基于CNN-LSTM的岩爆危险等级时序预测方法
发布时间:2021-04-30
点击次数:
DOI码:10.11817/j.issn.1672-7207.2021.03.001
发表刊物:中南大学学报(自然科学版)
关键字:微震; 相空间重构; CNN-LSTM模型; 岩爆未来状态危险性; 集成方法
摘要:岩爆灾害是一种典型的矿山动力灾害现象,具有高度不确定性和不可预知性,严重威胁矿井安全生产。为了防止岩爆灾害破坏事故,需要掌握准确可靠的预测预报信息。为了预测岩爆未来时刻危险等级,提出一种基于CNN-LSTM的集成方法。首先,选取微震监测角频率、能量和凹凸体半径等特征量,根据灰色关联方法求出特征量关联度作为权重以标记岩爆危险指数;第二,对具有混沌特性的特征量时序数据进行相空间重构以表达其空间特征;第三,根据卷积神经网络(CNN)提取重构后相空间的空间特征,利用长短期记忆网络(LSTM)学习时间序列特征,预测岩爆特征量的未来状态;最后,使用粒子群算法优化广义神经网络模型(PSO-GRNN),并根据岩爆特征量未来状态评估其危险等级。实验结合冬瓜山铜矿微震监测实际工程,使用CNN-LSTM预测角频率、能量和凹凸体半径等未来状态,并采用PSO-GRNN预测其未来状态的岩爆等级。研究结果表明:本文提出的集成方法能够有效利用微震监测数据提前预测岩爆特征的未来状态及岩爆危险等级;与现有支持向量机和BP神经网络等经典方法相比,本文方法得到的未来状态预测值准确性更高。本研究成果为正确识别矿山岩爆当前活动及未来状态时的危险性提供理论支撑,为及时掌握矿山岩爆活动未来状态提供重要依据,同时,也可利用本文方法为类似岩爆灾害的其他地质灾害预警提供参考。
论文类型:期刊论文
学科门类:工学
文献类型:J
卷号:52
期号:3
页面范围:659-670
是否译文:否
发表时间:2021-04-09
收录刊物:EI