王威

特聘副教授 硕士生导师

入职时间:2018-03-20

所在单位:地球科学与信息物理学院

学历:博士研究生毕业

办公地点:物理楼606

性别:男

联系方式:wangweicn@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:武汉大学

学科:测绘科学与技术

个人简介

王威,男,1989年9月出生,摄影测量与遥感专业博士。2017年12月毕业于武汉大学测绘遥感信息工程国家重点实验室,获工学博士学位。2018年3月聘为中南大学特聘副教授。现从事光学和激光遥感、气溶胶遥感、碳遥感、点云数据处理等方面的研究。在国内外发表科研论文40余篇,其中第一/通讯作者论文20余篇,代表性论文发表在J Geophys Res-Atmos、IEEE TGRS、J Clean Prod、Environ Pollut、光学学报等国内外期刊上。担任中国激光雷达专业委员会委员、Remote Sens期刊客座编辑,J Clean Prod、Sci Total Environ、Atmos Environ和Optics Express等SCI期刊审稿人。现主持/参与国家/湖南省自然科学基金项目、国家重点研发计划课题多项。


工作经历

2018/03-至今          中南大学 特聘副教授


团队成员

欢迎对环境遥感、气溶胶遥感、碳遥感、激光点云等有研究兴趣的同学加入本团队。

欢迎对学术感兴趣、有学习能力的同学加入本团队。

序号

姓名

研究方向

入学年份

毕业年份

毕业去向

1

徐维维

气溶胶遥感

2018

2021

武汉大学读博

2

童朋飞

点云形变监测

2019

2022

吉利汽车

3

潘雅妮

边界层遥感

2020(保研)



4

吴月桥

点云地面点滤波

2020(保研)



5

张仪潇

环境遥感

2021



6

桑梦婷

点云形变监测

2021(保研)



7

王楠

气溶胶遥感

2021(保研)



8

何俊辰

碳浓度遥感

2022(保研)



9

金志立

碳排放遥感

2022(保研)




科研项目

主持/参与项目

[1] 中大检测(横向),碳中和研究-碳核查与碳排放监测方法学研究;2022年5月-(参与)

[2] 国家自然科学基金基础科学中心项目,数字经济时代的资源环境管理理论与应用-矿产与能源行业及区域“双碳”进程预测与路径优化;2021年1月-(参与)

[3] 湖南省自然科学基金(青年基金), 星载激光雷达气溶胶和MODIS大气廓线协同下的区域边界层高度反演研究,2020年1月-2022年12月(主持);

[4] 国家自然科学基金(青年基金), 引入MODIS温湿度廓线的星载激光雷达边界层高度提取算法研究,2020年1月-2022年12月(主持);

[5] 国家自然科学基金(重点项目),含过氧缺陷的岩石大试件微波介电与微波辐射受力变化规律,2020年1月-2024年12月(参与);

[6] 国家重点研发计划,高光谱与激光探测遥感数据地震应用技术研究,2019年1月-2021年12月(参与);

[7] 武汉大学开放基金,基于静止卫星Himawari-8的小时级PM2.5遥感方法研究,2019年1月-2020年12月(主持);

[8] 国家重点研发计划,高光谱激光雷达理论体系建立及总体技术集成研发,2018年5月-2022年4月(参与);

[9] 中南大学特聘副教授启动基金,2018年3月-2023年3月(主持);

[10] 国家自然科学基金(青年基金), 基于星载差分吸收激光雷达的城市地区CO2浓度反演方法研究, 2016年1月-2018年12月(参与);

[11] 国家自然科学基金(青年基金), 基于物理约束的星载激光雷达多尺度反演方法研究, 2018年1月-2020年12月(参与);


科研论文

1. 发表论文(一作/通讯)

[1] Weiwei Xu; Wei Wang *; Nan Wang; Biyan Chen. A New Algorithm for Himawari-8 Aerosol Optical Depth Retrieval by Integrating Regional PM2.5 Concentrations, IEEE Transactions on Geoscience and Remote Sensing, 2022, doi: 10.1109/TGRS.2022.3155503.

[2] Wang Wei, Ya’ni Pan, Huihui Feng and Biyan Chen. Bagged Tree Model to Retrieve Planetary Boundary Layer Heights by Integrating Lidar Backscatter Profiles and Meteorological Parameters. Remote Sensing 2022; 14: 1597. 

