Wang Wei

Doctoral degree

PhD Graduate

Personal Information

Date of Birth:1989-09-06
Date of Employment:2018-03-20
Business Address:Room 606, Physics Building
E-Mail:

VIEW MORE

Profile

Dr. Wei Wang, an associate professor in the School of Geoscience and Info-Physics of Central South University. He received his Ph.D. degree in Photogrammetry and Remote Sensing from the Wuhan University in 2017. His research interests include optical and laser remote sensing, remote sensing of atmospheric environment, LiDAR point cloud processing and application.


  • Educational background

2012.5-2017.12          Wuhan University          Doctoral degree


  • Work experience

2018/03- Now          Central South University    associate professor


  • Research focus

1. Optical and laser remote sensing

2. Remote sensing of atmospheric environment

3. LiDAR point cloud processing and application


  • Publications

1. First/corresponding author

[1]     Wei Wang, Junchen He, Zelang Miao * and Lin Du. Space–Time Linear Mixed-Effects (STLME) model for mapping hourly fine particulate loadings in the Beijing–Tianjin–Hebei region, China. Journal of Cleaner Production 2021; 292: 125993.

[2]     Weiwei Xu, Wei Wang * and Biyan Chen. Comparison of hourly aerosol retrievals from JAXA Himawari/AHI in version 3.0 and a simple customized method. Scientific reports 2020; 10: 20884.

[3]     Lin Du, Ya’ni Pan and Wei Wang *. Random Sample Fitting Method to Determine the Planetary Boundary Layer Height Using Satellite-Based Lidar Backscatter Profiles. Remote Sensing 2020; 12: 4006.

[4]     Zhang, Yixiao, Wang, Wei *, Ma, Yingying, Wu, Lixin, Xu, Weiwei and Li, Jia. Improvement in hourly PM2.5 estimations for the Beijing-Tianjin-Hebei region by introducing an aerosol modeling product from MASINGAR. Environmental Pollution 2020; 264: 1146-1191.

[5]     Zhang, Taixin, Zang, Lin, Wan, Youchuan, Wang, Wei * and Zhang, Yi. Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Science of The Total Environment 2019; 676: 535-544.

[6]     Xu, Weiwei, Wang, Wei * and Wu, Lixin. New Regression Method to Merge Different MODIS Aerosol Products Based on NDVI Datasets. Atmosphere 2019; 10: 303.

[7]     Wang, Wei, Zhang, Tianhao and Pan, Zengxin. Four-year ground-based observations of the aerosol effects on cloud base height in Wuhan, China. Atmospheric Pollution Research 2019.

[8]     Wang, Wei, Mao, Feiyue, Zou, Bin, Guo, Jianping, Wu, Lixin, Pan, Zengxin and Zang, Lin. Two-stage model for estimating the spatiotemporal distribution of hourly PM1. 0 concentrations over central and east China. Science of The Total Environment 2019; 675: 658-666.

[9]     Wang, Wei, Mao, Feiyue, Pan, Zengxin, Gong, Wei, Yoshida, Mayumi, Zou, Bin and Ma, Huiyun. Evaluating Aerosol Optical Depth from Himawari-8 with Sun Photometer Network. Journal of Geophysical Research: Atmospheres 2019; 124: 5516-5538.

[10]     Mao, Feiyue, Pan, Zengxin, Wang, Wei *, Li, Siwei and Gong, Wei. Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar. Journal of Quantitative Spectroscopy and Radiative Transfer 2018; 218: 125-130.

[11]     Wang, Wei, Gong, Wei, Mao, Feiyue and Pan, Zengxin. Physical constraint method to determine optimal overlap factor of Raman lidar. Journal of Optics 2018; 47: 83-90.

[12]     Wang, Wei, Mao, Feiyue, Pan, Zengxin, Du, Lin and Gong, Wei. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sensing 2017; 9: 403.

[13]   Wang, Wei, Mao, Feiyue, Du, Lin, Pan, Zengxin, Gong, Wei and Fang, Shenghui. Deriving Hourly PM2.5 Concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China. Remote Sensing 2017; 9: 858.

[14]   Du, Lin, Shi, Shuo, Yang, Jian, Wang, Wei *, Sun, Jia, Cheng, Biwu, Zhang, Zhenbing and Gong, Wei. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Optics Express 2017; 25: 6539-6549.

[15]   Wang, Wei, Gong, Wei, Mao, Feiyue, Pan, Zengxin and Liu, Boming. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China. International Journal of Environmental Research and Public Health 2016; 13: 508.

[16]   Wang, Wei, Gong, Wei, Mao, Feiyue and Zhang, Jinye. Long-Term Measurement for Low-Tropospheric Water Vapor and Aerosol by Raman Lidar in Wuhan. Atmosphere 2015; 6: 521-533.

[17]   Gong, Wei, Wang, Wei *, Mao, Feiyue and Zhang, Jinye. Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman–Mie lidar. Optics Communications 2015; 349: 145-150.

[18]   熊宇, 方圆, 陈孝明, 黄俊杰, 王威*, 李晨 and 张天浩 (2016) 卫星遥感辅助的输电系统区域污秽状况监测和评估方法研究.

[19]   陈孝明, 黄俊杰, 阮羚, 熊宇, 王威*, 李晨 and 张天浩. 绝缘子污秽可溶性成分对等值盐密的影响分析. 高压电器 2016; 52: 184-189.

