/0.0275 0.8104/ 0.0487 0.8084/ 0.0487 

Table 5 

The HV values obtained by the proposed algorithm with different σ (Average/Std.). 

Datasets σ = 0.001 σ = 0.005 σ = 0.01 σ = 0.02 σ = 0.05 σ = 0.1 

Vowel 0.8260/0.0003 0.8262/0.0004 0.8262/0.0004 0.8260/0.0005 0.8253/0.0006 0.8228/0.0007 

Ionosphere 0.9294/0.0028 0.9296/0.0028 0.9300/0.0030 0.9301/0.0032 0.9290/0.0035 0.9275/0.0043 

Hill-valley 0.6680/0.0057 0.6689/0.0027 0.6681/0.0029 0.6614/0.0031 0.6607/0.0039 0.6531/0.0068 

LSVT 0.8155/0.0241 0.8167/0.0228 0.8163/0.0275 0.8101/0.0291 0.7797/0.0321 0.7049/0.0376 
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Fig. 5. Pareto optimal sets found by the six algorithms for Vowel, Vehicle, Ionosphere, and Sonar. 

 

 

 

 

 

 

 

 

 

 

 

Table 5 shows the HV values acquired by MOFS-BDE with different σvalues. For the two datasets, Vowel and Ionosphere,

this algorithm yields satisfactory HV values, when the value of σvaries from 0.001 to 0.05. However, for the two datasets

with more features, Hill-valley and LSVT, when the value of σ is higher than 0.01, its performance significantly deteriorates.

Therefore, setting the value of σwithin [0.001, 0.01] is a good choice. 

6.4. Analysis of the best Pareto set 

For alleviating the randomness in the feature selection results, we run each of these algorithms for 30 independent times

for every dataset. From the 30 results, the best one (i.e., the solution set with the largest HV value) is selected. Figs. 5 and

6 demonstrate the results obtained by the six algorithms for the eight datasets. In each figure, the horizontal axis means

the number of selected features, and the vertical axis represents the classification error rate. As shown in Fig. 5 , for the

datasets with small features, Vowel and Vehicle, MOFS-BDE, DEMOFS, MOPSOFS, and B-MOABCFS have the same results,

which are clearly better than that of NSGAFS. MOEA/D-2TMFI also obtains results slightly worse than MOFS-BDE, DEMOFS,

MOPSOFS, and B-MOABCFS. Especially, for the dataset, Vehicle, all the five algorithms have smaller error rates than that

of NSGAFS, when more than two features are selected. Thus, the two datasets in fact are not challenging for MOFS-BDE,

DEMOFS, MOPSOFS, B-MOABCFS, and MOEA/D-2TMFI. 
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Fig. 6. Pareto optimal sets found by six algorithms for Hill-valley, ULC, LSVT, and CNAE-9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the dataset Ionosphere with 34 features, MOFS-BDE and MOEA/D-2TMFI have the same results, which are

clearly better than that of NSGAFS and MOPSOFS. For MOFS-BDE, DEMOFS, B-MOABCFS, and MOEA/D-2TMFI, their classifi-

cation error rates all drop from 20% to 8%, when the size of selected features varies from 1 to 3. However, when the size of

selected features is greater than 3, B-MOABCFS and DEMOFS still have 2/4 and 2/5 solutions, respectively, which are dom-

inated by both MOFS-BDE and MOEA/D-2TMFI. MOFS-BDE and MOEA/D-2TMFI yield the smallest error rate, 2.56%, in the

case of nine features. 

With respect to the dataset with 60 features, Sonar, MOFS-BDE achieves better results than that of DEMOFS, MOPSOFS,

and NSGAFS regarding both the error rate and the size of selected features. Although B-MOABCFS and MOEA/D-2TMFI can

find a better solution than that of MOFS-BDE, when the size of selected features is equal to six, most of their remaining

solutions are dominated by that of MOFS-BDE. When 13, 16, and 18 features are selected, DEMOFS, MOPSOFS, and NSGAFS

achieve their smallest error rates, 6.25%, 7.21% and 6.73%, respectively. Among all the six comparison algorithms, MOFS-BDE

has the smallest error rate, 4.81%, when 10 features are selected. B-MOABCFS also finds the smallest error rate, 4.81%, but it

needs 24 features. Moreover, NSGAFS fails to obtain any solutions, when the number of features is less than 10. 

