艾岳巍

博士生导师 硕士生导师

所在单位:交通运输工程学院

学位:博士学位

在职信息:在职

   

个人简介

艾岳巍,博士,硕士生导师,博士生导师,博士后合作导师,中南大学交通运输工程学院副教授,轨道交通装备研究所副所长。

美国普渡大学(Purdue University)访问学者,重载快捷大功率电力机车全国重点实验室核心研究成员,智能制造装备与技术全国重点实验室研究成员,高端装备机械传动全国重点实验室研究成员,轨道交通安全教育部重点实验室研究成员,国家自然基金函评专家,教育部科技评审专家,国家标准评审专家,教育部学位论文评审专家,湖南省科技奖励评审专家,湖南省专项评审专家,广东省专项评审专家。中国机械工程学会高级会员,中国机械工程学会焊接分会委员,中国激光加工专委会委员,美国激光学会(LIA)会员,美国机械工程师学会(ASME)会员,电气和电子工程师学会(IEEE)会员,GSEMSN-2021国际会议特邀优秀报告者,第15、16、17、18、19、20届数值分析与应用数学国际会议激光材料加工模拟仿真主题会组织者,AEIC专家库成员,国际期刊IMST副编辑,Sustainability (SCI JCR Q2) Guest Editor,IJMEA编委,金属加工杂志社编委,焊接杂志社首届青年编委,粉末冶金材料首届青年编委,铁道科学与工程学报首届青年编委

主持或主研国家重点基础研究发展计划项目、国家自然科学基金重点项目、国家自然基金面上项目、自然基金青年项目、中央高校专项基金项目、创新交叉重点团队专项及国际联合基金等项目10余项。在Acta、HMT、ATE等激光加工领域著名SCI期刊及高水平国际学术会议上发表论文50余篇,授权国家发明专利10余项,授权国家软件著作权10项。担任MD、ATE、HMT、JMST、JIM等40余个国际著名期刊特邀评审专家。

地 址:湖南省长沙市天心区韶山南路22号中南大学交通运输工程学院交通楼224

邮 编:410075
微 信:421954105

邮 箱: aiyuewei1@126.com;yueweiai@csu.edu.cn

(欢迎机械、材料、交设、交运等专业学生邮件、微信联系申报博士后及博士、硕士研究生,支持学生申请CSC项目出国联合培养深造

2025年计划招收博士研究生1-2名,硕士研究生3名


教育经历

美国普渡大学(Purdue University)激光加工中心,访问学者

华中科技大学,机械科学与工程学院,博士

重庆大学,机械工程学院,硕士

 

工作经历

副教授,中南大学,交通运输工程学院

研究助理,美国普渡大学(Purdue University),工学院


科研项目

国家自然基金面上项目—电磁多热场耦合下高速激光整形焊接关键技术研究,58万,主持人

中央高校基本科研业务费专项基金—激光加工质量评估方法研究,80万,主持人

自然基金青年项目—铝合金激光高速焊接熔池小孔动力学特征对焊缝成形质量的影响机制研究,主持人

***面上项目—******构件激光高效******,主持人

***面上项目—******焊缝缺陷形成******,主持人

国家自然基金重点专项项目—大型复杂结构件高功率激光焊接的基础研究,300万,项目执行负责人

国家重点基础研究发展计划—激光-电弧-磁场复合作用下大型厚壁构件成形成性原理,500万,参与人

国家自然基金国际合作项目—面向低碳制造的激光加工工艺及系统优化基础理论与关键技术,300万,参与人

创新交叉重点团队基金项目—厚壁构件窄间隙大功率激光焊接关键技术与装备,100万,主研人

国家自然基金创新研究群体项目—高性能数字制造装备的基础研究,525万,参与人

国际合作项目—微电子器件激光封装关键技术研究,主持人

国际合作项目—激光焊接与粉末增材制造熔融金属动力学特性分析,主持人


研究领域

轨道交通装备智能化;

智能制造技术;

激光增材与焊接;

先进修复技术;

机器视觉与人工智能技术;
轨道交通设备智能运维技术;

激光加工多相流仿真模拟;

激光智能焊接与质量评估。


主讲课程

英语科技论文写作(博士研究生课程)

英语科技论文写作(硕士研究生课程)

涡轮机械(留学生课程  英文)

车辆修造工艺与装备(专业核心课程)

轨道交通设备智能维护

轨道交通概论

系统安全与可靠性理论


专利

[1] 艾岳巍; 蒋平; 邵新宇; 李培根等. 一种钢板对接焊间隙调整装置. 中国发明专利. 专利号:201611243178.4.

