雷文太

教授 博士生导师 硕士生导师

入职时间:2010-03-16

所在单位:电子信息学院

职务:通信工程系主任

学历:研究生(博士后)

办公地点:铁道校区电子楼418

性别:男

联系方式:leiwentai@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:国防科技大学

学科:信息与通信工程

曾获荣誉:

2013-09-01  当选:  中南大学531人才

2019-12-12  当选:  中南大学励志奖

当前位置: 中文主页 >> 论文成果

Automatic hyperbola detection and fitting in GPR B-scan image

发布时间:2021-06-28

点击次数:

影响因子:6.121

DOI码:10.1016/j.autcon.2019.102839

发表刊物:AUTOMATION IN CONSTRUCTION

关键字:Automatic hyperbola detection; Double cluster seeking estimate (MSS) algorithm; Ground penetrating radar (GPR); Faster R-CNN

摘要:Detecting buried objects from ground penetrating radar (GPR) profiles often requires manual interaction and plenty of time. This paper presents an automatic scheme for buried objects detection and localization. First, a trained deep learning framework - Faster R-CNN with data augmentation strategy is applied to identify hyperbolic signatures from a gray GPR B-scan image, which is capable of not only recognizing whether a B-scan profile contains traces of buried object, but also detecting candidate hyperbola region. Then, the detected rectangle region is extracted and transformed to a binary image, a novel double cluster seeking estimate (DCSE) algorithm is proposed to separate object point duster from each other and enable the identification of hyperbolic signatures. Subsequently, a column-based transverse filter points (CTFP) method is utilized to extract hyperbola fitting points automatically from the validated point duster. Downward opening hyperbola fitting is carried out and their respective peaks are obtained finally. The proposed scheme is able to extract information from GPR B-scan images automatically and efficiently; it is validated significant performance in the analysis of synthetic and on-site GPR data sets.

第一作者:雷文太

论文类型:期刊论文

通讯作者:侯斐斐(博士生)

学科门类:工学

一级学科:信息与通信工程

文献类型:J

是否译文:

发表时间:2019-10-01

收录刊物:SCI、EI

上一条: 面向探地雷达 B-scan 图像的目标检测算法综述

下一条: Cooperative spectrum sharing in cognitive radio networks with energy accumulation: design and analysis