Language : English
方国赵
  • Personal Information

    Distinguished Professor


    Supervisor of Doctorate Candidates


    Supervisor of Master's Candidates

    School/Department:School of Materials science and Engineering

    Administrative Position:教授

    Education Level:Postgraduate (Doctoral)

    Business Address:特冶楼332

    Sex:Male

    Contact Information:18390959147

    Degree:Doctoral degree

    Status:Employed

    Alma Mater:中南大学

  • Profile

    方国赵,中南大学教授,博导,湖湘青年英才,湖湘青年科技创新人才,湖南省优青。主要从事低成本储能二次电池关键材料研究和技术开发,主持国家自然科学基金重大研究计划培育项目、国家重点研发计划子课题、国家自然科学基金面上项目、湖湘青年科技创新人才项目、湖南省优青基金项目、中南大学创新驱动计划参与国家自然科学基金重点项目1项。以一作/通讯作者在Angew. Chem., Adv. Mater., Prog. Mater Sci., Natl. Sci. Rev., Sci. Bull., Acta Mater.等国内外顶级期刊发表学术论文50余篇,其中1篇入选2019年中国百篇最具影响力国际学术论文,曾入选热点论文15篇,ESI高被引论文34篇。H-index指数61,总引用1万余次。申请国家发明专利10余项,授权6项。入选2022年度至2024年度科睿唯安“全球高被引科学家”(交叉学科、材料学科)全球前2%顶尖科学家(终身科学影响力排行榜)。担任Adv. Powder Mater.期刊特聘编委,eScience, Energy Environ. Mater., Green Energy Environ.等期刊青年编委,能源材料与器件专家委员会委员,复合材料专家委员会委员,中国化学会会员,中国有色金属学会会员。

     

    长期招收本-博拔尖创新人才硕士、博士,以及招聘相关方向的博士后,非常欢迎有意愿加入课题组的来组交流学习!

    Email:fg_zhao@csu.edu.cn

    联系地址:中南大学校本部特冶楼332室


    科研方向

    主要研究方向:

    [1] 低成本钠离子、锌离子电解液和界面

    [2] 水系锌锰二次电池

    [3] 钠离子电池、锌二次电池关键电极材料结构调控

     

    研究课题:

    [1] 国家自然科学基金重大研究计划培育项目:低温锌锰二次电池混合态电解质研究(92472116),2025-01-01至2027-12-31,主持

    [2] 国家重点研发计划子课题(100万):高容量长寿命钒基正极材料制备及电池体系优化(2023YFC2908305),2023-10 至 2027-09,主持

    [3] 国家自然科学基金面上项目:锌离子电池电解液与锰基材料适配性基础研究(52072411),2021-01-01至2024-12-31,主持

    [4] 国家自然科学基金重点项目:低成本、高比能、长寿命大规模储能二次电池新系统研发(51932011),2020-01-01至2024-12-31,参与

    [5] 湖湘青年科技创新人才计划:低成本钠、锌二次电池(2021RC3001),2021-09 至 2024-09,主持(优秀结题)

    [6] 湖南省自然科学基金优青项目:低成本二次电池关键材料(2021JJ20060),2021-01 至 2023-12,主持(优秀结题)

    [7] 中南大学创新驱动计划项目:水系锌二次电池关键材料,主持

    [8] 中南大学特聘教授人才科研启动项目,主持(结题)

     

    承担教学课程:

    [1] 《晶体学基础》、《晶体学基础(应物)》(本科生)

    [2] 《现代晶体学基础与应用》(学术硕士生、博士生)

    [3] 《现代晶体学基础与应用》(同等学力研究生)

    [4] 《论文写作与学术规范》(材物化方向硕士生、工程博士生)


    学术论文

    [1] Zhexuan Liu, Guozhao Fang*, et al., Effective Proton Conduction in Quasi‐Solid Zinc‐Manganese Batteries via Constructing Highly Connected Transfer Pathways. Angew. Chem. (2024). https://doi.org/10.1002/anie.202417049  

    [2] Aoyan Zeng, Guozhao Fang*, et al., Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries. Energy Storage Mater. (2024). https://doi.org/10.1016/j.ensm.2024.103894   

    [3] Xuefang Xie#*, Longfei Deng#, Guozhao Fang*, et al., Modulating interfacial Zn2+ deposition mode towards stable Zn anode via bimetallic co-doped coating. Energy Storage Mater. 73((2024). https://doi.org/10.1016/j.ensm.2024.103834   

