- [21]F. Tang, X. Chen, T. Rodrigurs, M. Zhao, N. Kato.Survey on Digital Twin Edge Networks (DITEN) Toward 6G.IEEE Open Journal of the Communications Society, 2022
- [22]F. Tang, C. Wen, X. Chen, N. Kato.Federated Learning for Intelligent Transmission with Space-air-ground Integrated Network (SAGIN) toward 6G.IEEE Network, 2022
- [23]F. Tang, N. Kato, M. Zhao, C. Wen.Machine Learning for Space-Air-Ground Integrated Network(SAGIN)-Assisted Vehicular Network.IEEE Vehicular Technology Magazine, 2022
- [24]F. Tang, X. Chen, M. Zhao, N. Kato, The Roadmap of Communication and Networking in 6G for the Metaverse.IEEE Wireless Communications, 2022
- [25]M. Zhao, J. Li, F. Tang*, S. Asif, Y. Zhu.Learning Based Massive Data Offloading in the IoV: Routing Based on Pre-RLGA, 2022
- [26]Z. Li, M. Zhao, F. Tang*, Y. Zhu.EmoCaps: Emotion Capsule based Model for Conversational Emotion Recognition.Findings of the Association for Computational Linguistics: ACL 2022, 2022
- [27]B. Mao, N. Kato, Y. Kawamoto, F. Tang.AI Models for Green Communications Towards 6G.IEEE Communications Surveys & Tutorials, 2021
- [28]F. Tang, H. Hofner, N. Kato, K. Kaneko, Y. Yamashita, M. Hangai.A Deep Reinforcement Learning based Dynamic Traffic Offloading In Space-Air-Ground Integrated Networks (SAGIN).IEEE Journal on Selected Areas in Communications, 2021
- [29]B. Mao, F. Tang, Y. Kawamoto, N. Kato.Optimizing Computation Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning Approach.IEEE Network, 2021
- [30]F. Tang, B. Mao, N. Kato, G. Gui.Comprehensive Survey on Machine Learning in Vehicular Network: Technology, Applications and Challenges.IEEE Communications Surveys & Tutorials, 2021
- [31]F. Tang, N. Kato, B. Mao, Y. Kawamoto.Survey on Machine Learning for Intelligent End-to-End Communication towards 6G: From Network Access, Routing to Traffic Control and Streaming Adaption.IEEE Communications Surveys & Tutorials, 2021
- [32]Z. Li, F. Tang*, T. Sun, Y. Zhu, M. Zhao.SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model.Neural Information Processing: 28th International Conference, ICONIP 2021, 2021
- [33]F. Tang, N. Kato, Y. Zhou.Deep Reinforcement Learning for Dynamic Uplink/Downlink Resource Allocation in High Mobility 5G HetNet.IEEE Journal on Selected Areas in Communications, 2020
- [34]N. Kato, B. Mao, F. Tang, Y. Kawamoto, J. Liu.Ten Challenges in Advancing Machine Learning Technologies toward 6G.IEEE Wireless Communications, 2020
- [35]G. Gui, M. Liu, F. Tang, N. Kato, F. Adachi.6G: Opening New Horizons for Integration of Comfort, Security, and Intelligence.IEEE Wireless Communications, 2020
- [36]Y. Zhou, F. Tang*, Y. Kawamoto, N. Kato.Reinforcement Learning-Based Radio Resource Control in 5G Vehicular Network.IEEE Wireless Communications Letters, 2019
- [37]F. Tang, Y. Kawamoto, N. Kato, J. Liu.Future Intelligent and Secure Vehicular Network Towards 6G: Machine Learning Approaches.Proceedings of the IEEE, 2019
- [38]F. Tang, Y. Kawamoto, N. Kato, K. Yano, Y. Suzuki.Probe Delay based Adaptive Port Scanning for IoT Devices with private IP address Behind NAT.IEEE Network, 2019
- [39]F. Tang, B. Mao, Z. Fadlullah, J. Liu, N. Kato.ST-DeLTA: A Novel Spatial-Temporal Value Network Aided Deep Learning Based Intelligent Network Traffic Control System.IEEE Transactions on Sustainable Computing, 2019
- [40]B. Mao, F. Tang, Z. Fadlullah, N. Kato.An Intelligent Packet Forwarding Approach for Disaster Recovery Networks.IEEE International Conference on Communications (ICC), 2019