文青波

博士生导师 硕士生导师

所在单位:粉末冶金研究院

学历:博士研究生毕业

办公地点:中南大学粉末冶金研究院

性别:男

联系方式:wentsingbo@csu.edu.cn

学位:工学博士学位

在职信息:在职

毕业院校:达姆施塔特工业大学(德国)

学科:材料科学与工程

曾获荣誉:

2011-05-31  当选:  桑德环境奖学金优秀论文特等奖

2010-11-30  当选:  湖南大学长江环境奖学金

2009-05-31  当选:  湖南省优秀大学毕业生

2008-11-30  当选:  国家奖学金

2007-11-30  当选:  国家奖学金

当前位置: 中文主页 >> 论文成果

Microwave absorption of SiC/HfCxN1-x/C ceramic nanocomposites with HfCxN1-x-Carbon core-shell particles

发布时间:2021-09-04

点击次数:

影响因子:3.78

发表刊物:Journal of the American Ceramic Society

摘要:The dielectric properties of high-temperature stable single-source precursor-derived SiC/HfCxN1−x/C ceramic nanocomposites are determined by microwave absorption in the X-band (8.2–12.4 GHz) at room temperature. The samples synthesized at 1700°C, denoted as SiC/5HfCxN1−x/C-1700°C and SiC/15HfCxN1−x/C-1700°C ceramics, comprising ≈ 1.3 and ≈ 4.2 vol% HfCxN1−x, respectively, show enhanced microwave absorption capability superior to hafnium-free SiC/C-1700°C. The minimum reflection loss of SiC/5HfCxN1−x/C-1700°C and SiC/15HfCxN1−x/C-1700°C are −47 and −32 dB, and the effective absorption bandwidth amount to 3.1 and 3.6 GHz, respectively. Segregated carbon, including graphitic carbon homogeneously dispersed in the SiC matrix and less ordered carbon deposited as a thin film on HfCxN1−x nanoparticles, accounts for the unique dielectric behavior of the SiC/HfCxN1−x/C ceramics. Due to their large reflection loss and their high chemical and temperature stability, SiC/5HfCxN1−x/C-1700°C and SiC/15HfCxN1−x/C-1700°C ceramics are promising candidate materials for electromagnetic interference applications in harsh environment.

合写作者:Yao Feng, Dong-Liang Peng, Norbert Nicoloso, Emanuel Ionescu, Ralf Riedel

第一作者:Qingbo Wen

论文类型:期刊论文

通讯作者:Zhaoju Yu

文献类型:J

卷号:99

期号:8

页面范围:2655-2663

是否译文:

发表时间:2016-08-01

收录刊物:SCI

发布期刊链接:https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.14256

上一条: Revealing Structure Reactivity Relationships in Heterogenized Dirhodium Catalysts by Solid-State NMR Techniques

下一条: Dimethylaminoborane-modified copolysilazane as a novel precursor for high-temperature resistant SiBCN ceramics