Personal Homepage

Personal Information

MORE+



E-Mail:

School/Department:School of Energy Science and Engineering

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:中南大学 能源科学与工程学院 113

Contact Information:xuxiang@csu.edu.cn

Degree:Doctoral Degree in Engineering

Status:Employed

Alma Mater:中南大学

Xiang Xu

+

Education Level:With Certificate of Graduation for Doctorate Study

Alma Mater:中南大学

Journal Publications

Current position: Home / Journal Publications
Synergistic Dual Heteroatom-Engineered Superactivated Carbon Unlocks Record-High Hydrogen Storage via Mg─F Orbital Hybridization

DOI number:10.1002/adma.202509511
Journal:Advanced Materials
Key Words:biochar, hydrogen storage, orbital-level modulation, surface modification, superactivated carbon
Abstract:Hydrogen storage remains a critical challenge for sustainable energy systems. Here, a surface functionalization strategy is reported through C-Mg─F ternary coordination to engineer biomass-derived porous carbons with exceptional hydrogen storage performance. Using tobacco stems as precursors, the synthesized Mg-F@C material achieves record hydrogen uptake capacities under 77 K of 4.2 wt% at 1 bar and 9.7 wt% at 50 bar, doubling pristine carbon performance. Multiscale analyses reveal adsorption mechanisms dominated by orbital interactions at Mg-active sites, where H2 electron transfer arises from hybridization of Mg 2p and unsaturated 3s orbitals, inducing directional polarization of H2 electron clouds which synergizes with hierarchical porosity (3500 m2 g−1 surface area) to enhance adsorption. Combined photophysical analysis establishes a mechanistic framework linking static electronic configurations to dynamic adsorption processes. The material retains structural integrity under pressure cycling and demonstrates universal applicability across diverse biomass. This work provides a generalizable paradigm for designing high-capacity hydrogen storage materials via orbital-level modulation of porous carbons.
Indexed by:Journal paper
Document Code:e09511
Translation or Not:no
Date of Publication:2025-10-21
Included Journals:SCI
Links to published journals:https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202509511