[2] 蒋平; 刘卫; 邵新宇; 艾岳巍等. 一种焊接保护气导气管调节装置及其应用. 中国发明专利. 专利号:201611119604.3.

[3] 艾岳巍; 杨岳; 刘肖影; 黄义; 余龙; 一种焊接角度调整装置. 中国发明专利. 专利号:201911266476.9.

[4] 艾岳巍; 黄义; 余龙; 刘肖影; 一种用于焊接过程监测平台光谱仪位置调节跟踪装置. 中国发明专利. 专利号:201911421404.7.

[5] 艾岳巍; 刘肖影; 余龙; 黄义; 一种用于T型焊接的位置及角度调整装置. 中国发明专利. 专利号:202010129293.9.

[6] 艾岳巍; 余龙; 刘肖影; 黄义; 用于复杂曲面构架焊接的位置调节装置. 中国发明专利. 专利号:202110179316.1.

[7] 艾岳巍; 袁鹏程; 程健; 颜亚超; 用于梯度功能金属零件的同步送丝送粉激光增材制造方法. 中国发明专利. 专利号:202210501143.5.

[8] 何彦; 刘耕; 鄢萍; 陈鹏文; 艾岳巍等. 一种数控机床排屑系统按需节能运行控制方法及系统. 中国发明专利. 专利号:201310162685.5.


学生获奖

研究生获奖荣誉

2023:研究生颜亚超获研究生国家奖学金(20000元)

2020:研究生刘肖影获研究生国家奖学金(20000元)

2023:研究生韩世博获中南大学小米特等奖学金(20000元,全校5人)

2023:研究生董光裕获中南大学蔡田碹珠奖学金(5000元)

2024:研究生颜亚超获湖南省普通高等学校2024届优秀毕业生

2022:研究生刘肖影获中南大学2022届优秀毕业生

2023:研究生杜传彬获研究生国家学业奖学金一等奖

2023:研究生刘家宝获研究生国家学业奖学金一等奖

2023:研究生张扬获研究生国家学业奖学金二等奖

2023:研究生叶成龙获研究生国家学业奖学金二等奖

2022:研究生王亿元获研究生国家学业奖学金一等奖

2021:研究生袁鹏程获研究生国家学业奖学金一等奖

2021:研究生程健获研究生国家学业奖学金一等奖

2021:研究生雷畅获研究生国家学业奖学金一等奖

2020:研究生黄义获研究生国家学业奖学金一等奖

2020:研究生余龙获研究生国家学业奖学金一等奖


学科竞赛

2022:国家级大学生创新创业项目,2022

2023:“华为杯”第二十届中国研究生数学建模竞赛,三等奖,2023

2022:“中国光谷 华为杯”第十九届中国研究生数学建模竞赛,三等奖,2022

2021:“华为杯”第十八届中国研究生数学建模竞赛,三等奖,2021

2022:“互联网+”大学生创新创业大赛,三等奖,2022

2021:“互联网+”大学生创新创业大赛,三等奖,2021

2021:交通运输科技大赛,二等奖,2021

2020:交通运输科技大赛,二等奖,2021


国际学术交流

[25] 艾岳巍. 异种材料激光焊接熔池小孔动力学行为特征研究,第十五届全国激光加工学术会议,2023.5.12-2023.5.15, 武汉.

[24] 艾岳巍, 王亿元. 倾斜基体上的送丝激光增材制造熔池动力学行为研究, 第二届全国增材制造技术高峰论坛, 2023.9.22-2023.9.25, 南京.

[23] Liu J, Ai Y*. Numerical investigation of bead width improvement at interface in the oscillating laser stake lap welding of dissimilar materials, The 42nd International Congress on Applications of Lasers and Electro-Optics, October 16-19 2023, Chicago, USA.

[22] Wang Y, Ai Y*. Numerical analysis of free surface evolution of molten pool on inclined substrate in wire feeding laser additive manufacturing, The 42nd International Congress on Applications of Lasers and Electro-Optics, October 16-19 2023, Chicago, USA.

[21] Han S, Ai Y*. The analysis of microstructure evolution in the weld during dual beam laser welding of aluminum alloy based on numerical calculation, The 42nd International Congress on Applications of Lasers and Electro-Optics, October 16-19 2023, Chicago, USA.

[20] Yan Y, Ai Y*. Numerical analysis of the effect of energy distribution on the symmetry of aluminum alloy during laser scanning welding, The 42nd International Congress on Applications of Lasers and Electro-Optics, October 16-19 2023, Chicago, USA.

