苏修

特聘教授 博士生导师

入职时间:2024-03-05

所在单位:大数据研究院

职务:特聘教授

学历:研究生(博士)毕业

办公地点:中南大学校本部逸夫楼218

性别:男

联系方式:xiusu1994@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:The University of Sydney

   

个人简介

苏修,男,中南大学特聘教授,博士生导师。先后入选 国家级高层次青年人才第十六批湖南省“百人计划”人才。博士毕业于悉尼大学,师从Chang Xu教授。在国际知名CCF/CAAI A类会议和期刊 TPAMI、CVPR、NeurIPS、ICML、ICCV、AAAI、KDD、ACMMM、ECCV、ICLR等发表论文30余篇,长期担任相关顶级会议和期刊的审稿人和程序委员会委员。个人研究内容主页:https://xiusu.github.io/


研究方向】具身智能、多模态大模型、计算机视觉、自动化机器学习等。实验室长期专注于人工智能模型架构设计、多模态学习方法、具身机器人控制等领域,有深厚的人工智能算法和软硬件积累。欢迎感兴趣的同学和合作者联系。


招生信息】博士、硕士、RA(过渡出国、读博)、本科。课题组氛围融洽,与澳大利亚和香港众多顶尖名校深度合作,且国外顶尖名校长期有名额,每年多个入学季,欢迎有兴趣的同学加入(xiusu1994@csu.edu.cn)。2026年 目前组内剩余入学名额: 2 港科博士,2 中南博士,2中南硕士。


组内优势】 1. 硬件资源丰富。有充足的显卡等计算资源以及机器人(机械臂、灵巧手)资源,目前组内有 宇树、松灵、UR、因时 的 人形机器人、轮式机器人,包含 机械臂和机器手。

                     2. 尊重学生的个人选择。无论是学术界或企业界发展,包括:出国留学、大学任教或企业工作,都会提供充足的指导和资源支持。

                     3. 组内有众多 海外/国内 名校学生。学术氛围浓厚,能及时跟踪相关领域前沿技术和发展趋势。

                     4. 与众多海外名校和国内知名AI企业保持长期深度科研合作关系。定期输送优秀人才去海外QS 前50学校读博/研 和 国内知名AI企业。 

                     5. 课题组经费充足,能保证科研所需的实验条件,并提供细致的科研指导和充足的助研津贴。


【代表性论文】(详见 https://xiusu.github.io/


[1] Modeling Inter-Gaussian Mutual Information for Dynamic Novel View Synthesis (ACMMM, CCF A), 2025

[2] Graph Unlearning Meets Influence-aware Negative Preference Optimization (ACMMM, CCF A), 2025

[3] Addressing Granularity-induced Semantic Drift in OvOD via Graph-guided semantically consistent representation (ACMMM, CCF A), 2025

[4] DualFPT: Handling Data Heterogeneity in Federated Prompt Tuning from both Generalized and Personalized Perspective (ACMMM, CCF A), 2025

[5] Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation (ACMMM, CCF A), 2025

[6] CounterPC: Counterfactual Feature Realignment for Unsupervised Domain Adaptation on Point Clouds (ICCV, CCF A), 2025

[7] Stable Fair Graph Representation Learning with Lipschitz Constraint. International Conference on Machine Learning (ICML, CCF A), 2025

[8] TinyMIG: Transferring Generalization from Vision Foundation Models to Single-Domain Medical Imaging. International Conference on Machine Learning (ICML, CCF A), 2025

[9] VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A, Oral), 2025

[10] Harmonizing for defect visibility with Fine-Grained Hierarchical Interaction Learning.
International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2025

[11] HieClip: Hierarchical CLIP with Explicit Alignment for Zero-Shot Anomaly Detection.
International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2025

[12] Perturbating, Tuning, and Collaborating: Harnessing Vision Foundation Models for Single Domain Generalization on Medical Imaging. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2025

[13] Seeing Beyond Noise: Joint Graph Structure Evaluation and Denoising for Multimodal Recommendation. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2025

[14] Universal Frequency Domain Perturbation for Single-Source Domain Generalization. ACM Multimedia (ACM MM, CCF A), 2024

[15] Detecting Any Instruction-to-Answer Interaction Relationship:Universal Instruction-to-Answer Navigator for Med-VQA. International Conference on Machine Learning (ICML, CCF A), 2024

[16] Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models. Advances in Neural Information Processing Systems (NeurIPS, CCF A), 2024

[17] BEYOND THE LIMIT OF WEIGHT-SHARING: PIONEERING SPACE-EVOLVING NAS WITH LARGE LANGUAGE MODELS. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[18] TCNAS: TRANSFORMER ARCHITECTURE EVOLVING IN CODE CLONE DETECTION. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[19] PROMPTING LABEL EFFICIENCY IN FEDERATED GRAPH LEARNING VIA PERSONALIZED SEMI-SUPERVISION. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[20] BCNetV2: Searching for Network Width With Bilaterally Coupled Network. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI, CCF A)

[21] DiffNAS: Bootstrapping Diffusion Models by Prompting for Better Architectures. IEEE International Conference on Data Mining (ICDM, CCF B), 2023

[22] Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection. International Conference on Computer Vision (ICCV, CCF A), 2023

[23] Neural Architecture Search for Wide Spectrum Adversarial Robustness. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2023

[24] Searching for Better Spatio-temporal Alignment in Few-Shot Action Recognition. Conference and Workshop on Neural Information Processing Systems (NeurIPS, CCF A), 2022

[25] Sufficient Vision Transformer. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD, CCF A), 2022

[26] Vision Transformer Architecture Search. European Conference on Computer Vision (ECCV, CAAI A), 2022

[27] ScaleNet: Searching for the Model to Scale. European Conference on Computer Vision (ECCV, CAAI A), 2022

[28] K-shot NAS: LearnableWeight-Sharing for NAS with K-shot Supernets. International Conference on Machine Learning (ICML, CCF A), 2021

[29] BCNet: Searching for Network Width with Bilaterally Coupled Network. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A), 2021

[30] Prioritized Architecture Sampling with Monto-Carlo Tree Search. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A), 2021

[31] Locally Free Weight Sharing for Network Width Search. International Conference on Learning Representations (ICLR, CCF A, Spotlight), 2021

[32] Data Agnostic Filter Gating for Efficient Deep Networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2022

[33] Automatic bridge crack detection using a convolutional neural network. Applied Sciences, 2019

[34] An efficient hole-filling method based on depth map in 3D view generation. 2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology

[35] An improved three-dimension reconstruction method based on guided filter and Delaunay. 2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology



教育经历

[1]   2020.7-2023.9

悉尼大学  |  人工智能  |  博士学位  |  博士研究生毕业

[2]   2016.9-2019.6

天津大学  |  理学  |  硕士学位  |  硕士研究生

[3]   2012.9-2016.6

天津大学  |  理学  |  学士学位  |  本科(学士)

其他联系方式

  • [5]  移动电话:

  • [6]  邮箱: