姚树伟

副教授 硕士生导师

所在单位:粉末冶金研究院

学历:研究生(博士)毕业

办公地点:三一研究大楼-305

性别:男

联系方式:13786103805

学位:博士学位

在职信息:在职

毕业院校:西安交通大学

   

个人简介

姚树伟,博士,副教授,硕士生导师,中南大学"优秀班导师"。长期从事微/纳米陶瓷连续纤维材料、陶瓷涂层材料等研发与工程化应用研究。近年来,主持及作为执行负责人承担了国家自然科学基金区域联合重点项目、国家预研项目、国家自然科学青年基金、湖南省自然科学基金等多项科研任务。在《Acta Materialia》、《Journal of the European Ceramic Society》、《Ceramics International》等国际知名期刊发表SCI论文40余篇,申请国家发明专利近20项。


课题组隶属于刘文胜教授(“长江学者”特聘教授,“973”项目首席科学家)团队。本方向现有在读博士生3人,硕士生5人,近年来培养毕业博士研究生6人,硕士研究生10余人。团队学术氛围良好,科研实力雄厚,诚挚邀请材料及相关专业背景的优秀学子加盟!


【代表性论文】


1. Effect of Y0.5Er0.5Ho0.5Yb0.5O3 addition on the microstructure and thermal stability of continuous alumina fibers, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 110(3):619-634. 

2. Development and strategy of alumina-mullite diphasic fibers with high thermal stability, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44(6):4045-4054.

3. Coordinated regulation for α-Al2O3 and mullite structures in the alumina-mullite fiber based on the different adding form of Fe element, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44(6):4185- 4195.

4. Preparation of high-strength alumina-zirconia fibers by the sol-gel method combined with two-step sintering processes, CERAMICS INTERNATIONAL, 2024, 50(2):4125-4135.

5. The oriented growth behavior of α-Al2O3 grains in alumina-mullite biphasic fibers, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44(1):319-327.

6. Effect of the alumina and silica source mixing procedure on the microstructural evolution of alumina-mullite composite fibers prepared by sol-gel method, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2023, 108(3):609-620.

7. Grain boundary segregation for enhancing the thermal stability of alumina-mullite diphasic fibers by La2O3 addition, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43(15):7012-7022.

8. Effect of silica sol on phase transition of alumina-mullite fibers, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43(15):7023-7032.

9. Removal of hydroxyl groups and its influence on the microstructures evolution of alumina-mullite fibers fabricated by sol-gel process, CERAMICS INTERNATIONAL, 2023, 49(11):18397-18411.

10. Mechanism of grain refinement and growth for the continuous alumina fibers by MgO addition, CERAMICS INTERNATIONAL, 2023, 49(5):8565-8575.

11. Effect of residual carbon on the phase transformation and microstructure evolution of alumina-mullite fibers prepared by sol-gel method, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43(3):1039-1050.

12. Kinetics and mechanisms for the densification and grain growth of the γ-alumina fibers isothermally sintered at elevated temperatures, CERAMICS INTERNATIONAL, 2022, 48(15):21756-21762.

13. Effects of SiO2 Addition on Phase Transition and Microstructure Evolution of Alumina Fibers Prepared Using the Sol-Gel Method, TRANSACTIONS OF THE INDIAN CERAMIC SOCIETY, 2022, 81(2):68-75.

14. Preparation of a dense alumina fiber with nanograins by a novel two-step calcination, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2022, 103(1):125-138.

15. Experimental and Molecular Dynamics Simulation Study on Sol-Gel Conversion Process of Aluminum Carboxylate System, MATERIALS, 2022, 15(7):2704

16. Effect of formic-acid-to-acetic-acid ratio on the structure and spinnability of aqueous aluminium sol of alumina fibre, CERAMICS INTERNATIONAL, 2021, 47(18):26034-26041.

17. Comparing the phase transformation of continuous alumina fiber and xerogels derived from the same precursor, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2021, 99, 1):169-177.

18. Electrode polarity effects in electrospinning organic/inorganic hybrid nanofibers, CERAMICS INTERNATIONAL, 2021, 47(3):4352-4356.

19. The formation of core-sheath structure and its effects on thermal decomposition and crystallization of alumina fibers, CERAMICS INTERNATIONAL, 2021, 47(4):5145-5155.