Fig. 6 shows that for the dataset with 100 features, Hill-valley, MOFS-BDE provides better results than that of DEMOFS,

MOPSOFS, NSGAFS, B-MOABCFS, and MOEA/D-2TMFI with respect to both the error rate and the number of selected fea-

tures. When 19 features are selected, DEMOFS yields its smallest error rate, 33.3%, whereas this value is larger than that of
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Table 6 

The set coverage values between MOFS-BDE and the five comparison algorithms (Average/Std.). 

Datasets Algorithms SC(MOFS-BDE, ∗) SC( ∗ , MOFS-BDE) Datasets Algorithms SC(MOFS-BDE, ∗) SC( ∗ , MOFS-BDE) 

Vowel DEMOFS 0.0444/0.0304 0/0 Libras 

Movement 

DEMOFS 0.5432/0.2095 0.3484/0.1664 

MOPSOFS 0/0 0/0 MOPSOFS 0.7840/0.2346 0.1558/ 0.1812 

NSGAFS 0.8851/0.1117 0/0 NSGAFS 1/0 0/1 

B-MOABCFS 0.0222/0.0248 0/0 B-MOABCFS 0.3654/0.2174 0.2765/0.2013 

MOEA/D-2TMFI 0.0571/0.0782 0/0 MOEA/D-2TMFI 0.4921/0.2199 0.3776/0.2007 

Wine DEMOFS 0/0 0.0520/0.1096 Hill- 

valley 

DEMOFS 0.9492/0.0705 0.0677/0.0395 

MOPSOFS 0.0286/0.0904 0/0 MOPSOFS 0.8492/0.0930 0.1556/0.1117 

NSGAFS 0.9124/0.1545 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.0917/0.1682 0/0 B-MOABCFS 0.9429/0.0531 0.0647/0.0609 

MOEA/D-2TMFI 0.0667/0.1405 0/0 MOEA/D-2TMFI 0.9244/0.0735 0.0472/0.0648 

Zoo DEMOFS 0/0 0/0 ULC DEMOFS 0.5482/0.1365 0.2824/0.0736 

MOPSOFS 0.0567/0.0917 0/0 MOPSOFS 0.9818/0.0406 0/0 

NSGAFS 1/0 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.0567/0.0917 0/0 B-MOABCFS 0.6613/0.1415 0.2027/0.0976 

MOEA/D-2TMFI 0.0200/0.0632 0/0 MOEA/D-2TMFI 0.4983/0.1199 0.2484/0.0745 

Vehicle DEMOFS 0.0333/0.0372 0/0 Musk DEMOFS 0.7235/ 0.2265 0.1918/0.1758 

MOPSOFS 0.0667/0.0745 0/0 MOPSOFS 1/0 0/0 

NSGAFS 0.9333/0.0745 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.0533/0.0712 0/0 B-MOABCFS 0.5251/ 0.2861 0.2621/0.1689 

MOEA/D-2TMFI 0/0 0/0 MOEA/D-2TMFI 0.8041/ 0.1777 0.1426/0.1503 

WDBC DEMOFS 0.1932/0.1458 0.1405/0.1378 SCADI DEMOFS 0.5299/ 0.2728 0.2449/ 0.2150 

MOPSOFS 0.4477/0.2523 0.1847/0.1475 MOPSOFS 0.7950/0.2370 0.0596/ 0.1234 

NSGAFS 1/0 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.5006/0.1832 0.1329/0.1452 B-MOABCFS 0.5051/0.2046 0.2294/0.2040 

MOEA/D-2TMFI 0.4619/0.1380 0.0536/0.0694 MOEA/D-2TMFI 0.7253/0.2151 0.1136/0.1583 

Ionosphere DEMOFS 0.3557/0.0834 0.2007/0.0844 LSVT DEMOFS 0.7200/0.1981 0.1714/0.1833 

MOPSOFS 0.3924/0.1021 0.1536/0.0712 MOPSOFS 1/0 0/0 

NSGAFS 1/0 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.5631/0.1370 0.1536/0.0725 B-MOABCFS 0.6333/0.2801 0.2333/0.1528 

