夏晓东

特聘副教授

特聘副教授 硕士生导师

电子邮箱:

入职时间:2018-09-12

所在单位:土木工程学院

学历:博士研究生毕业

办公地点:中南大学新校区综合实验楼210室

在职信息:在职

个人简介

夏晓东,男,博士,副教授,硕士生导师,入选德国“洪堡学者”,现担任《应用力学学报》青年编委。2018年3月获同济大学航空航天与力学学院力学专业工学博士学位,导师仲政教授;2015年10月至2017年10月在美国Rutgers大学机械系联合培养,合作导师George J. Weng教授。先后主持国家自然科学基金、湖南省自然科学基金、磁学与磁性材料教育部重点实验室开放基金等课题,并作为项目参与人主研国家自然基金重大项目子课题及面上项目。主要研究方向:智能材料多场耦合力学与优化设计、多尺度有限元计算方法、电磁隐身等,相关研究成果已应用于航空航天、新能源、交通等领域。申请国家发明专利 6 项(已授权3项),在国际知名期刊发表 SCI 学术论文40余篇,包括固体力学顶级期刊International Journal of Plasticity、International Journal of Engineering Science、Mechanics of Materials等,以及材料领域权威期刊Carbon、Composite Science and Technology、Materials & Design等,累计引用500余次,最高单篇引用100余次。热忱欢迎力学、土木、材料、机械、交通等专业学生加入,请将个人简历发送至xiaodongxia@csu.edu.cn。


【学术主页】

[1] https://www.researchgate.net/profile/Xiaodong-Xia-4

[2] https://scholar.google.com/citations?user=7UQlBXAAAAAJ&hl=en


研究方向

[1] 智能材料多场耦合力学与优化设计

[2] 多尺度有限元计算方法

[3] 电磁隐身

[4] 土木工程材料有限元相场模拟

[5] 高灵敏传感器多场耦合分析与结构设计

[6] 新能源储能器件可靠性及失效分析


科研项目】

[1] 国家自然科学基金委员会, 青年科学基金项目, 考虑场相关界面效应的低维功能复合材料多场耦合等效行为研究, 2020-01至2022-12, 主持。

[2] 湖南省自然科学基金委员会, 青年科学基金项目, 碳基纳米复合材料的场相关界面效应及电-磁-热-弹多场耦合均匀化分析, 2020-01至2022-12, 主持。

[3] 磁学与磁性材料教育部重点实验室, 开放课题, 力-热耦合作用下低维功能纳米复合材料等效高频电磁屏蔽效能的研究, 2021-01至2021-12, 主持。

 

学术论文】

2022年:

[42] Zhang, Q., Xia, X., Chen, P., Xiao, P., Zhou, W., & Li, Y. (2022). Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance. Ceramics International

[41] Li, J., Chen, T., Chen, T., Yun, Z., & Xia, X. (2022). Computational modelling of frictional deformation of bimodal nanograined metals. International Journal of Mechanical Sciences, 222, 107220.

[40] Xia, X., Zhao, S., Yin, H., & Weng, G. J. (2022). Revealing the AC electromechanically coupled effects and stable sensitivity on the dielectric loss in CNT-based nanocomposite sensors. Materials & Design, 216, 110557.

[39] Xia, X., Zhao, S., Wang, J., Du, H., & Weng, G. J. (2022). Tuning the AC electric responses of decorated PDA@MWCNT/PVDF nanocomposites. Composites Science and Technology, 222, 109398.

[38] Du, H., Fang, C., Zhang, J., Xia, X., & Weng, G. J. (2022). Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. International Journal of Engineering Science, 173, 103650.

[37] Su, M., Xiao, J., Feng, G., & Xia, X. (2022). Mode-III fracture of a nanoscale cracked hole in one-dimensional hexagonal piezoelectric quasicrystals. International Journal of Mechanics and Materials in Design, 18, 423–433.

