张宝一

副教授 博士生导师 硕士生导师

入职时间:2007-07-02

所在单位:地球科学与信息物理学院

学历:博士研究生毕业

办公地点:地科北楼512

性别:男

联系方式:zhangbaoyi@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:中国地质大学(武汉)

学科:地质资源与地质工程

曾获荣誉:

2014-11-28  当选:  高校GIS新锐人物

当前位置: 中文主页 >> 论文成果

A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory

发布时间:2024-11-06

点击次数:

影响因子:2.7

DOI码:10.2166/hydro.2024.226

发表刊物:Journal of Hydroinformatics

摘要:The performance of regional groundwater level (GWL) prediction model hinges on understanding intricate spatiotemporal correlations among monitoring wells. In this study, a graph convolutional network (GCN) with a long short-term memory (LSTM) (GCN–LSTM) model is introduced for GWL prediction utilizing data from 16 wells located in the northeastern Xiangtan City, China. This model is designed to account for both the hybrid temporal dependencies and spatial autocorrelations among wells. It consists of two parts: the spatial part employs GCNs to extract spatial characteristics from a spatial self-similarity weight matrix and an attribute self-similarity wight matrix among wells; the temporal part utilizes a LSTM module to capture the temporal patterns of GWL sequences, along with monthly precipitation and temperature data. This model dynamically predicts changes in groundwater levels, achieving higher accuracy on average compared to single-well predictions using LSTM. By incorporating both temporal dependencies and spatial autocorrelations, the GCN–LSTM model demonstrated an average improvement in goodness-of-fit of approximately 11.21% over the LSTM-based model for individual wells. Its application holds significant reference value for the sustainable utilization and development of groundwater resources in Xiangtan City.

合写作者:Z. Jiang, L. Song, X. Yu, S. Yuan

第一作者:L. Wang

论文类型:期刊论文

通讯作者:B. Zhang

论文编号:226

学科门类:工学

一级学科:地质资源与地质工程

文献类型:J

页面范围:226

是否译文:

发表时间:2024-11-05

收录刊物:SCI

发布期刊链接:https://doi.org/10.2166/hydro.2024.226

下一条: Multi-scale convolutional neural networks (CNNs) for landslide inventory mapping from remote sensing imagery and landslide susceptibility mapping (LSM)