MOEA/D-2TMFI 0.4707/0.1576 0.2071/ 0.0865 MOEA/D-2TMFI 0.5167/0.2580 0.3093/0.2249 

Satellite DEMOFS 0.3253/0.2052 0.2511/0.1546 CNAE- 

9 

DEMOFS 0.6349/0.1409 0.1800/0.0957 

MOPSOFS 0.6416/0.1386 0.0999/0.1093 MOPSOFS 1/0 0/0 

N SG AFS 1/0 0/1 NSGAFS 1/0 0/0 

B-MOABCFS 0.5182/0.1404 0.1515/0.1164 B-MOABCFS 0/0 0.2448/0.1024 

MOEA/D-2TMFI 0.4705/0.1862 0.1648/0.1479 MOEA/D-2TMFI 0/0 0.3139/0.1723 

SPECTF DEMOFS 0.1155/0.1115 0.0734/0.0896 Yale_64 DEMOFS 1/0 0/0 

MOPSOFS 0.2570/0.1626 0.0588/0.0809 MOPSOFS 1/0 0/0 

NSGAFS 1/0 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.1868/0.1359 0.0563/0.0762 B-MOABCFS 0/0 0.8538/0.1397 

MOEA/D-2TMFI 0.3366/0.1722 0.0426/0.0645 MOEA/D-2TMFI 1/0 0/0 

Parkinson DEMOFS 0.4686/0.2205 0.2540/ 0.1972 SRBCT DEMOFS 0.9375/ 0.1398 0/0 

MOPSOFS 0.6578/0.2247 0.1394/0.0985 MOPSOFS 1/0 0/0 

NSGAFS 1/0 0/1 NSGAFS 1/0 0/0 

B-MOABCFS 0.5083/0.2157 0.1883/0.1376 B-MOABCFS 1/0 0/0 

MOEA/D-2TMFI 0.4602/0.1934 0.2084/0.1741 MOEA/D-2TMFI 1/0 0/0 

Sonar DEMOFS 0.6270/0.0852 0.2795/0.1125 DLBCL DEMOFS 0.9491/0.1058 0/0 

MOPSOFS 0.8302/0.0726 0.0308/0.0344 MOPSOFS 1/0 0/0 

NSGAFS 1/0 0/0 NSGAFS 1/0 0/0 

B-MOABCFS 0.6171/0.2152 0.2436/0.1032 B-MOABCFS 1/0 0/0 

MOEA/D-2TMFI 0.4879/0.2194 0.2766/0.1115 MOEA/D-2TMFI 1/0 0/0 

 

 

 

 

 

 

 

 

 

 

 

 

MOFS-BDE, 31.7%, with only 12 features. In addition, B-MOABCFS achieves its smallest error rate, 33.2%, with 36 features,

MOEA/D-2TMFI gets the smallest error rate, 34.3%, with 9 features, and DEMOFS obtains its smallest error rate, 33.3%, with

19 features. 

For the dataset with 148 features, ULC, MOFS-BDE provides better results than that of DEMOFS, MOPSOFS, and NSGAFS

with respect to both the error rate and the number of selected features. Although B-MOABCFS and MOEA/D-2TMFI can find

better solutions than that of MOFS-BDE, when the size of selected features is equal to one or two, most of their remaining

solutions are still dominated by that of MOFS-BDE. In particular, MOPSOFS and NSGAFS cannot classify the data within seven

features. For the 15 features selected, MOFS-BDE reduces the error rate to 9.66%, which is 0.98% lower than the minimal

error rate obtained by DEMOFS with 23 features, 1.16% lower than that of MOPSOFS with 20 features, 6.32% lower than that

of NSGAFS with 39 features, 0.60% lower than that of B-MOABCFS with 24 features, and 1.78% lower than that of B-MOEA/D-

2TMFI with 19 features. 

Regarding the dataset with 309 features, LSVT, MOFS-BDE provides better results than that of MOPSOFS and NSGAFS with

respect to both the error rate and the number of selected features. Although DEMOFS finds a better solution than that of

MOFS-BDE, when the size of selected features is equal to two, its remaining solutions are all dominated by that of MOFS-
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Table 7 

The FN values found by the six algorithms for 20 datasets (Average/Std.). 

FN MOFS-BDE DEMOFS MOPSOFS NSGAFS B-MOABCFS MOEA/D-2TMFI 

Vowel 9.00/0 9.00/0 8.60/0.55 8.20/0.13 9.00/0 8.00/0 

Wine 5.85/0.36 5.45/ 0.51 5.80/0.63 5.80/0.78 4.50/1.43 5.20/0.42 

Zoo 5.80/ 0.41 5.75/0.44 5.60/0.51 5.10/1.56 5.50/0.52 5.40/0.51 

Vehicle 5.80/0.45 5.40/0.55 5.60/0.55 3.80/0.16 5.20/0.45 5.10/0.32 

WDBC 7.60/0.67 7.30/0.48 7 .80/1.14 5.00/1.70 7.30/1.34 6.70/0.48 

Ionosphere 7.56/0.53 7.56/0.73 6.40/0.89 5.20/1.31 7.45/1.05 6.65/0.87 

Satellite 13.00/1.49 12.70/1.41 12.10/1.52 8.20/2.30 11.22/0.97 10.22/1.48 

SPECTF 10.05/0.68 9.00/0.72 10.30/0.48 8.20/1.75 10.00/0.56 10.30/0.67 

Parkinson 9.58/1.08 9.40/1.17 9.90/1.37 5.80/1.98 8.60/1.17 8.70/1.15 

Sonar 11.20/2.28 10.78/1.99 11.00/2.73 5.80/1.30 10.70/1.75 10.00/1.83 

Libras Movement 12.10/0.99 10.75/1.48 10.90/1.79 5.67/2.29 10.15/1.29 9.70/1.05 

Hill-valley 8.80/0.45 9.60/1.67 8.00/2.64 6.80/2.17 9.75/2.63 8.30/1.820 

ULC 14.20/2.15 12.20/2.39 11.00/1.20 9.20/2.17 12.05/2.37 10.95/1.633 

Musk 15.0/2.50 12.80/1.55 9.16/1.17 7.88/3.26 10.83/2.48 13.67/1.86 

SCADI 6.50/0.97 6.40/1.07 4.10/0.73 3.20/1.81 5.60/1.17 5.90/0.87 

LSVT 6.15/1.22 4.60/0.89 5.15/3.17 2.80/0.84 4.15/1.14 4.25/1.80 

CNAE-9 9.80/2.17 7.65/1.95 5.20/0.84 7.40/2.70 9.70/3.11 8.15/1.84 

Yale_64 7.33/1.52 5.37/1.59 3.14/1.46 5.33/1.52 15.50/2.64 4.25/1.50 

SRBCT 4.12/1.07 3.20/0.91 2.57/0.78 3.70/1.88 1.58/0.72 1.86/1.05 

DLBCL 2.07/0.57 2.67/0.57 1.16/0.41 2.69/0.53 4.16/0.75 1.42/0.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BDE. B-MOABCFS and MOEA/D-2TMFI can identify better feature subsets than that of MOFS-BDE, when the size of selected

features is less than 7. However, they cannot achieve an error rate lower than 15.87%, when more features are selected.

When the number of features is nine, MOFS-BDE is capable of achieving the lowest error rate, 11.11%, which is 4.76% lower

than that obtained by MOABCFS and MOEA/D-2TMFI. Note that most solutions acquired by NSGAFS concentrate on the top

left corner of the figure. 

Regarding the dataset with 857 features, CNAE-9, MOFS-BDE finds a good Pareto front, which dominates all the solutions

obtained by DEMOFS, MOPSOFS, and NSGAFS. When the size of selected features is less than 60, both B-MOABCFS and

MOEA/D-2TMFI can locate the non-dominated solutions (feature subsets), and achieve the lowest error rate, 11.50%, when

a total of 58 features are selected. Although MOFS-BDE identifies the first non-dominated solution until 64 features are

selected, more features can help it reduce the error rate to 5.50% (when 113 features are selected), which is 6.0% lower than

the minimal error rates obtained by B-MOABCFS and MOEA/D-2TMFI with 58 features, 4.0% lower than that obtained by

MOPSOFS with 117 features, and 12% lower than that obtained by NSGAFS with 150 features. DEMOFS can achieve its lowest

error rate, 6.0%, when 111 features are selected, whereas MOFS-BDE has the same error rate with only 82 features. 

Generally, the experimental results in Figs. 5 and 6 suggest that MOFS-BDE, DEMOFS, MOPSOFS, B-MOABCFS, and

MOEA/D-2TMFI are competitive with each other, when dealing with the datasets with less than 40 features, i.e., Vowel,

Vehicle, and Ionosphere. However, for the datasets, Sonar, Hill-valley, and ULC, MOFS-BDE can achieve moderately better

performances than the other five algorithms with respect to both the error rate and the number of selected features. For

the datasets with more features, LSVT and CNAE-9, MOFS-BDE shows a good capability of reducing the classification error

rate, and the smallest error rates obtained by MOFS-BDE are apparently lower than that obtained by both B-MOABCFS and

MOEA/D-2TMFI. 

