基于遗传算法和神经网络的隧道围岩位移智能反分析
Hits:
Release time:2020-08-09
Journal:中南大学学报(自然科学版)
Place of Publication:中国
Key Words:位移反分析;遗传算法;神经网络;正交试验
Abstract:基于正交试验设计和FLAC3D建立的学习样本以及测试样本,通过工程现场获取的围岩位移信息,用神经网络建立待反演参数与围岩位移之间潜在的映射关系。研究结果表明:利用该神经网络的仿真预测功能,结合遗传算法搜索反演参数的最优解,从而实现位移反分析;可将反演结果反馈于隧道支护结构的设计,实现隧道的信息化施工与设计。
Co-author:王跃飞, 丁国华, 冯德山, 彭建国, 刘宝琛
First Author:黄戡
Indexed by:Applied Research
Document Code:1672-7207(2011)01-0213-07
Discipline:土木工程
Document Type:J
Volume:42
Issue:1
Page Number:213-219
ISSN No.:1672-7207
Translation or Not:no
CN No.:43-1426/N
Date of Publication:2011-01-26
Included Journals:EI
-
|
Zip Code:c576f0c85848a14d10428d1b79269fc7d68bde9ba6ecb95648b168a03671c3821c778c2bedf0cae5d03c95a065c3a5efa4243241acb9eb6089885db6f9f3fa7f5b7491eb5af48e7ab43d253e29e0fa6991b0af260ac98903cc7fbca150cb2fc86cb6bd41d95f78a263ba3d6f6aa504ee56cdd8693f2e6f13b576940cee3633de
Fax:17e6c064ee5cb174c4e944a660b3f619e9f93b408e0b240bede9c3e19ecc6800e4984f519ecfa91ba7ae06ae3e4625e03227d05cc2002730892a846aa57724d5726b7e7fb08181480e647262115fb634c6f5545aacd74cff5c45368c07d0490d7716bdcb5446496de61a5a7d10de5694997f1bfa8ba6d200f4ccaeebd9c2fed0
Postal Address:71db3ba9b84fb74a51e15316e4d4d5158f917d9d8fb5faf012f84ab1172b26e0f5c378c5cecdf29537ce2e6e402924d646da474ef15c20b32a3bd5b6bc9c7bd827f454623be9d12b5256f6321a92104010a6def1c290e33f0d28cb4f37613a9225795c4442d6b34af06bd692cac4ab416f451ae02c3f9b5ffa4b7b654b4a5c82
Office Phone:17e6c064ee5cb174c4e944a660b3f619e9f93b408e0b240bede9c3e19ecc6800e4984f519ecfa91ba7ae06ae3e4625e03227d05cc2002730892a846aa57724d5726b7e7fb08181480e647262115fb634c6f5545aacd74cff5c45368c07d0490d7716bdcb5446496de61a5a7d10de5694997f1bfa8ba6d200f4ccaeebd9c2fed0
Mobile:5137d55315e3e35e4f835eb43d34a4aa36b1b453d3da1bb8194ee0525d17fd8ebb55be93064fddd451e8daaed692f6a07972105dcad24687d241e73e52fc23bfeaa9ae244a27b9bbbf3bc7746d1ebf576a528b5fd3ab2e715ccd88d1cee492655bae47acb16b70d23c481ee1f499873c9165a8278a451959797a05929c450c7c
Email:b679856bb3c424c1b1f7ff32fc78c0465f82c20323019d2bcbaf0fd567213eff4f807ae6c53d852fff6b4557cf7dcfb6d93900b2fbb86f99bad419376cc49941a87bc49d00f086bfbf95d3a9f2040f260a5dea2e34b25479a54e2d46c07826eed4d04d17b119265ef06d58cb47f1322d0f7ab5847b2d282fa530dd5e5d029335
|