    [4] Yuqing Yang#, Liping Qin#, Guozhao Fang*, et al., Electrochemically and chemically in-situ interfacial protection layers towards stable and reversible Zn anodes. Science Bulletin. (2024). Accepted. https://doi.org/10.1016/j.scib.2024.10.025 

    [5] Yida Hu, Guozhao Fang*, et al., Challenges and industrial considerations towards stable and high-energy-density aqueous zinc-ion batteries. Energy Environ. Sci. 17(21), 8078-8093 (2024). https://doi.org/10.1039/d4ee03628j    

    [6] Wenyong Chen, Guozhao Fang*, Fei Wang*, etc., Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. Adv. Mater. (2024). https://doi.org/10.1002/adma.202411802   

    [7] Xuefang Xie#*, Xiaoxin Xu#, Guozhao Fang*, etc., Understanding the iodine electrochemical behaviors in aqueous zinc batteries. J. Energy Chem. (2024). Accepted.  

    [8] Ruonan Li#, Wenhan Jia#, Ming Li*, Guozhao Fang*, etc., MXene/Zwitterionic Hydrogel Oriented Anti-freezing and High-Performance Zinc-Ion Hybrid Supercapacitor. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202409207    

    [9] Miao Zhou*, Guozhao Fang*, etc., Issues and optimization strategies of binders for aqueous zinc metal batteries. Chem. Eng. J. 49 (2024). https://doi.org/10.1016/j.cej.2024.154916     

    [10] Miao Zhou*, Guozhao Fang*, etc., Regulating preferred crystal plane with modification of exposed grain boundary towards stable Zn anode. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202412092    

    [11] Fei Huang, Guozhao Fang*, etc., In-depth Understanding of Interfacial Na+ Behaviors in Sodium Metal Anode: Migration, Desolvation, Deposition. Adv. Mater. (2024). Accepted. https://doi.org/10.1002/adma.202405310   

    [12] Chao Hu, Guozhao Fang*, Qiang Zhang*, etc., Carbonate Ester-Based Sodium Metal Battery with High-Capacity Retention at −50°C Enabled by Weak Solvents and Electrodeposited Anode. Angew. Chem. (2024). https://doi.org/10.1002/anie.202407075 

    [13] Shan Guo, Guozhao Fang*, etc., Conversion-type anode chemistry with interfacial compatibility toward Ah-level near-neutral high-voltage zinc ion batteries. National Science Review (2024). https://doi.org/10.1093/nsr/nwae181 

    [14] Xinyue Dou, Guozhao Fang*, etc., Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci. Bull. 69(6), 833-845 (2024). https://doi.org/10.1016/j.scib.2024.01.029 

    [15] Qiong He, Guozhao Fang*, etc., Constructing Kosmotropic Salt‐Compatible PVA Hydrogels for Stable Zinc Anodes via Strong Hydrogen Bonds Preshielding Effect. Advanced Energy Materials (2024). https://doi.org/10.1002/aenm.202400170 

    [16] Xianhong Chen, Guozhao Fang*, etc., Thermodynamics and Kinetics of Conversion Reaction in Zinc Batteries. ACS Energy Lett. 2037-2056 (2024). https://doi.org/10.1021/acsenergylett.4c00450 

    [17] Biao Fu#, Guanqun Liu#, Guozhao Fang*, etc., Zn Powder-Based Anodes for Aqueous Zn Metal Batteries: Strategies, Structures, and Perspectives. ACS Energy Lett. 3292-3307 (2024). https://doi.org/10.1021/acsenergylett.4c00628 

    [18] Peng Xu#, Fei Huang#, Guozhao Fang*, etc., Anode‐Free Alkali Metal Batteries: From Laboratory to Practicability. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202406080 

    [19] Lu Yang#, Miao Zhou#*, Guozhao Fang*, etc., Separators in aqueous zinc-ion batteries: Interfacial chemistry and optimization strategies. Energy Storage Mater. 67 (2024). https://doi.org/10.1016/j.ensm.2024.103271 

    [20] Wenwen Song#, Xuefang Xie#*, Guozhao Fang*, etc., Reversible uniform and fine deposition stabilizing zinc anode at low temperature. Energy Storage Mater. 70 (2024). https://doi.org/10.1016/j.ensm.2024.103489 

    [21] Longfei Deng#, Xuefang Xie#*, Guozhao Fang*, etc., Realizing highly stable zinc anode via an electrolyte additive shield layer and electrochemical in-situ interface. Chem. Eng. J. (2024). https://doi.org/10.1016/j.cej.2024.151104 