6.5. Analysis of the average performances 

We here compare the average performances of MOFS-BDE, DEMOFS, MOPSOFS, NSGAFS, B-MOABCFS, and MOEA/D-2TMFI

by analyzing their experimental results over 30 independent runs. Tables 6 and 7 give the average performances of these

six algorithms with respect to the SC and FN, respectively. 

For the datasets with less than 20 features, Vowel, Wine, Zoo, and Vehicle, the optimal solution sets obtained by MOFS-

BDE, DEMOFS, MOPSOFS, B-MOABCFS, and MOEA/D-2TMFI show similar convergence characteristics. Take the dataset Wine

as an example, in the worst case, only 5.20% of the solutions of MOFS-BDE are dominated by that of DEMOFS, and 9.17%

of the solutions of B-MOABCFS are dominated by that of MOFS-BDE. The optimal solution set acquired by NSGAFS shows

the worst convergence. More than 88.5% of the solutions of NSGAFS are dominated by that of MOFS-BDE for all the four

datasets. Moreover, MOFS-BDE yields a better performance than that of MOPSOFS, NSGAFS, and MOEA/D-2TMFI regarding

the diversity of solutions, where it produces a larger number of optimal solutions than that of MOPSOFS, NSGAFS, and

MOEA/D-2TMFI, as given in Table 7 . 

For all the 12 datasets with 30–500 features, MOFS-BDE yields a better performance than that of DEMOFS, MOPSOFS,

NSGAFS, B-MOABCFS, and MOEA/D-2TMFI with respect to the convergence. The proportions that MOFS-BDE dominates the

five comparison algorithms are obviously higher than those dominated by the latter. Take the dataset LSVT as example,

72.0% of the solutions of DEMOFS, 100% of the solutions of MOPSOFS and NSGAFS, 63.33% of the solutions of B-MOABCFS,

and 51.67% of the solutions of MOEA/D-2TMFI are dominated by MOFS-BDE. Only 30.93% of the solutions of MOFS-BDE are
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Table 8 

The HV values found by the six algorithms for 20 datasets. 

HV MOFS-BDE DEMOFS MOPSOFS NSGAFS B-MOABCFS MOEA/D-2TMFI 

Average/Std. Average/Std. t -test Average/Std. t -test Average/Std. t -test Average/Std. t -test Average/Std. t -test 

Vowel 0.8262/0.0004 0.8260/0.0007 N 0.8267/0.0006 N 0.8099/0.0372 N 0.8259/0.0004 N 0.8252/0.0005 N 

Wine 0.8835/0.0022 0.8849/0.0019 N 0.8845/0.0021 N 0.8060/0.0484 Y + 0.8841/0.0076 N 0.8830/0.0020 N 

Zoo 0.8870/0.0021 0.8868/0.0022 N 0.8856/0.0026 N 0.7822/0.0420 Y + 0.8852/0.0029 N 0.8850/0.0026 N 

Vehicle 0.6964/0.0058 0.6894/0.0062 N 0.6926/0.0063 N 0.5961/0.0367 Y + 0.6846/0.0067 N 0.6871/0.0042 N 

WDBC 0.9433/0.0008 0.9425/0.0006 N 0.9415/0.0016 Y + 0.7537/0.0610 Y + 0.9397/0.0030 Y + 0.9382/0.0027 Y + 

Ionosphere 0.9300/0.0030 0.9296/0.0034 N 0.9270/0.0037 N 0.8374/0.0981 Y + 0.9218/0.0034 N 0.9238/0.0051 N 

Satellite 0.8704/0.0022 0.8696/0.0027 N 0.8645/0.0035 Y + 0.6885/0.0381 Y + 0.8653/0.0041 Y + 0.8618/0.005 Y + 

SPECTF 0.6887/0.0009 0.6642/0.0194 Y + 0.6875/0.0026 N 0.5858/0.0306 Y + 0.6878/0.0021 N 0.6868/0.0023 Y + 

Parkinson 0.8928/0.002 2 0.8865/0.0083 Y + 0.8829/0.0064 Y + 0.7149/0.0354 Y + 0.8846/0.0047 Y + 0.8836/0.0077 Y + 

Sonar 0.9175/0.0043 0.9038/0.0055 Y + 0.8851/0.0161 Y + 0.6693/0.0218 Y + 0.9049/0.0045 Y + 0.9031/0.1010 Y + 

Libras 

Movement 

0.8709/0.0033 0.8655/0.0032 N 0.8547/0.0123 Y + 0.6123/0.0267 Y + 0.8612/0.0050 Y + 0.8596/0.0058 Y + 

Hill-valley 0.6681/0.0029 0.6517/0.0035 Y + 0.6501/0.0062 Y + 0.4407/0.0159 Y + 0.6384/0.0184 Y + 0.6392/0.0048 Y + 

