文青波

博士生导师 硕士生导师

所在单位:粉末冶金研究院

学历:博士研究生毕业

办公地点:中南大学粉末冶金研究院

性别:男

联系方式:wentsingbo@csu.edu.cn

学位:工学博士学位

在职信息:在职

毕业院校:达姆施塔特工业大学(德国)

学科:材料科学与工程

曾获荣誉:

2011-05-31  当选:  桑德环境奖学金优秀论文特等奖

2010-11-30  当选:  湖南大学长江环境奖学金

2009-05-31  当选:  湖南省优秀大学毕业生

2008-11-30  当选:  国家奖学金

2007-11-30  当选:  国家奖学金

当前位置: 中文主页 >> 论文成果

Solid-solution effects on the high-temperature oxidation behavior of polymer-derived (Hf,Ta)C/SiC and (Hf,Ti)C/SiC ceramic nanocomposites

发布时间:2021-09-04

点击次数:

影响因子:3.86

发表刊物:Advanced Engineering Materials

摘要:In the present study, two concepts to improve the oxidation resistance at high-temperatures of ceramic nanocomposites consisting of 85–90 vol% SiC, 5–8 vol% group IV metal carbides (i.e., HfC, TaC), and 5–7 vol% carbon are introduced and discussed. First improvement concept relates to the passivation of the samples upon short-term oxidation at 1400 °C (30 min). This is a critical step, especially with respect to silica formation, which is relatively sluggish at temperatures lower than 1000–1200 °C. Moreover, solid-solution metal carbides (Hf,Ta)C and (Hf,Ti)C are shown to be clearly more oxidation resistant than the binary HfC and TaC phases. Whereas, the solid-solution effect contributes to a significant improvement of the short-term oxidation resistance of the studied nanocomposites, the passivation of the materials prior exposure of high-temperature oxidation conditions provides a remarkably improved long-term behavior thereof. Possible mechanisms involved in the oxidation processes of (Hf,Ta)C/SiC and (Hf,Ti)/SiC ceramic nanocomposites are highlighted and critically assessed.

合写作者:Ralf Riedel

第一作者:Qingbo Wen

论文类型:期刊论文

通讯作者:Emanuel Ionescu

论文编号:1800879

文献类型:J

卷号:21

期号:5

是否译文:

发表时间:2019-05-01

收录刊物:SCI

发布期刊链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201800879

上一条: Laser ablation behavior of SiHfC-based ceramics prepared from a single-source precursor: Effects of Hf-incorporation into SiC

下一条: Significant improvement of the short-term high-temperature oxidation resistance of dense monolithic HfC/SiC ceramic nanocomposites upon incorporation of Ta