雷文太

教授 博士生导师 硕士生导师

入职时间:2010-03-16

所在单位:电子信息学院

职务:通信工程系主任

学历:研究生(博士后)

办公地点:铁道校区电子楼418

性别:男

联系方式:leiwentai@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:国防科技大学

学科:信息与通信工程

曾获荣誉:

2013-09-01  当选:  中南大学531人才

2019-12-12  当选:  中南大学励志奖

当前位置: 中文主页 >> 论文成果

Underground Cylindrical Objects Detection and Diameter Identification in GPR B-Scans via the CNNLSTM Framework

发布时间:2021-06-28

点击次数:

影响因子:2.412

DOI码:10.3390/electronics9111804

发表刊物:Electronics

关键字:ground penetrating radar (GPR); hyperbola region detection; Convolutional Neural Network (CNN); Long Short-Term Memory (LSTM); hyperbola classification; diameter identification

摘要:Ground penetrating radar (GPR), as a non-invasive instrument, has been widely used in the civil field. The interpretation of GPR data plays a vital role in underground infrastructures to transfer raw data to the interested information, such as diameter. owever, the diameter identification of objects in GPR B-scans is a tedious and labor-intensive task, which limits the further application in the field environment. The paper proposes a deep learning-based scheme to solve the issue. First, an adaptive target region detection (ATRD) algorithm is proposed to extract the regions from B-scans that contain hyperbolic signatures. Then, a Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) framework is developed that integrates Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network to extract hyperbola region features. It transfers the task of diameter identification into a task of hyperbola region classification. Experimental results conducted on both simulated and field datasets demonstrate that the proposed scheme has a promising performance for diameter identification. The CNN-LSTM framework achieves an accuracy of 99.5% on simulated datasets and 92.5% on field datasets.

合写作者:罗佳斌

第一作者:雷文太

论文类型:期刊论文

学科门类:工学

一级学科:信息与通信工程

文献类型:J

是否译文:

发表时间:2020-10-31

收录刊物:SCI、EI

上一条: Calibration Venus: An Interactive Camera Calibration Method Based on Search Algorithm and Pose Decomposition

下一条: Continuous Gesture Recognition Based on Time Sequence Fusion Using MIMO Radar Sensor and Deep Learning