    [22] Guanqun Liu#, Biao Fu#, Guozhao Fang*, etc., Copper oxide-modified highly reversible Zn powder anode for aqueous Zn metal batteries. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02869-5

    [23] Yida Hu#, Zhexuan Liu#, Guozhao Fang*, Shuquan Liang*, etc., Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. National Science Review 2023, 10 (10), nwad220. https://doi.org/10.1093/nsr/nwad220 

    [24] Yicai Pan, Guozhao Fang*, etc., Quasi‐Decoupled Solid–Liquid Hybrid Electrolyte for Highly Reversible Interfacial Reaction in Aqueous Zinc–Manganese Battery. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202203766    

    [25] Qiong He, Guozhao Fang*, etc., Highly Entangled Hydrogel Enables Stable Zinc Metal Batteries via Interfacial Confinement Effect. ACS Energy Lett. 8(12), 5253-5263 (2023). https://doi.org/10.1021/acsenergylett.3c02139 

    [26] Xiongbin Luo, Guozhao Fang*, etc., Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode. Energy Storage Mater. 57(628-638 (2023). https://doi.org/10.1016/j.ensm.2023.03.002 

    [27] Nannan Qin, Guozhao Fang*, etc., Boosting high initial coulombic efficiency of hard carbon by in-situ electrochemical presodiation. J. Energy Chem. 77, 310-316 (2023). https://doi.org/10.1016/j.jechem.2022.10.032   

    [28] Zequan Zhao, Guozhao Fang*, etc., Towards establishing uniform metrics for evaluating the safety of lithium metal batteries. Advanced Powder Materials 2023, 2 (4). https://doi.org/10.1016/j.apmate.2023.100139 

    [29] Mingming Han, Guozhao Fang*, etc., Aqueous Rechargeable Zn–Iodine Batteries: Issues, Strategies and Perspectives. Small (2023). https://doi.org/10.1002/smll.202310293 

    [30] Lu Yang#, Tengsheng Zhang#, Guozhao Fang*, etc., Constructing Ionic Self‐Concentrated Electrolyte via Introducing Montmorillonite Toward High‐Performance Aqueous Zn−MnO2 Batteries. Small Methods (2023). https://doi.org/10.1002/smtd.202300009 

    [31] Chengjie Yin, Guozhao Fang*, etc., Proton Self‐Doped Polyaniline with High Electrochemical Activity for Aqueous Zinc‐Ion Batteries. Small Methods (2023). https://doi.org/10.1002/smtd.202300574 

    [32] Zhexuan Liu, Guozhao Fang*, Shuquan Liang*, etc., Balanced interfacial ion concentration and migration steric hindrance promoting high-efficiency deposition/dissolution battery chemistry. Adv. Mater. 2022, e2204681. https://doi.org/10.1002/adma.202204681   

    [33] Zhexuan Liu, Guozhao Fang*, Shuangyin Wang*, Shuquan Liang*, etc., Ion Migration and Defect Effect of Electrode Materials in Multivalent-Ion Batteries. Prog. Mater Sci. 2022, 125, 100911. https://doi.org/10.1016/j.pmatsci.2021.100911 

    [34] Ziqing Wang, Guozhao Fang*, Shuquan Liang*, etc., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2022, 2 (2), 209-218. https://doi.org/10.1016/j.esci.2022.03.002

    [35] Shan Guo, Guozhao Fang*, Shuquan Liang*, etc., Quasi-Solid Electrolyte Design and In-Situ Construction of Dual Electrolyte/Electrode Interphases for High-Stability Zinc Metal Battery. Adv. Energy Mater. 2022, 12(25), 2200730. https://doi.org/10.1002/aenm.202200730 

    [36] Shan Guo#, Jialin Li#, Guozhao Fang*, Shuquan Liang*, etc., Interfacial thermodynamics-inspired electrolyte strategy to regulate output voltage and energy density of battery chemistry. Sci. Bull. 2022, 67 (6), 626-635. https://doi.org/10.1016/j.scib.2021.10.016 

    [37] Wenyong Chen, Guozhao Fang*, Shuquan Liang*, etc., Hydrogen Bond‐Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces. Adv.  Funct. Mater. 0(0), 2112609 (2022). https://doi.org/10.1002/adfm.202112609 