ULC 0.8873/0.0040 0.8788/0.0058 Y + 0.8306/0.0101 Y + 0.5771/0.0254 Y + 0.8679/0.0088 Y + 0.8701/0.0034 Y + 

Musk 0.9531/0.0033 0.9407/0.0045 Y + 0.8799/0.0201 Y + 0.6019/0.0155 Y + 0.9373/0.0081 Y + 0.9401/0.0038 Y + 

SCADI 0.9117/0.0094 0.9097/0.0088 N 0.8811/0.0126 Y + 0.5559/0.0133 Y + 0.8881/0.0174 Y + 0.8961/0.0128 Y + 

LSVT 0.8663/0.0275 0.7510/0.0414 Y + 0.7421/0.0042 Y + 0.3967/0.0064 Y + 0.8159/0.0809 Y + 0.7981/0.0937 Y + 

CNAE-9 0.8381/0.0076 0.8113/0.0106 Y + 0.7461/0.0081 Y + 0.4639/0.0186 Y + 0.8361/0.0119 N 0.8405/0.0159 N 

Yale_64 0.7489/0.0035 0.6719/0.0093 Y + 0.6238/0.0055 Y + 0.4221/0.0111 Y + 0.7535/0.0038 Y- 0.7133/0.0127 Y + 

SRBCT 0.8250/0.0095 0.7480/0.0109 Y + 0.7148/0.0149 Y + 0.4799/0.0101 Y + 0.7715/0.0130 Y + 0.7269/0.0089 Y + 

DLBCL 0.6970/0.0154 0.6556/0.0082 Y + 0.6250/0.0063 Y + 0.4667/0.0137 Y + 0.5944/0.0225 Y + 0.5080/0.0079 Y + 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dominated by MOEA/D-2TMFI in the worst case. Moreover, for eight out of the 12 datasets, i.e., Ionosphere, Satellite, Sonar,

Libras Movement, ULC, Musk, SCADI, and LSVT, MOFS-BDE also shows better performances than that of DEMOFS, MOPSOFS,

NSGAFS, B-MOABCFS, and MOEA/D-2TMFI regarding the diversity of solutions, as shown in Table 7 . 

For the dataset with 857 features, CNAE-9, MOFS-BDE cannot find a solution dominating the solutions obtained by B-

MOABCFS and MOEA/D-2TMFI. Their SC values show, on the contrary, that 24.48% and 31.39% of the solutions of MOFS-BDE

are dominated by that of B-MOABCFS and MOEA/D-2TMFI, respectively. The excellent SC performances of B-MOABCFS and

MOEA/D-2TMFI are mainly due to their capabilities of rapidly reducing features. As demonstrated in Fig. 6 , the number of

features in each solution of B-MOABCFS and MOEA/D-2TMFI is obviously less than that of MOFS-BDE. However, reducing

the features too fast may sacrifice the classification accuracy of B-MOABCFS and MOEA/D-2TMFI. We can observe from

Fig. 6 that the minimal error rate obtained by MOFS-BDE is 6.0% lower than that of B-MOABCFS and MOEA/D-2TMFI. In

addition, MOFS-BDE has a larger FN value, 9.80, while the FN values of B-MOABCFS and MOEA/D-2TMFI are 9.70 and 8.15,

respectively. 

For the dataset with 1024 features, Yale_64, MOFS-BDE has the second best performance with respect to both the con-

vergence and diversity of solutions, but its value is better than that of DEMOFS, MOPSOFS, NSGAFS, and MOEA/D-2TMFI.

B-MOABCFS is well capable of achieving the best convergence as well as the diversity of solutions, because of the remark-

able mutation performance of B-MOABCFS in the scout bee phase. 

For the dataset with more than 2308 features, SRBCT, B-MOABCFS shows the best convergence, which is fairly better than

that of the five comparison algorithms. All the solutions obtained by NSGAFS, MOPSOFS, B-MOABCFS, and MOEA/D-2TMFI

are dominated by that of MOFS-BDE, and 93.75% of the solutions of DEMOFS are dominated by MOFS-BDE. In addition,

MOFS-BDE yields the best performance with respect to the diversity of solutions, as given in Table 7 . 

