张华莉

教授 博士生导师 硕士生导师

入职时间:1997-07-09

所在单位:基础医学院

学历:博士研究生毕业

办公地点:湘雅老校区第二教学楼5楼

性别:女

联系方式:15607310187

学位:医学博士学位

在职信息:在职

主要任职:湖南省脓毒症转化医学重点实验室学术委员会副主任,湖南省病理生理学会副理事长,危重病专业委员会副主任委员,中国病理生理学会常务理事

毕业院校:中南大学

学科:基础医学

曾获荣誉:

2013-06-01  当选:  中南大学“升华学者”特聘教授

2013-06-01  当选:  湖南省自然科学杰出青年基金获得者

当前位置: 中文主页 >> 论文成果

N-acetylcysteine alleviates H2O2-induced damage via regulating the redox status of intracellular antioxidants in H9c2 cells.

发布时间:2021-06-02

点击次数:

影响因子:3.098

发表刊物:Int J Mol Med

摘要:N‑acetylcysteine (NAC) is a thiol‑containing antioxidant that modulates the intracellular redox state. NAC can scavenge reactive oxygen species (ROS) and maintain reduced glutathione (GSH) levels, in order to protect cardiomyocytes from oxidative stress. The present study aimed to determine whether NAC protects cardiomyocytes from oxidative damage by regulating the redox status of intracellular antioxidant proteins. The results revealed that NAC pretreatment increased cell viability and inhibited the activation of caspase‑3, ‑8 and ‑9 during hydrogen peroxide (H2O2)‑induced oxidative stress in H9c2 cells. Furthermore, decreased ROS levels, and increased total and reduced GSH levels were detected in response to NAC pretreatment. Non‑reducing redox western blotting was performed to detect the redox status of intracellular antioxidant proteins, including thioredoxin 1 (Trx1), peroxiredoxin 1 (Prx1), GSH reductase (GSR), and phosphatase and tensin homolog (PTEN). The results revealed that the reduced form of Trx1 was markedly increased, and the oxidized forms of Prx1, GSR and PTEN were decreased following NAC pretreatment. Furthermore, NAC pretreatment decreased H2O2‑induced phosphorylation of apoptosis signal‑regulating kinase 1, which depends on the redox state of Trx1, and increased H2O2‑induced phosphorylation of protein kinase B, which is essential to cell survival. To the best of our knowledge, the present study is the first to reveal that NAC pretreatment may alleviate oxidation of intracellular antioxidant proteins to inhibit oxidative stress‑induced cardiomyocyte apoptosis.

合写作者:,Li Wang,Jiaodi Cai,Ke Liu,Meidong Liu,Hao Wang

第一作者:Xiehong Liu

论文类型:基础研究

通讯作者:Huali Zhang(通讯作者)

学科门类:医学

一级学科:基础医学

期号:2019 Jan;43(1):199-208.

是否译文:

发表时间:2018-10-23

收录刊物:SCI

上一条: Increased Serum Matrix Metalloproteinase-9 Levels are Associated with Anti-Jo1 but not Anti-MDA5 in Myositis Patients.

下一条: Coexistence of anti-HMGCR and anti-MDA5 identified by an unlabeled immunoprecipitation assay in a chinese patient cohort with myositis.