[19] Dong G, Ai Y*. Analysis of temperature field in the laser cleaning process of curved surface by numerical simulation, The 42nd International Congress on Applications of Lasers and Electro-Optics, October 16-19 2023, Chicago, USA.

[18] Ai Y. The analysis of weld characteristics identification for fiber laser welding of dissimilar materials based on image recognition, The 41st International Congress on Applications of Lasers and Electro-Optics, October 17-20 2022, Orlando, USA.

[17] 艾岳巍, 袁鹏程. 316L不锈钢送丝激光增材制造熔融金属动力学行为研究, 2022首届全国增材制造技术高峰论坛, 2022.11.26-2022.11.28, 马鞍山.

[16] Yan Y, Ai Y*. The investigation of microstructure of aluminum alloy in molten pool during laser welding by phase field model, Advances in Welding & Additive Manufacturing Research Virtual Conference 2022, June 13-16 2022, Orlando, USA.

[15] Dong G, Ai Y*. The path planning of curved equipment in laser cleaning, Advances in Welding & Additive Manufacturing Research Virtual Conference 2022, June 13-16 2022, Orlando, USA.

[14] Yuan P, Ai Y*. Numerical analysis of the molten pool dynamic behaviors in the laser additive manufacturing, The 40th International Congress on Applications of Lasers and Electro-Optics 2021, October 18-21 2021, San Diego, USA.

[13] Yuan P, Ai Y*. The investigation of the dynamic behaviors of mixing molten pool in the laser additive manufacturing by numerical simulation, Welding & Additive Manufacturing Research Virtual Conference 2021, September 20-23 2021, Orlando, USA.

[12] Cheng J, Ai Y*. The analysis of weld porosity in the oscillating laser T-joint welding of aluminum alloy by numerical simulation, The 40th International Congress on Applications of Lasers and Electro-Optics 2021, October 18-21 2021, San Diego, USA.

[11] Lei C, Ai Y*. Personalized demand responsive optimization method for dissimilar materials laser welding, The 40th International Congress on Applications of Lasers and Electro-Optics 2021, October 18-21 2021, San Diego, USA.

[10] Huang Y, Ai Y*. The analysis of evolution characteristics of weld microstructure in aluminum alloy laser welding by phase field modeling, The 40th International Congress on Applications of Lasers and Electro-Optics 2021, October 18-21 2021, San Diego, USA.

[9] Liu X, Ai Y*. The investigation of weld formation process during the dissimilar materials fiber laser welding by numerical simulation, The 40th International Congress on Applications of Lasers and Electro-Optics 2021, October 18-21 2021, San Diego, USA.

[8] 艾岳巍. 激光高速焊接过程实验与仿真研究,中国机械工程学会焊接分会青年工作者第四届学术研讨会,2021.4.16-2021.4.18, 天津.

[7] Yu L, Ai Y*. The investigation of weld porosity reduction in the “∞” shaped oscillation laser welding of aluminum alloy on by numerical simulation, The 39th International Congress on Applications of Lasers and Electro-Optics 2020, October 19-22 2020, Chicago, USA.

[6] Liu X, Ai Y*. Numerical analysis of fiber laser welding of low carbon steel and stainless steel under different welding conditions, The 39th International Congress on Applications of Lasers and Electro-Optics 2020, October 19-22 2020, Chicago, USA.

[5] Ai Y, Liu X. The investigation of pore defect formation in the weld during high speed laser welding based on numerical simulation, The 38th International Congress on Applications of Lasers and Electro-Optics 2019, October 7-10 2019, Orlando, USA.

[4] Ai Y. The analysis of weld formation in laser transmission welding, The Conference of Center for Laser-based Manufacturing, Purdue University, April 20, 2017, West Lafayette, USA.

[3] Ai Y. The temperature distribution of molten pool in laser transmission welding, The Conference of Center for Laser-based Manufacturing, Purdue University, November 11, 2016, West Lafayette, USA.

[2] Ai Y, Jiang P, Shao X, Li P. Modeling and simulation of full size weld for fiber laser keyhole welding, The 69th IIW Annual Assembly and International Conference, July 10-15 2016, Melbourne, Australia.

[1] Ai Y, Shao X, Jiang P, Li P. Prediction of weld bead for fiber laser keyhole welding based on FEA, The 34th International Congress on Applications of Lasers and Electro-Optics 2015, October 18-22 2015, Atlanta, USA.