[3] Huihui Feng, Jian Xiong, Shuchao Ye, Bin Zou and Wei Wang *. Vegetation change enhanced the positive global surface radiation budget. Advances in Space Research 2022. https://www.sciencedirect.com/science/article/pii/S0273117722003039

[4] Wang, Wei, Pengfei Tong, Huihui Feng, and Weiwei Xu. 2022. 'High Pollution Loadings Influence the Reliability of Himawari-8 Cloud-Mask in Comparison with Space-Based Lidar and Surface Observations', Advances in Meteorology, 2022: 2492567.

[5] Zelang Miao, Renfeng Peng, Wei Wang *, Qirong Li, Shuai Chen, Anshu Zhang, Minghui Pu, Ke Li, Qinqin Liu and Changhao Hu. Integrating Data Modality and Statistical Learning Methods for Earthquake-Induced Landslide Susceptibility Mapping. Applied Sciences 2022; 12: 1760. 

[6] He, Junchen, Zhili Jin, Wei Wang *, and Yixiao Zhang. 2021. 'Mapping Seasonal High-Resolution PM2.5 Concentrations with Spatiotemporal Bagged-Tree Model across China', ISPRS International Journal of Geo-Information, 10: 676.

[7] Wei Wang, Junchen He, Zelang Miao * and Lin Du. Space–Time Linear Mixed-Effects (STLME) model for mapping hourly fine particulate loadings in the Beijing–Tianjin–Hebei region, China. Journal of Cleaner Production 2021; 292: 125993.

[8] Weiwei Xu, Wei Wang * and Biyan Chen. Comparison of hourly aerosol retrievals from JAXA Himawari/AHI in version 3.0 and a simple customized method. Scientific reports 2020; 10: 20884.

[9] Lin Du, Ya'ni Pan and Wei Wang *. Random Sample Fitting Method to Determine the Planetary Boundary Layer Height Using Satellite-Based Lidar Backscatter Profiles. Remote Sensing 2020; 12: 4006.

[10] Zhang, Yixiao, Wang, Wei *, Ma, Yingying, Wu, Lixin, Xu, Weiwei and Li, Jia. Improvement in hourly PM2.5 estimations for the Beijing-Tianjin-Hebei region by introducing an aerosol modeling product from MASINGAR. Environmental Pollution 2020; 264: 1146-1191.

[11] Wang, Wei, Zhang, Tianhao and Pan, Zengxin. Four-year ground-based observations of the aerosol effects on cloud base height in Wuhan, China. Atmospheric Pollution Research 2019.

[12] Wang, Wei, Mao, Feiyue, Zou, Bin, Guo, Jianping, Wu, Lixin, Pan, Zengxin and Zang, Lin. Two-stage model for estimating the spatiotemporal distribution of hourly PM1. 0 concentrations over central and east China. Science of The Total Environment 2019; 675: 658-666.

[13] Zhang, Taixin, Zang, Lin, Wan, Youchuan, Wang, Wei * and Zhang, Yi. Ground-level PM2.5 estimation over urban agglomerations in China with high spatiotemporal resolution based on Himawari-8. Science of The Total Environment 2019; 676: 535-544.

[14] Xu, Weiwei, Wang, Wei * and Wu, Lixin. New Regression Method to Merge Different MODIS Aerosol Products Based on NDVI Datasets. Atmosphere 2019; 10: 303.

[15] Wang, Wei, Mao, Feiyue, Pan, Zengxin, Gong, Wei, Yoshida, Mayumi, Zou, Bin and Ma, Huiyun. Evaluating Aerosol Optical Depth from Himawari-8 with Sun Photometer Network. Journal of Geophysical Research: Atmospheres 2019; 124: 5516-5538.

[16] Mao, Feiyue, Pan, Zengxin, Wang, Wei *, Li, Siwei and Gong, Wei. Iterative method for determining boundaries and lidar ratio of permeable layer of a space lidar. Journal of Quantitative Spectroscopy and Radiative Transfer 2018; 218: 125-130.

[17] Wang, Wei, Gong, Wei, Mao, Feiyue and Pan, Zengxin. Physical constraint method to determine optimal overlap factor of Raman lidar. Journal of Optics 2018; 47: 83-90.

[18] Wang, Wei, Mao, Feiyue, Pan, Zengxin, Du, Lin and Gong, Wei. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sensing 2017; 9: 403.

[19] Wang, Wei, Mao, Feiyue, Du, Lin, Pan, Zengxin, Gong, Wei and Fang, Shenghui. Deriving Hourly PM2.5 Concentrations from Himawari-8 AODs over Beijing-Tianjin-Hebei in China. Remote Sensing 2017; 9: 858.

