邓晓衡

教授 博士生导师 硕士生导师

入职时间:2006-01-05

所在单位:电子信息学院

职务:院长

学历:博士研究生毕业

性别:男

联系方式:Email:dxh@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省数据传感与交换设备工程中心 主任 IEEE RS Chapter长沙 主席CCF普适计算专委 委员 CCF长沙 执委

毕业院校:中南大学

学科:信息与通信工程
计算机科学与技术

当前位置: 邓晓衡 >> 论文成果

L. C, X. Deng, H. Shen, et al. Dycusboost: Adaboost-based imbalanced learning using dynamic clustering and undersampling[C]//2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018: 208-215.

发布时间:2024-03-13

点击次数:

发表刊物:2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech)

摘要:Abstract—Ensemble learning is a powerful approach to classifying imbalanced data in machine learning. Adaboost as one of Ensemble learning, which often modified to deal with imbalanced problem. However, due to the variation of sample weights in Adaboost algorithm, the distribution of datasets is not consistent for each weak classifier. As a result, feature space-based resampling fails to reflect the transformation of distribution. Aiming at this problem, this paper proposes DYCUSBoost, an Adaboost-based imbalanced learning approach using dynamic clustering and undersampling. In DYCUSBoost, the clustering process is synchronized with the iteration of Adaboost, where clusters formed in different periods of Adaboost are adjusted, which make DYCUSBoost grasp the transformation of the distribution. The undersampling method assesses the importance of each cluster, and make important ones collect more samples. Through experimental verification, DYCUSBoost demonstrates desirable performance in terms of commonly accepted evaluating metrics, e.g., AUC, G-Mean, F-Measure, etc. Moreover, the prediction stability of DYCUSBoost outperforms most undersampling methods.

备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49195.htm

是否译文:

附件:

  • 53-DYCUSBoost_Adaboost-Based_Imbalanced_Learning_Using_Dynamic_Clustering_and_Undersampling.pdf

  • 上一条: X. Deng, D. Zeng, H. Shen. Causation analysis model: based on AHP and hybrid Apriori-Genetic algorithm[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35(1): 767-778.

    下一条: E. Liu, X. Deng, Z. Cao, et al. Design and evaluation of a prediction-based dynamic edge computing system[C]//2018 IEEE Global Communications Conference (GLOBECOM). IEEE, 2018: 1-6.