X. Deng, P. Jiang and X. Chen, "Multirelational Collaborative Filtering for Global Graph Neural Networks to Mine Evolutional Social Relations," in IEEE Transactions on Computational Social Systems, doi: 10.1109/TCSS.2022.3229400. (JCR 1区)
发布时间:2024-03-13
点击次数:
发表刊物:IEEE Transactions on Computational Social Systems
摘要:Abstract—Due to the unstable and complex social network environment, the sole user–item interaction data become insufficient for generating precise recommendations. However, too much emphasis on user–item interactions prevents the discovery of internal connections among them, such as trustworthy user relations. In this work, we have integrated the collaborative and the sequential relations into an end-to-end graph neural network (GNN) simultaneously and proposed a novel framework, namely multirelational collaborative filtering (MRCF), to explore the evolutional social relations. MRCF mainly consists of two components: relational GNN (RGNN) and simple dot-product attention (SDPA), where RGNN is used to capture not only the collaborative but also the sequential relationship from reliable user–item historical interactions through the graph representation, while SDPA can further concentrate on the dominated interaction sequences between users and items. Moreover, a negative sampling method based on user interest is proposed to help train our model. Extensive experiments on three real-world datasets show that the proposed model performs competitively with other state-of-the-art methods in CF.
备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49288.htm
是否译文:否
附件:
上一条: X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling and K. Xue, "Flow Topology-Based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks," in IEEE Transactions on Network and Service Management, vol. 20, no. 1, pp. 684-696, March 2023, doi: 10.1109/TNSM.2022.3213807.
下一条: Y. Li, X. Chen and X. Deng, "Lightweight Deep Joint Source-Channel Coding for Gauss-Markov Sources over AWGN channel," 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-6, doi: 10.1109/WCNC55385.2023.10119015.