[20] Du, Lin, Shi, Shuo, Yang, Jian, Wang, Wei *, Sun, Jia, Cheng, Biwu, Zhang, Zhenbing and Gong, Wei. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Optics Express 2017; 25: 6539-6549.

[21] Wang, Wei, Gong, Wei, Mao, Feiyue, Pan, Zengxin and Liu, Boming. Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China. International Journal of Environmental Research and Public Health 2016; 13: 508.

[22] Wang, Wei, Gong, Wei, Mao, Feiyue and Zhang, Jinye. Long-Term Measurement for Low-Tropospheric Water Vapor and Aerosol by Raman Lidar in Wuhan. Atmosphere 2015; 6: 521-533.

[23] Gong, Wei, Wang, Wei *, Mao, Feiyue and Zhang, Jinye. Improved method for retrieving the aerosol optical properties without the numerical derivative for Raman–Mie lidar. Optics Communications 2015; 349: 145-150.

[24] 陈孝明, 黄俊杰, 阮羚, 熊宇, 王威*, 李晨 and 张天浩. 绝缘子污秽可溶性成分对等值盐密的影响分析. 高压电器 2016; 52: 184-189.

[25] 王威, 毛飞跃, 龚威 and 李俊. 基于激光强度分布的激光雷达重叠因子计算及其敏感性分析. 光学学报 2014: 277-283.

2. 合作论文

[1] J. Tan, B. Chen, W. Wang, W. Yu and W. Dai, "Evaluating Precipitable Water Vapor Products from Fengyun-4A Meteorological Satellite using Radiosonde, GNSS, and ERA5 Data," in IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2022.3146018.

[2]吴立新,李佳,苗则朗,王威,陈必焰,李志伟,戴吾蛟,许文斌. 冰川流域孕灾环境及灾害的天空地协同智能监测模式与方向[J]. 测绘学报, 2021, 50(8):13.

[3]何苗,吴立新,崔静,王威,齐源,毛文飞,苗则朗,陈必焰,申旭辉. 汶川地震前多圉层短—临遥感异常回顾及其时空关联性[J]. 遥感学报, 2020, 24(6):20.

[4] Biyan Chen, Wenkun Yu, Wujiao Dai, Hao Wu and Wei Wang. Assessing the performance of GPS tomography at retrieving water vapour fields during landfalling atmospheric rivers over southern California. Meteorological Applications 2020; 27: e1943.

[5] Lei Guo, Jia Li, Lixin Wu, Zhiwei Li, Yanyang Liu, Xin Li, Zelang Miao and Wei Wang. Investigating the recent surge in the Monomah Glacier, Central Kunlun Mountain Range with multiple sources of remote sensing data. Remote Sensing 2020; 12: 966.
[6] Jia Hong, Feiyue Mao, Qilong Min, Zengxin Pan, Wei Wang, Tianhao Zhang and Wei Gong. Improved PM2. 5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations. Environmental Pollution 2020; 263: 114451.

[7] Yunquan Zhang, Jiaying Fang, Feiyue Mao, Zan Ding, Qianqian Xiang and Wei Wang. Age-and season-specific effects of ambient particles (PM1, PM2. 5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 2020; 246: 125723.
[8]  Zhang, Yunquan, Ding, Zan, Xiang, Qianqian, Wang, Wei, Huang, Li and Mao, Feiyue. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. International Journal of Hygiene and Environmental Health 2020; 224: 113418.

[9]  Zang, Lin, Mao, Feiyue, Guo, Jianping, Wang, Wei, Pan, Zengxin, Shen, Huanfeng, Zhu, Bo and Wang, Zemin. Estimation of spatiotemporal PM1.0 distributions in China by combining PM2.5 observations with satellite aerosol optical depth. Science of The Total Environment 2019; 658: 1256-1264.

[10]  Zang, Lin, Mao, Feiyue, Guo, Jianping, Gong, Wei, Wang, Wei and Pan, Zengxin. Estimating hourly PM1 concentrations from Himawari-8 aerosol optical depth in China. Environmental Pollution 2018; 241: 654-663.

[11]  Pan, Zengxin, Mao, Feiyue, Wang, Wei, Zhu, Bo, Lu, Xin and Gong, Wei. Impacts of 3D Aerosol, Cloud, and Water Vapor Variations on the Recent Brightening during the South Asian Monsoon Season. Remote Sensing 2018; 10: 651.