    [38] Miao Zhou, Guozhao Fang*, Xingyou Lang*, Shuquan Liang*, etc., Intrinsic structural optimization of zinc anode with uniform second phase for stable zinc metal batteries. Energy Storage Mater. 2022, 52, 161-168. https://doi.org/10.1016/j.ensm.2022.06.058

    [39] Miao Zhou#, Yue Chen#, Guozhao Fang*, etc., Electrolyte/Electrode Interfacial Electrochemical Behaviors and Optimization Strategies in Aqueous Zinc-Ion Batteries. Energy Storage Mater. 2022, 45, 618. https://doi.org/10.1016/j.ensm.2021.12.011 

    [40] Zhipei Zhong, Zhigao Luo*, Guozhao Fang*, Xianyou Wang*, etc., Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry. Energy Storage Mater. 2022, 46, 165-174. https://doi.org/10.1016/j.ensm.2022.01.006 

    [41] Miao Zhou, Guozhao Fang*, Shuquan Liang*, etc., Surface-Preferred Crystal Plane for a Stable and Reversible Zinc Anode. Adv. Mater. 2021, e2100187. https://doi.org/10.1002/adma.202100187  (ESI高被引论文, 热点论文)

    [42] Zhexuan Liu#, Xiongbin Luo#, Guozhao Fang*, etc., Progress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater. (2021). https://doi.org/10.1016/j.apmate.2021.10.002

    [43] Shan Guo,  Guozhao Fang*, Shuquan Liang*, etc., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021, 34, 545-562. https://doi.org/10.1016/j.ensm.2020.10.019 (ESI高被引论文,热点论文)

    [44] Miao Zhou; Guozhao Fang*, Shuquan Liang*, etc., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 2021, 55, 549-556. DOI: 10.1016/j.jechem.2020.07.021.

    [45] Xuefang Xie; Guozhao Fang*, etc., In Situ Defect Induction in Close-Packed Lattice Plane for the Efficient Zinc Ion Storage. Small 2021, 17 (40), e2101944. DOI: 10.1002/smll.202101944.

    [46] Jing Huang#, Xuefang Xie#, Kun Liu*,  Guozhao Fang*, etc., Perspectives in electrochemically in‐situ structural reconstruction of cathode materials for multivalent‐ion storage.  Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12309 

    [47] Yuxin Gao#, Zhexuan Liu#, Guozhao Fang*, Shuquan Liang*, etc., Fundamental understanding and effect of anionic chemistry in zinc batteries. Energy Environ. Mater. 2021, https://doi.org/10.1002/eem2.12225 

    [48] Yuxin Gao, Guozhao Fang*, Shuquan Liang*, etc., Crystal plane induced in-situ electrochemical activation of manganese-based cathode enable long-term aqueous zinc-ion batteries. Green Energy & Environment 2022. DOI: 10.1016/j.gee.2022.02.009.

    [49] Tengsheng Zhang, Guozhao Fang*, Shuquan Liang*, etc., Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review. Energy Environ. Sci. 2020, 13, 4625-4665. https://doi.org/10.1039/D0EE02620D (热点论文)

    [50] Tengsheng Zhang, Guozhao Fang*, Shuquan Liang*, etc., Electrochemical Activation of Manganese‐Based Cathode in Aqueous Zinc‐Ion Electrolyte. Adv. Funct. Mater. 2020, 30(30), 2002711. https://doi.org/10.1002/adfm.202002711 

    [51] Chuyu Zhu#; Guozhao Fang#, etc., Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394-401. DOI: 10.1016/j.ensm.2019.07.030.

    [52] Guozhao Fang, Shuquan Liang*, etc., Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High‐Energy‐Density and Durable Aqueous Zinc‐Ion Battery. Adv. Funct. Mater. 2019, 29(15), 1808375. https://doi.org/10.1002/adfm.201808375 (2019年中国百篇最具国际影响力学术论文, ESI高被引论文, 热点论文)

    [53] Guozhao Fang, etc., Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling High‐Rate Long‐Life Aqueous Zinc‐Ion Battery. Adv. Funct. Mater. 2019, 29 (44), 1905267. DOI: 10.1002/adfm.201905267.

    [54] Guozhao Fang#, Qichen Wang#, Shuquan Liang*, etc., Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano 2019, 13(5), 5635-5645. https://doi.org/10.1021/acsnano.9b00816 (ESI高被引论文, 热点论文)

    [55] Shan Guo#; Guozhao Fang#, Shuquan Liang*, etc., Structural perspective on revealing energy storage behaviors of silver vanadate cathodes in aqueous zinc-ion batteries. Acta Materialia 2019, 180, 51-59. DOI: 10.1016/j.actamat.2019.08.052.

