邓晓衡

教授 博士生导师 硕士生导师

入职时间:2006-01-05

所在单位:电子信息学院

职务:院长

学历:博士研究生毕业

性别:男

联系方式:Email:dxh@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省数据传感与交换设备工程中心 主任 IEEE RS Chapter长沙 主席CCF普适计算专委 委员 CCF长沙 执委

毕业院校:中南大学

学科:信息与通信工程
计算机科学与技术

曾获荣誉:

2024-12-31  当选:  湖南省“芙蓉学者”特聘教授

2020-12-31  当选:  中南大学励志教师奖励

2010-12-31  当选:  湖南省青年骨干教师

2008-12-31  当选:  2008年获西南铝业优秀教师奖

当前位置: 邓晓衡 >> 论文成果

J. Luo, X. Deng, H. Zhang, et al. QoE-driven computation offloading for edge computing[J]. Journal of Systems Architecture, 2019, 97: 34-39.

发布时间:2024-03-13

点击次数:

发表刊物:Journal of Systems Architecture

摘要:We investigate a quality of experience (QoE) based computation offloading scheduling problem for Edge Computing, in which data processing and decision making are placed at the edge of the Internet and close to smart mobile devices and end users. Considering that smart device owners value both response time and battery life, it is reasonable to properly address the latency and energy tradeoff. This paper captures a user-centric view to tackle the offloading scheduling problem via jointly allocating communication and computation resources with consideration of the QoE of users. We formulate our design as a mix-integer non-linear programming (MINLP) problem and solve it in an efficient way by RLT-based branch-and-bound method. Numerical results demonstrate that the proposed offloading scheme achieves an improved performance on latency time and energy consumption, when compared to benchmark schemes

备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49261.htm

是否译文:

附件:

  • 48-QoE-driven computation offloading for edge computing.pdf

  • 上一条: Xiaoheng Deng, Bin Chen, Xuechen Chen, Xinjun Pei, Shaohua Wan, Sotirios K. Goudos, "A Trusted Edge Computing System Based on Intelligent Risk Detection for Smart IoT," in IEEE Transactions on Industrial Informatics, doi: 10.1109/TII.2023.3245681. IEEE Transactions on Industrial Informatics. (中科院 1区, 2023)

    下一条: Xinjun Pei, Xiaoheng Deng, Shengwei Tian, Lan Zhang, Kaiping Xue, "A Knowledge Transfer-Based Semi-Supervised Federated Learning for IoT Malware Detection," in IEEE Transactions on Dependable and Secure Computing, doi: 10.1109/TDSC.2022.3173664. IEEE Transactions on Dependable and Secure Computing. (CCF-A期刊, 2023)