For the dataset with more than 50 0 0 features, DLBCL, although B-MOABCFS obtains more solutions than MOFS-BDE, their

SC values show that those solutions’ convergence is fairly better than that of DEMOFS. Note that all the solutions of DEMOFS

are dominated by that of MOFS-BDE. 

Moreover, the t -test is used to investigate the statistical robustness of MOFS-BDE. It is a two-sample location test for test-

ing the hypothesis that two populations have the equal means. We set the significance level to be 0.05, and the HV metric

is employed here. Table 8 gives the results of the six algorithms with respect to HV. We emphasize that ‘ Y + ’ indicates that

MOFS-BDE is significantly better than the selected one by the two-tailed test at the 0.05 level, ‘Y-’ indicates that MOFS-BDE

is significantly worse than the selected one by the two-tailed test at the 0.05 level, and ‘N’ indicates that the difference

between these two algorithms is not significant at the 0.05 level. We can find out that, for the four datasets with less

than 20 features, i.e., Vowel, Wine, Zoo, and Vehicle, MOFS-BDE can acquire similar results to that of DEMOFS, MOPSOFS,

B-MOABCFS, and MOEA/D-2TMFI. However, for eight out of the remaining 16 datasets, i.e., Parkinson, Sonar, Hill-valley, ULC,

Musk, LSVT, SRBCT, and DLBCL, the HV performance of MOFS-BDE is considerably better than that of DEMOFS, MOPSOFS,

NSGAFS, B-MOABCFS, and MOEA/D-2TMFI at the 0.05 level. For four out of the 16 datasets, i.e., WDBC, Satellite, Libras Move-

ment, and SCADI, MOFS-BDE can get the HV values comparable with that of DEMOFS, and its HV values are significantly

better than that of MOPSOFS, NSGAFS, B-MOABCFS, and MOEA/D-2TMFI at the 0.05 level. For two out of the 16 datasets, i.e.,

Ionosphere and SPECTF, MOFS-BDE also obtains competitive HV values compared with the other algorithms. There is only
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Table 9 

Running time consumed by six algorithms for 20 datasets (unit: minute). 

Algorithms MOFS-BDE DEMOFS MOPSOFS NSGAFS B-MOABCFS MOEA/D-2TMFI 

Vowel 7.91/0.27 8.34/0.35 7.32/0.41 8.29/0.57 7.65/0.39 6.83/0.26 

Wine 0.35/0.007 0.19/ 0.003 0.25/0.007 0.28/0.016 0.36/0.009 0.32/0.003 

Zoo 0.17/0.002 0.12/0.002 0.08/0.004 0.13/0.007 0.19/0.010 0.23/0.005 

Vehicle 0.16/0.012 0.15/0.010 0.07/0.009 0.10/0.009 0.09/0.014 0.18/0.002 

WDBC 3.14/0.12 3.29/0.08 2.99/0.14 4.27/0.42 5.23/0.49 2.33/0.07 

Ionosphere 1.13/0.04 1.29/0.05 1.02/0.04 1.51/0.07 1.12/0.10 1.08/0.05 

Satellite 9.72/0.33 9.31/0.22 8.18/0.63 11.70/0.36 14.42/0.89 7.04/0.25 

SPECTF 0.38/0.006 0.31/ 0.005 0.25/0.006 0.33/0.009 0.51/0.012 0.38/0.004 

Parkinson 0.84/0.01 0.77/0.04 0.67/0.04 1.08/0.12 1.16/0.06 0.71/0.02 

Sonar 0.69/0.05 0.77/0.06 0.65/0.07 1.03/0.04 0.67/0.09 0.67/0.03 

Libras Movement 3.00/ 0.10 2.87/0.15 2.47/0.27 4.62/0.16 3.87/0.45 1.92/0.08 

Hill-valley 8.82/0.83 9.48/0.78 6.69/1.10 12.06/0.48 9.25/1.45 4.86/0.39 

ULC 17.18/2.11 17.44/1.95 18.17/2.42 31.15/3.25 16.80/2.87 14.60/1.02 

Musk 18.01/1.71 17.38/0.90 20.07/2.95 37.11/4.29 25.72/2.88 14.14/0.47 

SCADI 0. 79/0.02 0.63/0.02 0.42/0.05 1.41/0.07 0.65/0.02 0.76/0.03 

LSVT 2.10/0.11 2.63/0.12 1.95/0.17 4.00/0.13 1.82/0.09 1.73/0.06 

CNAE-9 20.30/0.46 20.82/0.71 18.93/1.08 33.59/1.17 19.21/1.89 15.34/0.98 

Yale_64 16.54/0.36 23.67/0.63 20.34/0.97 36.41/0.96 34.17/1.51 13.99/1.33 

SRBCT 16.58/0.32 17.37/0.27 13.91/0.50 22.10/0.39 30.18/ 0.53 20.61/0.31 

DLBCL 29.45/2.69 21.30/2.65 14.58/0.69 17.80/0.29 27.97/0.45 17.45/0.85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

one among the 20 datasets, i.e., Yale_64, for which MOFS-BDE has a much worse HV value than that of B-MOABCFS at the

0.05 level. 