    [56] Guozhao Fang, Shuquan Liang*, etc., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3(10), 2480-2501. https://doi.org/10.1021/acsenergylett.8b01426 (ESI高被引论文, 热点论文, 被引用1600余次, The Most-cited articles published in ACS Energy Lett)

    [57] Guozhao Fang, Shuquan Liang*, etc., Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodium-Ion Battery Anode. Advanced Energy Materials 2018, 8 (19), 1703155. DOI: 10.1002/aenm.201703155.

    [58] Guozhao Fang, Shuquan Liang*, etc., Metal–organic framework-templated two-dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability. J. Mater. Chem. A 2017, 5 (27), 13983-13993. DOI: 10.1039/c7ta01961k.

    [59] Guozhao Fang, Shuquan Liang*, etc., MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 2016, 26, 57-65. DOI: 10.1016/j.nanoen.2016.05.009.

    [60] Guozhao Fang, Shuquan Liang*, etc., General synthesis of three-dimensional alkali metal vanadate aerogels with superior lithium storage properties. J. Mater. Chem. A 2016, 4 (37), 14408-14415. DOI: 10.1039/c6ta05568k.

    注:*表示通讯作者,#表示共同第一作者。

     

    荣誉奖项

    小米青年学者(2024),科睿唯安“全球高被引科学家(2024,材料学科),全球前2%顶尖科学家(终身科学影响力排行榜)(2024),湖南省自然科学二等奖(2024),江顺奖励金教师奖(2024),科睿唯安全球高被引科学家(2023,材料学科),eScience杰出贡献奖(2023),中南大学优秀班导师(2023),兴业奖励金教师奖(2023),科睿唯安“全球高被引科学家”(2022,交叉学科),湖湘青年英才(2021),Advanced Powder Materials杰出贡献奖(2021),RSC高被引中国作者(2021),2021年湖南省优秀博士论文;2019年中国百篇最具国际影响力学术论文;湖南省普通高校百佳大学生党员,湖南省芙蓉学子学术创新奖获得者;中南大学十佳青年、首届大学生年度人物、十佳博士。


    学生培养

    [1] 周苗博士获得湖南省研究生创新项目立项(2021);朱楚钰(2019)、张腾升(2020)、郭珊(2020、2021)、刘哲轩(2021)等研究生获得中南大学研究生创新项目立项;

    [2] 梁才武(2016)、郭家豪(2017)、王梓卿(2018)、张宝山(2020,优秀结题项目)、陈星宇(2021,优秀结题项目)、袁忠禹(2021)、王盟安(2022)、师天晰(2022)、朱正午(2022)、尹茂锟(2023,优秀结题项目)、吴承达(2023)、谭成(2023)、卜宪诚(2024)等本科生作为负责人获得国家级省级大学生创新项目立项;戴玲(2023,优秀结题项目)、黄昱豪、贺嘉泽、陈祥宇、雷培楠等获得校级大学生创新项目立项。

    [3] 朱楚钰(2018、2019)、刘菲(2019)、郭珊(2020)、张腾升(2020)、周苗(2021)、高玉欣(2021)、刘哲轩(2022)等研究生获得研究生国家奖学金;

    [4] 张腾升获中南大学校长拔尖奖学金(2020)、学生标兵(2020);郭珊、刘哲轩获中南大学创新奖学金(2021);郭珊获得中南大学创新奖学金(2022);刘哲轩获得中南大学优秀学生标兵(2022);郭珊获中南大学2021-2023年度优秀共产党员(2023)。

    [5] 郭珊获湖南省第十三届“高性能材料设计与制备”研究生创新论坛特等奖,刘哲轩获2022江西省研究生稀金及能源材料学术创新论坛一等奖、湖南省第十五届研究生创新论坛一等奖。

    [6] 指导本科生刘冠群、王梓卿、张宝山、陈星宇、朱冰、师天晰等以第一作者或合作作者在ACS Energy Lett、Rare Metal、eScience、ACS Nano、Mater. Today Energy等国际顶级期刊发表学术论文。

  • Research Field

    No content
  • Social Affiliations

    Sorry, no related content currently!
  • Education Background

    Sorry, no related content currently!
  • Work Experience

    Sorry, no related content currently!
  • Research Group

    No content
  • Other Contact Information

    No content