[36] Xia, X., Guo, X., & Weng, G. J. (2022). Creep rupture in carbon nanotube-based viscoplastic nanocomposites. International Journal of Plasticity, 150, 103189.

[35] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2022). Modeling the impact of glass transition on the frequency-dependent complex conductivity of CNT-polymer nanocomposites. Mechanics of Materials, 165, 104195.

[34] Xia, X., Zhao, S., Long, L., Li, Y., & Zhou, W. (2022). Multi-scale modeling for frequency-dependent dielectric responses of non-uniform porous carbon fiber/mullite composites. International Journal of Applied Ceramic Technology, 19(1), 22-33.

2021年:

[33] Wang, X., Zhang, J., Xia, X., Fang, C., & Weng, G. J. (2021). Nonlinear magnetoelectric effects of polymer-based hybrid magnetoelectric composites with chain-like terfenol-D/epoxy and PVDF multilayers. Composites Science and Technology, 216, 109069.

[32] Wang, X., Zhang, J., Ta, W., Xia, X., & Weng, G. J. (2021). Surface and interface effects on the bending behavior of nonlinear multilayered magnetoelectric nanostructures. Composite Structures, 275, 114485.

[31] Fang, C., Chen, X., Zhang, J., Xia, X., & Weng, G. J. (2021). Monte Carlo method with Bézier curves for the complex conductivity of curved CNT-polymer nanocomposites. International Journal of Engineering Science, 168, 103543.

[30] Xia, X., Liu, Y., Li, J., & Weng, G. J. (2021). Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites. Journal of Micromechanics and Molecular Physics, 6(4), 67-87.

[29] Xia, X., & Weng, G. J. (2021). Dual percolations of electrical conductivity and electromagnetic interference shielding in progressively agglomerated CNT/polymer nanocomposites. Mathematics and Mechanics of Solids, 26(8), 1120-1137.

[28] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2021). A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. International Journal of Engineering Science, 162, 103476.

[27] Wen, W. B., Deng, S. Y., Liu, T. H., Duan, S. Y., Hou, W. Q., & Xia, X. (2021). An improved sub-step composite time integration formulation with enhanced performance on linear and nonlinear dynamics. International Journal of Applied Mechanics, 13(02), 2150017.

[26] Xia, X., Li, J., Zhang, J., & Weng, G. J. (2021). Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. International Journal of Engineering Science, 158, 103411.

2020年:

[25] Zhang, J., Du, H., Xia, X., Fang, C., & Weng, G. J. (2020). Theoretical study on self-biased magnetoelectric effect of layered magnetoelectric composites. Mechanics of Materials, 151, 103609.

[24] Xia, X., Du, Z., & Weng, G. J. (2020). Predicting temperature-dependent creep and recovery behaviors of agglomerated graphene-polymer nanocomposites with a thermodynamically driven temperature-degraded process. Mechanics of Materials, 150, 103576.

[23] Xia, X., Zhao, S., Fang, C., & Weng, G. J. (2020). Modeling the strain‐dependent electrical resistance and strain sensitivity factor of CNT‐polymer nanocomposites. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6871

[22] Zhang, J., Weng, G. J., Xia, X., & Fang, C. (2020). A theory of frequency dependence and sustained high dielectric constant in functionalized graphene-polymer nanocomposites. Mechanics of Materials, 144, 103352.

[21] Xia, X., Xu, B. X., Xiao, X., & Weng, G. J. (2020). Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process. Materials & Design, 189, 108531.

[20] Xiao, X., Xiao, C., & Xia, X. (2020). Force-depth relationships with irradiation effect during spherical nano-indentation: A theoretical analysis. Journal of Nuclear Materials, 531, 152012.

[19] Xia, X., Li, Y., Long, L., Xiao, P., Luo, H., Pang, L., Xiao X.Z. & Zhou, W. (2020). Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range. Journal of the European Ceramic Society, 40(9), 3423-3430.