A non-parametric statistical test, Friedman test, is utilized to verify whether different algorithms have similar classifica-

tion accuracies for all the test problems. Based on the results in Table 8 , we can obtain the p -value of the Friedman test

p = 1.6099e-13. A small value of p indicates that all the algorithms have the same HV performance rejected at 0.05 sig-

nificance level. Considering the HV values in Table 8 and two statistical test values, we can conclude that MOFS-BDE is a

competitive alternate for the feature selection problems. 

6.6. Running time 

The running time of MOFS-BDE, DEMOFS, MOPSOFS, NSGAFS, B-MOABCFS, and MOEA/D-2TMFI is also compared in our

simulations. All the six algorithms have the same evaluation time as in Section 6.1 . Table 9 shows their average running

time. 

It is clearly visible that our MOFS-BDE consumes a longer running time than that of MOPSOFS or MOEA/D-2TMFI for most

datasets. There are two main reasons: (1) In order to increase the classification accuracy, MOFS-BDE selects more features

than that of MOPSOFS and MOEA/D-2TMFI. As we know that the larger the number of selected features, the larger the size

of the dataset used to train classifiers and the longer the running time the algorithm spends on individual evaluation. In

other words, MOPSOFS and MOEA/D-2TMFI have a shorter running time by sacrificing the classification accuracy; (2) MOFS-

BDE uses the non-dominated sorting strategy with a higher computational complexity, i.e., FNS, which, to some extent, can

prolong its running time. Given the fact that ENS has a lower time complexity than that of FNS, MOFS-BDE consumes a

shorter time than that of DEMOFS for simple datasets. Although B-MOABCFS also uses the non-dominated sorting strategy,

it consumes a shorter time than that of MOFS-BDE and DEMOFS for some datasets, due to the less features selected. 

In general, with more features to improve the classification accuracy, MOFS-BDE consumes a relatively long running time

for most datasets compared with MOPSOFS and MOEA/D-2TMFI. However, the growth in the running time is acceptable

for the improvement of the classification performance. In summary, the above experimental results have shown that the

proposed algorithm is indeed a competitive solution to feature selection problems, especially with high-dimension data. 

7. Conclusions 

In this paper, we propose a new multi-objective differential evolution algorithm, namely MOFS-BDE, for the feature se-

lection problems. Several new operators including the probability difference-based binary mutation, the one-bit purifying

search, and the one-bit purifying search, have been developed and embedded into MOFS-BDE. By comparing MOFS-BDE

with four popular feature selection approaches (DEMOFS, NSGAFS, MOPSOFS, and B-MOABCFS) and a new MOEA/D method

(MOEA/D-2TMFI), we demonstrate that our MOFS-BDE is efficient in dealing with feature selection problems. The main find-

ings of the paper can be summarized as follows. 

(1) On the basis of the optimal learning strategy, the proposed probability difference-based binary mutation can effec-

tively improve the convergence of our algorithm. For most of the test datasets, MOFS-BDE can obtain satisfactory

solutions dominating those solutions acquired from the five comparison algorithms. 
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(2) The novel one-bit purifying search makes full use of the characteristics of feature selection problems. With the self-

learning ability, elite individuals among the population can effectively guide the search of other individuals. 

(3) The one-bit purifying search is designed as a small-scale refinement process, while the new mutation and crossover in

the DE can perform a large-scale search in the parameter space. By combining these operators together, our algorithm

is well capable of achieving an appropriate trade-off between exploitation and exploration. 

Compared with conventional approaches, such as the mRMR and sequential forward selection, evolutionary feature se-

lection methods usually have high computational complexities, because they need to repeatedly evaluate the individuals. As

the number of samples/features grows, the running time may also go up. How to reduce their computational complexities

by using the approximate evaluation and sample reduction strategies is one of our future research topics. Moreover, we are

going to apply meta-heuristic approaches for more complex data mining problems, such as multi-objective multi-label and

stream feature selection. 
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