邓晓衡

教授 博士生导师 硕士生导师

入职时间:2006-01-05

所在单位:电子信息学院

职务:院长

学历:博士研究生毕业

性别:男

联系方式:Email:dxh@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省数据传感与交换设备工程中心 主任 IEEE RS Chapter长沙 主席CCF普适计算专委 委员 CCF长沙 执委

毕业院校:中南大学

学科:信息与通信工程
计算机科学与技术

曾获荣誉:

2024-12-31  当选:  湖南省“芙蓉学者”特聘教授

2020-12-31  当选:  中南大学励志教师奖励

2010-12-31  当选:  湖南省青年骨干教师

2008-12-31  当选:  2008年获西南铝业优秀教师奖

当前位置: 邓晓衡 >> 论文成果

X. Deng, P. Jiang, D .Zhao, et al. Effective semi-supervised learning for structured data using Embedding GANs[J]. Pattern Recognition Letters, 2021, 151: 127-134.

发布时间:2024-03-13

点击次数:

发表刊物:Pattern Recognition Letters

摘要:The semi-supervised learning(SSL) was proposed to deal with the situation that only a few samples were labeled, so how to make the most use of the existing samples is crucial. In general, we apply data augmentation methods, like Generative Adversarial Networks(GAN), to increase the number of data when facing unstructured data. However, things get totally different with structured data, the continuity of neural networks limits their use in category variables. In this paper, we propose a semi-supervised Embedding GAN(EmGAN) to solve that problem. We add an embedding layer before the discriminator to better characterize category features and design a new loss function to further train our model. Moreover, the structures of the generator and discriminator are modified to match structured data. With the experiments of nonparametric statistical test, EmGAN shows its advantages in processing structured samples.

备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49272.htm

是否译文:

附件:

  • 37-Effective semi-supervised learning for structured data using Embedding GANs.pdf

  • 上一条: Jinsong Gui, Nansen Jin, Xiaoheng Deng, "Performance Optimization in UAV-Assisted Wireless Powered mmWave Networks for Emergency Communications," in Wireless Communications and Mobile Computing, doi: 10.1155/2021/9936837. Wireless Communications and Mobile Computing. (2021)

    下一条: Xiaoheng Deng, Fang Long, Bo Li, Dejuan Cao, Yan Pan, "An Influence Model Based on Heterogeneous Online Social Network for Influence Maximization," in IEEE Transactions on Network Science and Engineering, doi: 10.1109/TNSE.2019.2920371. IEEE Transactions on Network Science and Engineering. (2020)