副教授
 
  入职时间:2014-09-10
  所在单位:数学与统计学院
  学历:博士研究生毕业
  办公地点:新校区数学楼560室
  性别:男
  联系方式:xuyufeng@csu.edu.cn
  学位:博士学位
  在职信息:在职
  毕业院校:中南大学
学科:数学
 
 
           
访问量:
最后更新时间:..
 
   
         
   
    
        
          
             
           
      
 
 
    
        - 
            [21]Y. Xu.Quenching phenomenon in a fractional diffusion equation and its numerical simulation[J].International Journal of Computer Mathematics, 2017, 1 (95) : 98-113.
         
    
- 
            [22]Y. Xu, Z. Zheng.Quenching phenomenon of a time-fractional diffusion equation with singular source term[J].Mathematical Methods in the Applied Sciences, 2017, 16 (40) : 5750-5759.
         
    
- 
            [23]Y. Xu.Dynamic behaviors of generalized fractional chaotic systems[J].Acta Automatica Sinica, 2017, 9 (43) : 1619-1624.
         
    
- 
            [24]Y. Xu.Fractional boundary value problems with integral and anti-periodic boundary conditions[J].Bulletin of the Malaysian Math Sciences, 2016, 2 (39) : 571-587.
         
    
- 
            [25]O.P. Agrawal, Y. Xu.Generalized vector calculus on convex domain[J].Commun Nonlinear Sci Numer Simulat, 2015, (1-3) (23) : 129-140.
         
    
- 
            [26]Y. Xu, V.S. Erturk.A  finite difference technique for solving variable-order fractional integro-differential equations[J].Bull. Iranian Math. Soc., 2014, 40 (3) : 699-712.
         
    
- 
            [27]Y. Xu, O.P. Agrawal, N. Pathak.Solution of new generalized diffusion-wave equation defined in a bounded domain[J].Journal of Applied Nonlinear Dynamics, 2014, 3 (2) : 159-171.
         
    
- 
            [28]Y. Xu, O.P. Agrawal.Models and numerical solutions of generalized oscillator equations[J].Journal of Vibration and Acoustics, 2014, 136 (5) : 151903-1.
         
    
- 
            [29]Y. Xu, Z. He.Existence of solutions for nonlinear high-order fractional boundary value problem with integral boundary condition[J].J. Appl. Math. Comput., 2013, 44: 417-435.
         
    
- 
            [30]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations[J].Central Euro J. Phys., 2013, 11 (10) : 1178-1193.
         
    
- 
            [31]Y. Xu, Z. He.Existence and uniqueness results for Cauchy problem of variable-order fractional differential equations[J].J. Appl. Math. Comput., 2013, 43: 295-306.
         
    
- 
            [32]Y. Xu, O.P. Agrawal.Models and numerical schemes for generalized van der Pol equations[J].Commun Nonlinear Sci Numer Simulat, 2013, 18 (12) : 3575-3589.
         
    
- 
            [33]Y. Xu, Z. He.Synchronization of variable-order fractional financial system via active control method[J].Central Euro J. Phys., 2013, 11 (6) : 824-835.
         
    
- 
            [34]Y. Xu, Z. He, O.P. Agrawal.Numerical and analytical solutions of new generalized fractional diffusion equation[J].Computers and Mathematics with Applications, 2013, 66: 2019-2029.
         
    
- 
            [35]Y. Xu, O.P. Agrawal.Numerical solutions and analysis of diffusion for new generalzied fractional Burgers equation[J].Fract. Calc. Appl. Anal., 2013, 16 (3) : 709-736.
         
    
- 
            [36]Y. Xu, Z. He, Q. Xu.Numerical solutions of fractional advection-diffusion equations with a kind of new generalized fractional derivative[J].International Journal of Computer Mathematics, 2013, 91 (3) : 588-600.
         
    
- 
            [37]X. Luo, S.C. Ma, Y. Xu.The diversity and its formation mechanism of multifractal properties of Chinese stock market[J].Middle Eastern Finance and Economics, 2012, 16 (2012) : 65-79.
         
    
- 
            [38]Z. He, Y. Xu.The short memory principle for solving Abel differential equation of fractional order[J].Comput. Math. Appl., 2011 (62) : 4796-4805.