[20]   王威毛飞跃, 龚威 and 李俊. 基于激光强度分布的激光雷达重叠因子计算及其敏感性分析. 光学学报 2014: 277-283.

2. Co-author

[1] Biyan Chen, Wenkun Yu, Wujiao Dai, Hao Wu and Wei Wang. Assessing the performance of GPS tomography at retrieving water vapour fields during landfalling atmospheric rivers over southern California. Meteorological Applications 2020; 27: e1943.

[2] Lei Guo, Jia Li, Lixin Wu, Zhiwei Li, Yanyang Liu, Xin Li, Zelang Miao and Wei Wang. Investigating the recent surge in the Monomah Glacier, Central Kunlun Mountain Range with multiple sources of remote sensing data. Remote Sensing 2020; 12: 966.

[3] Jia Hong, Feiyue Mao, Qilong Min, Zengxin Pan, Wei Wang, Tianhao Zhang and Wei Gong. Improved PM2. 5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations. Environmental Pollution 2020; 263: 114451.

[4] Yunquan Zhang, Jiaying Fang, Feiyue Mao, Zan Ding, Qianqian Xiang and Wei Wang. Age-and season-specific effects of ambient particles (PM1, PM2. 5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 2020; 246: 125723.

[5]  Zhang, Yunquan, Ding, Zan, Xiang, Qianqian, Wang, Wei, Huang, Li and Mao, Feiyue. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health 2020; 224: 113418.

[6]  Zang, Lin, Mao, Feiyue, Guo, Jianping, Wang, Wei, Pan, Zengxin, Shen, Huanfeng, Zhu, Bo and Wang, Zemin. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Science of The Total Environment 2019; 658: 1256-1264.

[7]  Zang, Lin, Mao, Feiyue, Guo, Jianping, Gong, Wei, Wang, Wei and Pan, Zengxin. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environmental Pollution 2018; 241: 654-663.

[8]  Pan, Zengxin, Mao, Feiyue, Wang, Wei, Zhu, Bo, Lu, Xin and Gong, Wei. Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sensing 2018; 10: 651.

[9]  Pan, Zengxin, Mao, Feiyue, Wang, Wei, Logan, Timothy and Hong, Jia. Examining Intrinsic Aerosol-Cloud Interactions in South Asia Through Multiple Satellite Observations. Journal of Geophysical Research: Atmospheres 2018; 123: 11,210-211,224.

[10]  Mao, Feiyue, Pan, Zengxin, Henderson, David S., Wang, Wei and Gong, Wei. Vertically resolved physical and radiative response of ice clouds to aerosols during the Indian summer monsoon season. Remote Sensing of Environment 2018; 216: 171-182.

[11]  Lu, Xin, Mao, Feiyue, Pan, Zengxin, Gong, Wei, Wang, Wei, Tian, Liqiao and Fang, Shenghui. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data. Remote Sensing 2018; 10: 314.

[12]  Liu, Boming, Ma, Yingying, Liu, Jiqiao, Gong, Wei, Wang, Wei and Zhang, Ming. Graphics algorithm for deriving atmospheric boundary layer heights from CALIPSO data. Atmospheric Measurement Techniques 2018; 11: 5075-5085.

[13]  Liu, Boming, Ma, Yingying, Gong, Wei, Zhang, Ming, Wang, Wei and Shi, Yifan. Comparison of AOD from CALIPSO, MODIS, and Sun Photometer under Different Conditions over Central China. Scientific reports 2018; 8: 10066.

[14]     Pan, Zengxin, Mao, Feiyue, Gong, Wei, Min, Qilong and Wang, Wei. The warming of Tibetan Plateau enhanced by 3D variation of low-level clouds during daytime. Remote Sensing of Environment 2017; 198: 363-368.

[15]     Mao, Feiyue, Pan, Zengxin, Wang, Wei, Lu, Xin. and Gong, W. Estimating the effects of aerosol, cloud, and water vapor on the recent brightening in India during the monsoon season. Atmos. Chem. Phys. Discuss. 2017; 2017: 1-20.

[16]     Pan, Zengxin, Mao, Feiyue, Gong, Wei, Wang, Wei and Yang, Jie. Observation of clouds macrophysical characteristics in China by CALIPSO. Journal of Applied Remote Sensing 2016; 10: 036028-036028.

[17]     Pan, Zengxin, Gong, Wei, Mao, Feiyue, Li, Jun, Wang, Wei, Li, Chen and Min, Qilong. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. Journal of Geophysical Research: Atmospheres 2015; 120: 11,653-611,668.

[18]     Mao, Feiyue, Wang, Wei, Min, Qilong and Gong, Wei. Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods. Optics Express 2015; 23: A604-A613.

[19]     Mao, Feiyue, Li, Jun, Li, Chen, Gong, Wei, Min, Qilong and Wang, Wei. Nonlinear physical segmentation algorithm for determining the layer boundary from lidar signal. Optics Express 2015; 23: A1589-A1602.

[20]     Gong, Wei, Zhang, Tianhao, Zhu, Zhongmin, Ma, Yingying, Ma, Xin and Wang, Wei. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China. Atmosphere 2015; 6: 1377-1387.


No content
No content

No content

No content