郭铁信

教授 博士生导师 硕士生导师

入职时间:2012-04-11

所在单位:数学与统计学院

职务:副院长

学历:博士研究生毕业

性别:男

学位:博士学位

在职信息:在职

主要任职:中国数学会会员、中国工业与应用数学金融数学专业委员会委员、湖南省数学会常务理事

毕业院校:西安交通大学

学科:数学

曾获荣誉:

香港运盛青年科技奖(2002年,福建地区)、福建省科技进步二等奖

当前位置: 郭铁信 >> 论文成果

The random Markov-Kakutani fixed point theorem in a random locally convex module

发布时间:2024-08-20

点击次数:

发表刊物:New York J. Math.

项目来源:国家自然科学基金

关键字:Random locally convex modules, stable compactness, random Markov-Kakutani fixed point theorem, random Hahn-Banach theorem.

摘要:Based on the recently developed theory of 𝜎-stable sets and stable compactness, we first establish the random Markov-Kakutani fixed point theorem in a random locally convex module: let (𝐸, 𝒫) be a random locally convex module and 𝐺 be a nonempty stably compact 𝐿0-convex subset of 𝐸, then every commutative family of 𝒯𝑐(𝒫𝑐𝑐)-continuous 𝐿0-affine mappings from 𝐺 to 𝐺 has a common fixed point, where 𝒫𝑐𝑐 is the 𝜎-stable hull of 𝒫 and 𝒯𝑐(𝒫𝑐𝑐) is the locally 𝐿0-convex topology induced by 𝒫𝑐𝑐. Second, we prove that the random Markov-Kakutani fixed point theorem implies the algebraic form of the known random Hahn-Banach theorem. Finally, we establish a more general strict separation theorem in a random locally convex module, which provides not only a more general geometric form of the random HahnBanach theorem but also another proof for the random Markov-Kakutani fixed point theorem. Therefore, as a byproduct, the work of this paper also shows that the algebraic and geometric forms of the random Hahn-Banach theorem are equivalent. It should be pointed out that the main challenge in this paper lies in overcoming noncompactness since a stably compact set is generally noncompact.

合写作者:Xiaohuan Mu

第一作者:Qiang Tu

论文类型:期刊论文

通讯作者:Tiexin Guo

学科门类:理学

一级学科:数学

文献类型:J

卷号:30

页面范围:1196-1219

ISSN号:1076-9803

是否译文:

发表时间:2024-08-20

收录刊物:SCI

发布期刊链接:https://nyjm.albany.edu/j/2024/30-53.html

上一条: The relations among the notions of various kinds of stability and their applications

下一条: Animal Shapes, Modal Analysis, and Visualization of Motion (I): Horse and Camel