[18] Xia, X., Weng, G. J., Xiao, J., & Wen, W. (2020). Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Materials Today Communications, 22, 100853.

[17] Xia, X., Weng, G. J., Zhang, J., & Li, Y. (2020). The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mechanica, 231(4), 1305-1320. 

2019年:

[16] Xia, X., Weng, G. J., Hou, D., & Wen, W. (2019). Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles. International Journal of Engineering Science, 142, 1-19.

2018年:

[15] Zhang, Q., Xia, X., Wang, J., & Su, Y. (2018). Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films. International Journal of Solids and Structures, 144, 32-45.

2017年:

[14] Xia, X., Su, Y., Zhong, Z., & Weng, G. J. (2017). A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites. International Journal of Plasticity, 99, 58-80.

[13] Xia, X., & Zhong, Z. (2017). Semi-permeable Yoffe-type interfacial crack analysis in MEE composites based on the strip electro-magnetic polarization saturation model. Acta Mechanica Solida Sinica, 30(4), 354-368.

[12] Xia, X., Mazzeo, A. D., Zhong, Z., & Weng, G. J. (2017). An X-band theory of electromagnetic interference shielding for graphene-polymer nanocomposites. Journal of Applied Physics, 122(2), 025104.

[11] Xia, X., Zhong, Z., & Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50.

[10] Xia, X., Hao, J., Wang, Y., Zhong, Z., & Weng, G. J. (2017). Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. Journal of Physics: Condensed Matter, 29(20), 205702.

[9] Wang, Y., Xia, X., & Weng, G. J. (2017). Magnetoelectric coupling and interface effects of multiferroic composites under stress-prescribed boundary condition. Reviews on Advanced Materials Science, 48(1), 78-90.

[8] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2017). A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 111, 221-230.

2016年:

[7] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2194), 20160468.

[6] Xia, X., & Zhong, Z. (2016). Tuning of non-uniform switch toughening in ferroelectric composites by an electric field. Acta Mechanica Sinica, 32(5), 866-880.

[5] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. Journal of Applied Physics, 120(8), 085102.

2015年:

[4] Xia, X., & Zhong, Z. (2015). A mode III moving interfacial crack based on strip magneto-electric polarization saturation model. Smart Materials and Structures, 24(8), 085015.

[3] Xia, X., & Zhong, Z. (2015). Conservation integrals for the interfacial crack in bimaterial and layered ferroelectrics. Engineering Fracture Mechanics, 134, 202-217.

2014年:

[2] Xia, X., Cui, Y., & Zhong, Z. (2014). A mode III interfacial crack under nonuniform ferro-elastic domain switching. Theoretical and Applied Fracture Mechanics, 69, 44-52.

[1] Xia, X., Cui, Y., & Zhong, Z. (2014). Nonuniform ferro-elastic domain switching for the interfacial crack. Procedia Materials Science, 3, 1638-1643.

教育经历

[1] 2008.9-2012.7
北京航空航天大学 | 大学本科毕业 | 工学学士学位
[2] 2012.9-2018.1
同济大学 | 博士研究生毕业 | 工学博士学位

工作经历

[1] 2018.9-至今
土木工程学院 | 中南大学  | 特聘副教授 
[2] 2018.6-2018.8
材料系 | 德国 Technical University of Darmstadt  | 访问学者 
[3] 2015.10-2017.10
机械工程系 | 美国 Rutgers University  | 访问学者 

社会兼职

[1] 中国力学学会会员
[2] 《应用力学学报》青年编委
[3] 浙江省基础公益计划项目通讯评审专家
[4] 《Composite Science and Technology》、《Mechanics of Materials》、《Acta Mechanica Solida Sinica》、《Acta Mechanica》、《Archives of Applied Mechanics》、《Scientific Reports》、《工程力学》、《力学季刊》等国内外期刊审稿人

团队成员

团队名称:新型材料力学团队