邹逸群

副教授 硕士生导师

入职时间:2011-04-08

所在单位:自动化学院

学历:博士研究生毕业

性别:男

联系方式:yiqunzou@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:Manchester University

学科:控制科学与工程

当前位置: 中文主页 >> 论文成果

Global convergence conditions in maximum likelihood estimation

发布时间:2022-09-05

点击次数:

发表刊物:International journal of control

关键字:MLE; optimisation; global/local convergence; consistency; asymptotic efficiency and sufficiency; non-local-minimum conditions

摘要:Maximum likelihood estimation has been widely applied in system identification because of consistency, its asymptotic efficiency and sufficiency. However, gradient-based optimisation of the likelihood function might end up in local convergence. In this article we derive various new non-local-minimum conditions in both open and closed-loop system when the noise distribution is a Gaussian process. Here we consider different model structures, in particular ARARMAX, BJ and OE models.

合写作者:William Heath

第一作者:Yiqun Zou*

论文类型:期刊论文

卷号:85

期号:5

页面范围:475–490

是否译文:

发表时间:2012-05-05

收录刊物:SCI

发布期刊链接:https://www.tandfonline.com/doi/abs/10.1080/00207179.2012.658085

上一条: Large signal-to-noise ratio quantification in MLE for ARARMAX models