董国志

博士生导师

所在单位:数学与统计学院

职务:副教授

学历:博士研究生毕业

办公地点:数理楼559

性别:男

联系方式:guozhi.dong@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:维也纳大学

学科:数学

当前位置: 中文主页 >> 论文成果

A descent algorithm for the optimal control of ReLU neural network informed PDEs based on approximate directional derivatives

发布时间:2024-07-21

点击次数:

DOI码:10.1137/22M1534420

所属单位:数学与统计学院

发表刊物:SIAM J. Optimization

关键字:deep learning-based inverse problems and optimal control of PDEs

摘要:We propose and analyze a numerical algorithm for solving a class of optimal control problems for learning-informed semilinear partial differential equations. The latter is a class of PDEs with constituents that are in principle unknown and are approximated by nonsmooth ReLU neural networks. We first show that a direct smoothing of the ReLU network with the aim to make use of classical numerical solvers can have certain disadvantages, namely potentially introducing multiple solutions for the corresponding state equation. This motivates us to devise a numerical algorithm that treats directly the nonsmooth optimal control problem, by employing a descent algorithm inspired by a bundle-free method. Several numerical examples are provided and the efficiency of the algorithm is shown.

论文类型:文章

学科门类:理学

一级学科:数学

文献类型:J

卷号:3

期号:3

页面范围:2314-2349

是否译文:

发表时间:2024-06-30

收录刊物:SCI

发布期刊链接:https://epubs.siam.org/doi/full/10.1137/22M1534420

上一条: Second-order flows for approaching stationary points of a class of non-convex energies via convex-splitting schemes

下一条: First-order conditions for the optimal control of learning-informed nonsmooth PDEs