邓晓衡

教授 博士生导师 硕士生导师

入职时间:2006-01-05

所在单位:电子信息学院

职务:院长

学历:博士研究生毕业

性别:男

联系方式:Email:dxh@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省数据传感与交换设备工程中心 主任 IEEE RS Chapter长沙 主席CCF普适计算专委 委员 CCF长沙 执委

毕业院校:中南大学

学科:信息与通信工程
计算机科学与技术

当前位置: 邓晓衡 >> 论文成果

X. Deng, P. Jiang, D .Zhao, et al. Effective semi-supervised learning for structured data using Embedding GANs[J]. Pattern Recognition Letters, 2021, 151: 127-134.

发布时间:2024-03-13

点击次数:

发表刊物:Pattern Recognition Letters

摘要:The semi-supervised learning(SSL) was proposed to deal with the situation that only a few samples were labeled, so how to make the most use of the existing samples is crucial. In general, we apply data augmentation methods, like Generative Adversarial Networks(GAN), to increase the number of data when facing unstructured data. However, things get totally different with structured data, the continuity of neural networks limits their use in category variables. In this paper, we propose a semi-supervised Embedding GAN(EmGAN) to solve that problem. We add an embedding layer before the discriminator to better characterize category features and design a new loss function to further train our model. Moreover, the structures of the generator and discriminator are modified to match structured data. With the experiments of nonparametric statistical test, EmGAN shows its advantages in processing structured samples.

备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49272.htm

是否译文:

附件:

  • 37-Effective semi-supervised learning for structured data using Embedding GANs.pdf

  • 上一条: X. Deng, Y. Liu, C. Zhu, et al. Air–ground surveillance sensor network based on edge computing for target tracking[J]. Computer Communications, 2021, 166: 254-261.

    下一条: X. Deng, J. Li, E. Liu, et al. Task allocation algorithm and optimization model on edge collaboration[J]. Journal of Systems Architecture, 2020, 110: 101778.