雷文太

教授 博士生导师 硕士生导师

入职时间:2010-03-16

所在单位:电子信息学院

职务:通信工程系主任

学历:研究生(博士后)

办公地点:铁道校区电子楼418

性别:男

联系方式:leiwentai@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:国防科技大学

学科:信息与通信工程

曾获荣誉:

2013-09-01  当选:  中南大学531人才

2019-12-12  当选:  中南大学励志奖

当前位置: 中文主页 >> 论文成果

FMRSS Net: Fast Matrix Representation-Based Spectral-Spatial Feature Learning Convolutional Neural Network for Hyperspectral Image Classification

发布时间:2021-06-28

点击次数:

影响因子:1.009

DOI码:10.1155/2018/9218092

发表刊物:MATHEMATICAL PROBLEMS IN ENGINEERING

摘要:Convolutional Neural Network- (CNN-) based land cover classification algorithms have recently been applied in hyperspectral images (HSI) field. However, the large-scale training parameters bring huge computation burden to CNN and the spatial variability of spectral signatures leads to relative low classification accuracy. In this paper, we propose a CNN-based classification framework that extracts square matrix representation-based spectral-spatial features and performs land cover classification. Numerical results on popular datasets show that our framework outperforms sparsity-based approaches like basic thresholding classifier-weighted least squares (BTC-WLS) and other deep learning-based methods in terms of both classification accuracy and computational cost.

第一作者:侯斐斐(博士生)

论文类型:期刊论文

通讯作者:雷文太

学科门类:工学

一级学科:信息与通信工程

文献类型:J

是否译文:

发表时间:2018-06-21

收录刊物:SCI、EI

上一条: Cooperative spectrum sharing in cognitive radio networks with energy accumulation: design and analysis

下一条: 基于自动反相校正和峰度值比较的探地雷达回波信号去噪方法