Personal Homepage

Personal Information

MORE+



E-Mail:

School/Department:School of Energy Science and Engineering

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:中南大学 能源科学与工程学院 113

Contact Information:xuxiang@csu.edu.cn

Degree:Doctoral Degree in Engineering

Status:Employed

Alma Mater:中南大学

Xiang Xu

+

Education Level:With Certificate of Graduation for Doctorate Study

Alma Mater:中南大学

Journal Publications

Current position: Home / Journal Publications
Competitive Adsorption of Methanol-Acetone on Surface Functionalization (-COOH, -OH, -NH2, and -SO3H): Grand Canonical Monte Carlo and Density Functional Theory Simulations

DOI number:10.1021/acsami.9b10804
Affiliation of Author(s):中南大学
Journal:ACS Applied Materials and Interfaces
Key Words:activated carbons; DFT; functional groups; GCMC; methanol/acetone adsorption; separation
Abstract:The capture and separation properties of surface-functionalized activated carbons (AC-Rs, R= -COOH, -OH, -NH2, and -SO3H) for the methanol-acetone mixture were investigated for the first time by grand canonical Monte Carlo simulation (GCMC) and density functional theory (DFT). The effects of surface functional groups and structural characteristics of AC-Rs on the adsorption and separation behaviors of methanol and acetone were clarified. The surface functional group with strong electron-donating or electron-accepting capacity (i.e., -NH2, -OH, and -SO3H) was a crucial factor for the methanol-acetone capture and separation performance at the lower pressure range, and the accessible surface area was found to be another determinative factor. AC-NH2 with the relatively large accessible surface area (4497 m2/g) exhibited an efficient capture performance for the single component (15.7 mol/kg for methanol and 6.7 mol/kg for acetone) and the highest methanol/acetone selectivity (~23) at 0.02 kPa. At high pressures, the surface functionalization and available pore volume of AC-Rs played pivotal roles in the adsorptive separation process. This study provided mechanistic insights on how the surface functional groups affected the capture and separation properties of ACs, which would further provide a rational alternative strategy in the preparation and synthesis of ACs for the effective gas mixture separation.
Indexed by:Journal paper
Volume:11
Issue:37
Page Number:34241 - 34250
ISSN No.:19448244
Translation or Not:no
Date of Publication:2019-09-18
Included Journals:SCI
Links to published journals:https://pubs.acs.org/doi/10.1021/acsami.9b10804