代表性论文

[39] An interpolation-based transient solidification conditions model for numerical calculation of grain growth during laser welding, Thermal Science and Engineering Progress, 2024 (JCR Q1)

[38] The evolution characteristics of solidification microstructure in laser welding of Ti-6Al-4V titanium alloy by considering transient flow field, Optics and Laser Technology, 2024 (JCR Q1)

[37] The numerical investigation of cladding layer forming process in laser additive manufacturing with wire feeding, International Journal of Thermal Sciences, 2024 (JCR Q1)

[36] Investigation of influence of oscillation amplitude on keyhole and molten pool morphologies during oscillating laser stake welding of dissimilar materials T-joints, Journal of Laser Applications, 2023 (JCR Q3)

[35] Analysis for temperature distribution of laser cleaning process of curved surface by numerical simulation, Journal of Laser Applications, 2023 (JCR Q3)

[34] The influence of keyhole dynamic behaviors on the asymmetry characteristics of weld during dissimilar materials laser keyhole welding by experimental and numerical simulation methods, International Journal of Thermal Sciences, 2023 (JCR Q1)

[33] Numerical analysis of the effect of energy distribution on weld width during oscillating laser welding of aluminum alloy, Journal of Laser Applications, 2023 (JCR Q3)

[32] Investigation of microstructure evolution on different planes in laser welding of aluminum alloy, Journal of Laser Applications, 2023 (JCR Q3)

[31] The analysis of energy distribution characteristics of molten pool in welding of aluminum alloy with oscillating laser, Sustainability, 2023 (JCR Q2)

[30] The characteristics extraction of weld seam in the laser welding of dissimilar materials by different image segmentation methods, Optics and Laser Technology, 2023 (JCR Q1)

[29] Investigation of microstructure evolution process in circular shaped oscillating laser welding of Inconel 718 superalloy, International Journal of Heat and Mass Transfer, 2023 (JCR Q1, Top)

[28] Prediction of weld area based on image recognition and machine learning in laser oscillation welding of aluminum alloy, Optics and Lasers in Engineering, 2023 (JCR Q1)

[27] Numerical investigation of weld bead porosity reduction in the oscillating laser T-joint welding of aluminum alloy, Journal of Laser Applications, 2022 (JCR Q3)

[26] Analysis of weld seam characteristic parameters identification for laser welding of dissimilar materials based on image segmentation, Journal of Laser Applications, 2022 (JCR Q3)

[25] The analysis of asymmetry characteristics during the fiber laser welding of dissimilar materials by numerical simulation, The International Journal of Advanced Manufacturing Technology, 2022 (JCR Q2)

[24] The investigation of molten pool dynamic behaviors during the “∞” shaped oscillating laser welding of aluminum alloy, International Journal of Thermal Sciences, 2022 (JCR Q1)

[23] The Investigation of microstructure evolution in electron beam additive manufacturing by phase field method, Journal of Laser Applications, 2021 (JCR Q3)

[22] Investigation of molten pool dynamic behaviors in laser additive manufacturing by numerical simulation, Journal of Laser Applications, 2021 (JCR Q3)

[21] Numerical analysis of weld bead formation process in the dissimilar material fiber laser welding, Journal of Laser Applications, 2021 (JCR Q3)

[20] Investigation of dissimilar fiber laser welding of low carbon steel and stainless steel by numerical simulation, Journal of Laser Applications, 2021 (JCR Q3)

[19] Numerical investigation of pore defect formation in the weld during high speed laser welding, Journal of Laser Applications, 2020 (JCR Q3)

[18] Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding, International Journal of Heat and Mass Transfer, 2020 (JCR Q1, Top) 

[17] A defect-responsive optimization method for the fiber laser butt welding of dissimilar materials, Materials & Design, 2016 (JCR Q1, Top) 

[16] The prediction of the whole weld in fiber laser keyhole welding based on numerical simulation, Applied Thermal Engineering, 2017 (JCR Q1, Top)

[15] Experimental and numerical analysis of molten pool and keyhole profile during high-power deep-penetration laser welding, International Journal of Heat and Mass Transfer, 2018 (JCR Q1, Top)

[14] Investigation of the humping formation in the high power and high speed laser welding, Optics and Lasers in Engineering, 2018 (JCR Q1)

[13] Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials, Optics and Lasers in Engineering, 2016 (JCR Q1)

[12] A three-dimensional numerical simulation model for weld characteristics analysis in fiber laser keyhole welding, International Journal of Heat and Mass Transfer, 2017 (JCR Q1, Top) 

[11] Parameters optimization and objective trend analysis for fiber laser keyhole welding based on Taguchi-FEA, The International Journal of Advanced Manufacturing Technology, 2017 (JCR Q2) 

[10] Analysis of weld geometry and liquid flow in laser transmission welding between polyethylene terephthalate (PET) and Ti6Al4V based on numerical simulation, Optics and Laser Technology, 2018 (JCR Q1)

[9] Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials, Applied Physics A, 2015 (JCR Q2)

[8] An optimization method for defects reduction in fiber laser keyhole welding, Applied Physics A, 2016 (JCR Q2) 

[7] Prediction of weld bead for fiber laser keyhole welding based on FEA, The 34th Congress on Applications of Lasers and Electro-Optics, 2015.

