SiC/HfyTa1-yCxN1-x/C ceramic nanocomposites with HfyTa1-yCxN1-x-carbon core-shell nanostructure and influence of the carbon-shell thickness on electrical properties
发布时间:2021-09-04
点击次数:
影响因子:7.39
发表刊物:Journal of Materials Chemistry C
摘要:Dense monolithic SiC/HfyTa1−yCxN1−x/C (y = 0, 0.2 and 0.7) ceramic nanocomposites were prepared upon spark plasma sintering of amorphous SiHfTaC(N) ceramic powders which were synthesized from single-source-precursors. The microstructural evolution of the ceramic powders was investigated using elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). The results reveal that the powdered and dense monoliths of SiC/HfyTa1−yCxN1−x/C ceramic nanocomposites annealed at T ≥ 1700 °C and at 2200 °C, respectively, are characterized by the presence of a homogeneous dispersion of HfyTa1−yCxN1−x-carbon core–shell nanoparticles within a β-SiC matrix. Hf/Ta atomic ratios (or y values) of the in situ generated HfyTa1−yCxN1−x-carbon core–shell nanoparticles can be controlled precisely by molecular tailoring of the preceramic precursors, which further tunes the thickness of the in situ formed carbon shell. Interestingly, with increasing the value y the thickness of the carbon shell increases, while the electrical conductivity of the dense monolithic SiC/HfyTa1−yCxN1−x/C (y = 0, 0.2 and 0.7) nanocomposites significantly reduces. The unique HfyTa1−yCxN1−x-carbon core–shell nanostructure opens a new strategy towards tailoring the electrical conductivity of SiC/HfyTa1−yCxN1−x/C nanocomposites for potential electromagnetic applications in harsh environments.
合写作者:Yeping Xu, Yan Lu, Claudia Fasel, Koji Morita, Olivier Guillon, Gerd Buntkowsky, Emanuel Ionescu, Ralf Riedel
第一作者:Qingbo Wen
论文类型:期刊论文
通讯作者:Zhaoju Yu
文献类型:J
卷号:6
期号:4
页面范围:855-864
是否译文:否
发表时间:2018-01-28
收录刊物:SCI
发布期刊链接:https://pubs.rsc.org/en/content/articlelanding/2018/tc/c7tc05023b