王接喜

教授 博士生导师 硕士生导师

入职时间:2017-02-28

所在单位:冶金与环境学院

办公地点:中南大学本部物理楼408

学位:博士学位

毕业院校:中南大学

学科:冶金工程

曾获荣誉:

2023年第六届全国有色金属优秀青年科技奖

2022年湖南省科技创新领军人才

2021年国家优秀青年基金获得者

2020年第十八届全国高校冶金院长奖

2020年湖南省杰出青年基金获得者

2019年芙蓉学者(青年学者)

2019年湖湘青年英才

2017年国家博士后创新人才支持计划

2017年湖南省优秀博士学位论文

2015年宝钢教育基金特等奖

2015年湖南省优秀毕业生

2014年中南大学十大杰出学子

2014年中南大学拔尖创新博士生特等奖

2013年芙蓉学子-榜样力量(学术创新奖)

周玉论文“Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode”被Chemical Engineering Journal接收发表

发布时间:2021-02-19

点击次数:

The inevitable surface oxidation of nano-Si inhibits its practical application as anode for lithium ion battery. Here, a hierarchical electronic/ionic conducting shell is smartly constructed by self-sacrificing reaction of native oxide layer on Si nanoparticles with lithium species. The morphological observation shows that Si nanoparticles are wrapped by lithium ionic conductor Li2SiO3 and amorphous carbon as the interlayer and outer layer, respectively. Such hierarchical structure not only provides a tight bond between Si and coating layer, but also improves the interfacial stability and conductivity of Si nanoparticles. Theoretical calculations demonstrate that the adsorption of Li2SiO3 on Si (111) and the adsorption of C on Si/Li2SiO3 are exothermic and spontaneous, and that the electron transfer and ionic conductivity at the surface of Si/Li2SiO3/C composite is enhanced. As a result, the as-prepared Si/Li2SiO3/C sample exhibits outstanding cycle stability and rate capability. By optimizing the lithium sources and thickness of native oxide layer, the resulted material exhibits 2106 mAh g-1 at 200 mA g-1, remains 1583 mA g-1 at 3000 mA g-1, and maintains 70.2% of capacity retention after 200 cycles. This work provides a robust strategy to promote the practical applications of Si nanoparticles as anode for lithium ion batteries.

TOC figure.jpg


上一条: 王接喜教授成果“锂镍钴资源功能材料冶金基础理论与技术原型”获评2020年度博士后创新人才支持计划优秀创新成果

下一条: 冷进论文“Highly-Dispersed Submicron Single-Crystal Nickel-Rich Layered Cathode: Spray Synthesis and Accelerated Lithium-Ion Transport”被Small接收发表