[6] Modeling and simulation of full size weld for fiber laser keyhole welding, The 69th IIW Annual Assembly and International Conference, 2016.

[5] Simulation and modeling of shielding gas on the welding defects in the fiber laser keyhole welding, The 3rd International Conference on Materials Science and Mechanical Engineering, 2016.

[4] Prediction of weld shape for fiber laser welding based on hybrid heat source model, The 3rd International Conference on Material, Mechanical and Manufacturing Engineering, 2015.

[3] Cellular automaton modeling for dendritic growth during laser beam welding solidification process, Journal of Laser Applications, 2018, 30(3): 032406. (JCR Q3) 

[2] Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study, Acta Materialia, 2018, 160: 85-96. (JCR Q1, Top) 

[1] Comparison of solidification cracking susceptibility between Al-Mg and Al-Cu alloys during welding: A phase-field study, Scripta Materialia, 2018, 150: 120-124. (JCR Q1, Top)


学术兼职

国际期刊American Journal of Mechanical and Materials Engineering (AJMME)编委;

第18届数值分析与应用数学国际会议(The 18th International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2020)激光材料加工模拟仿真主题会组织者;

 第17届数值分析与应用数学国际会议(The 17th International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2019)激光材料加工模拟仿真主题会组织者;

第16届数值分析与应用数学国际会议(The 16th International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2018)激光材料加工模拟仿真主题会组织者;

第15届数值分析与应用数学国际会议(The 15th International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2017)激光材料加工模拟仿真主题会组织者; 

第3届材料加工与机械制造工程国际学术会议(MPMME 2017)组委会委员,AEIC专家库核心成员。


相关研究领域著名期刊特邀审稿人: 

《Journal of Materials Science & Technology》(JCR Q1,IF 10.9)审稿人;

《Advanced Engineering Informatics》(JCR Q1,IF 8.8)审稿人;

《Applied Soft Computing》(JCR Q1,IF 8.7)审稿人;

《Materials & Design》(JCR Q1,IF 8.4)审稿人;

《Journal of Intelligent Manufacturing》(JCR Q1,IF 8.3)审稿人;

《Applied Thermal Engineering》(JCR Q1,IF 6.4)审稿人;

《Journal of Materials Processing Technology》(JCR Q2,IF 6.3)审稿人;

《Journal of Manufacturing Processes》(JCR Q2,IF 6.2)审稿人;

《International Journal of Heat and Mass Transfer》(JCR Q1,IF 5.2)审稿人;

《Ceramics International》(JCR Q1,IF 5.2)审稿人;

《Ocean Engineering》(JCR Q1,IF 5.0)审稿人;

《Optics and Lasers in Engineering》(JCR Q1,IF 4.6)审稿人;

《Steel and Composite Structures》(JCR Q1,IF 4.6)审稿人;

《International Journal of Thermal Sciences》(JCR Q1,IF 4.5)审稿人;

《Transactions of Nonferrous Metals Society of China》(JCR Q1,IF 4.5)审稿人;

《Heliyon》(JCR Q2,IF 4.0)审稿人;

《Sustainability》(JCR Q2,IF 3.9)审稿人;

《Coatings》(JCR Q2,IF 3.4)审稿人;

《Materials》(JCR Q2,IF 3.4)审稿人;

《Optik》(JCR Q2,IF 3.1)审稿人;

《Metals》(JCR Q2,IF 2.9)审稿人;

《Journal of Engineering Manufacture》(JCR Q2,IF 2.6)审稿人;

《Journal of Iron and Steel Research International》(JCR Q2,IF 2.5)审稿人;

《Journal of Laser Applications》(JCR Q3,IF 2.1)审稿人;

《Engineering Research Express》(JCR Q3,IF 1.7)审稿人;

《Welding International》审稿人;

《Applied Sciences》审稿人;

《Lasers in Manufacturing and Materials Processing》审稿人;

《Systems and Soft Computing》审稿人;

《焊接学报》审稿人;

《有色金属学报》审稿人;

《光电工程》审稿人;

《粉末冶金材料科学与工程》审稿人。