20. Preparation of Continuous Alumina Fiber with Nano Grains by the Addition of Iron Sol, MATERIALS, 2020, 13(23):5442

21. A density functional theory study on the structure formation of Al(III) carboxylate complexes in aqueous aluminum sols, INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121(2):e26430

22. Improvement in crystallization and tensile strength of 3Al2O3•B2O3•2SiO2 ceramic fibers by Fe3+ addition, CERAMICS INTERNATIONAL, 2019, 45(18):24288-24293.

23. Thermal decomposition of aluminum carboxylates based precursor for alumina fibers, MATERIALS RESEARCH EXPRESS, 2019, 6(11):115109

24. Preparation, characterization and mechanical properties of continuous mullite fibers derived from the diphasic sol-gel route, JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2019, 92(1):75-83.

25. Preparation of alumina precursor sols with a high solid content for alumina fibers, MATERIALS RESEARCH EXPRESS, 2019, 6(4):45207

26. Thermally stable boron-containing mullite fibers derived from a monophasic mullite sol, CERAMICS INTERNATIONAL, 2019, 45(1):1171-1178.

27. Non-isothermal crystallization kinetics for electrospun 3Al2O3•B2O3•2SiO2 ceramic nanofibers prepared using different silica sources, CERAMICS INTERNATIONAL, 2019, 45(1):1392-1399.

28. Homogeneous and flexible mullite nanofibers fabricated by electrospinning through diphasic mullite sol-gel route, JOURNAL OF MATERIALS SCIENCE, 2018, 53(20):14871-14883.

29. The Bonding Formation during Thermal Spraying of Ceramic Coatings:A Review, JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2022, 31( 4):780-817.

30. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature, JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2018, 27(1-2):25-34.

31. Influence of microstructure on the mechanical integrity of plasma-sprayed TiO2 splat, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2017, 37(15):4979-4989.

32. Epitaxial growth during the rapid solidification of plasma-sprayed molten TiO2 splat, ACTA MATERIALIA, 2017, 134:66-80.

33. Understanding the Formation of Limited Interlamellar Bonding in Plasma Sprayed Ceramic Coatings Based on the Concept of Intrinsic Bonding Temperature, JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2016, 25(8):1617-1630.

34. Conditions and mechanisms for the bonding of a molten ceramic droplet to a substrate after high-speed impact, ACTA MATERIALIA, 2016, 119:9-25.

35. An effective approach for creating metallurgical self-bonding in plasma-spraying of NiCr-Mo coating by designing shell-core-structured powders, ACTA MATERIALIA, 2016, 110:19-30.


【代表性专利】


1. 一种可控气氛下氧化铝纤维高温蠕变测试装备和测试方法. CN202411582474.1

2. 一种连续氧化铝-氧化锆复合陶瓷纤维及其制备方法. CN202311710724.0

3. 一种细晶致密氧化铝陶瓷纤维的制备方法. CN202311309911.8

4. 一种稀土氧化镧改性的氧化铝-莫来石纤维及其制备方法. ZL202210828755.5

5. 一种连续氧化铝纤维制备用油剂及其制备与应用. ZL202210250933.0

6. 一种稀土氧化镧掺杂的耐高温氧化铝纤维制备方法. ZL202210253076.X

7. 一种氧化铝/莫来石双相纤维用前驱体复合溶胶及其制备方法.ZL202111504493.9

8. 一种预测水基氧化铝前驱体溶胶凝胶化过程的跨尺度模拟方法. ZL202111434975.1

9. 一种预测胶体剪切运动过程中微观结构演变的跨尺度模拟方法. ZL202110163177.3

10. 基于密度泛函理论预测氧化铝纤维前驱体溶胶可纺性方法. ZL202011173292.0

教育经历

[1]   2008.9-2012.7

西安交通大学 工学学士学位  |  大学本科毕业

[2]   2013.9-2017.9

西安交通大学 工学博士学位  |  博士研究生毕业

工作经历

[1]   2021.10-至今

中南大学  |  粉末冶金研究院  |  副教授  |  在职

[2]   2018.1-2021.9

中南大学  |  粉末冶金研究院  |  讲师  |  在职

其他联系方式

  • [6]  邮箱: