徐翔

所在单位:能源科学与工程学院

学历:博士研究生毕业

办公地点:中南大学 能源科学与工程学院 113

联系方式:xuxiang@csu.edu.cn

学位:工学博士学位

在职信息:在职

毕业院校:中南大学

   
当前位置: 中文主页 >> 论文成果

Heteroatom-Doped Nanoporous Carbons for Ethanol/Benzene Separation: Emphasizing the Role of Molecular Clustering Effects

发布时间:2024-09-30

点击次数:

DOI码:10.1021/acs.jpcc.1c06929

所属单位:中南大学

发表刊物:Journal of Physical Chemistry C

摘要:Grand canonical Monte Carlo simulations combined with molecular dynamics (MD) simulations and density functional theory calculations are used to study the adsorption and separation potentials of surface-functionalized nanoporous carbons (NPCR, R = /N, /NB, -NH2, and -OH) for ethanol and benzene at 293 K. The surface-functionalized NPCs present a higher ethanol uptake (maximum = 5.61 mmol/g at 0.002 kPa) at a lower pressure range for their remarkable electrostatic affinity and strong electrostatic interaction (hydrogen bonding interaction) with ethanol. The MD simulation shows that surface modification enhances the ethanol molecular clustering effect under a pore occupancy less than 0.6, which further improves the ethanol adsorption performance. There is, however, no direct evidence that surface functionalization can enhance the benzene uptake by NPCs. Specifically, among the surface-functionalized NPCs, NPC/NB exhibits the highest ethanol/benzene selectivity under the entire pressure range (∼3.8 at 0.002 kPa and ∼8.6 at 10 kPa). Furthermore, NPC/NB and NPC/N have a better ethanol/benzene separation performance than NPC-NH2 and NPC-OH. Electrostatic potential analysis shows that heteroatom doping impels the ethanol molecule cluster on surface graphite layers, which inhibits the benzene adsorption capacity of NPC/N and NPC/NB in the process of mixture adsorption. This study provides a possible strategy in the preparation of NPC for the ethanol/benzene mixture adsorptive separation.

论文类型:期刊论文

卷号:125

期号:42

页面范围:23463 - 23473

ISSN号:19327447

是否译文:

发表时间:2021-08-28

收录刊物:SCI

发布期刊链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.1c06929

上一条: High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in-situ activation for high performance of selective CO2 capture

下一条: Biomass-based hierarchical porous carbon with ultrahigh surface area for super-efficient adsorption and separation of acetone and methanol