[12]  Pan, Zengxin, Mao, Feiyue, Wang, Wei, Logan, Timothy and Hong, Jia. Examining Intrinsic Aerosol-Cloud Interactions in South Asia Through Multiple Satellite Observations. Journal of Geophysical Research: Atmospheres 2018; 123: 11,210-211,224.

[13]  Mao, Feiyue, Pan, Zengxin, Henderson, David S., Wang, Wei and Gong, Wei. Vertically resolved physical and radiative response of ice clouds to aerosols during the Indian summer monsoon season. Remote Sensing of Environment 2018; 216: 171-182.

[14]  Lu, Xin, Mao, Feiyue, Pan, Zengxin, Gong, Wei, Wang, Wei, Tian, Liqiao and Fang, Shenghui. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data. Remote Sensing 2018; 10: 314.

[15]  Liu, Boming, Ma, Yingying, Liu, Jiqiao, Gong, Wei, Wang, Wei and Zhang, Ming. Graphics algorithm for deriving atmospheric boundary layer heights from CALIPSO data. Atmospheric Measurement Techniques 2018; 11: 5075-5085.

[16]  Liu, Boming, Ma, Yingying, Gong, Wei, Zhang, Ming, Wang, Wei and Shi, Yifan. Comparison of AOD from CALIPSO, MODIS, and Sun Photometer under Different Conditions over Central China. Scientific reports 2018; 8: 10066.

[17]     Pan, Zengxin, Mao, Feiyue, Gong, Wei, Min, Qilong and Wang, Wei. The warming of Tibetan Plateau enhanced by 3D variation of low-level clouds during daytime. Remote Sensing of Environment 2017; 198: 363-368.

[18]     Mao, Feiyue, Pan, Zengxin, Wang, Wei, Lu, Xin. and Gong, W. Estimating the effects of aerosol, cloud, and water vapor on the recent brightening in India during the monsoon season. Atmos. Chem. Phys. Discuss. 2017; 2017: 1-20.

[19]     Pan, Zengxin, Mao, Feiyue, Gong, Wei, Wang, Wei and Yang, Jie. Observation of clouds macrophysical characteristics in China by CALIPSO. Journal of Applied Remote Sensing 2016; 10: 036028-036028.

[20]     Pan, Zengxin, Gong, Wei, Mao, Feiyue, Li, Jun, Wang, Wei, Li, Chen and Min, Qilong. Macrophysical and optical properties of clouds over East Asia measured by CALIPSO. Journal of Geophysical Research: Atmospheres 2015; 120: 11,653-611,668.

[21]     Mao, Feiyue, Wang, Wei, Min, Qilong and Gong, Wei. Approach for selecting boundary value to retrieve Mie-scattering lidar data based on segmentation and two-component fitting methods. Optics Express 2015; 23: A604-A613.

[22]     Mao, Feiyue, Li, Jun, Li, Chen, Gong, Wei, Min, Qilong and Wang, Wei. Nonlinear physical segmentation algorithm for determining the layer boundary from lidar signal. Optics Express 2015; 23: A1589-A1602.

[23]     Gong, Wei, Zhang, Tianhao, Zhu, Zhongmin, Ma, Yingying, Ma, Xin and Wang, Wei. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China. Atmosphere 2015; 6: 1377-1387.


专利和软件著作权

[1] 王威金志立何俊辰. 一种基于回归树模型的碳排放量测算方法. 申请号: 202210662223.9, 2022.

[2] 王威, 何俊辰, 金志立. 一种大气二氧化碳柱浓度高覆盖度重建方法. 申请号:202210597699.9, 2022.

[3] 王威, 张仪潇, 何俊辰, 金志立. 利用葵花八号卫星数据的小时级地表臭氧浓度遥感方法. 申请号: 202210665502.0, 2022.

[4] 王威, 潘雅妮. 一种基于随机采样拟合的边界层高度提取算法. CN111562558B, 2020.

[5] 王威, 张仪潇. 融合细颗粒物浓度数据的区域PM2.5遥感反演模型. CN111323352A, 2020.

[6] 王威, 徐维维.基于MODIS卫星传感器的气溶胶光学厚度的获取方法. CN110030934B, 2019.

[7] 毛飞跃,王威,臧琳,潘增新,龚威. 一种基于星载激光雷达的可穿透层层底检测迭代方法. CN107870336A, 2017.

[8] 王威,毛飞跃,臧琳,潘增新,龚威. 一种三通道Raman-Mie激光雷达系统反演软件(登记号: 2017SR590225).