Global dynamics of the Josephson equation in TS^1
Hits:
Release time:2020-04-06
DOI number:10.1016/j.jde.2020.03.048
Journal:Journal of Differential Equations
Key Words:Limit cycle; Josephson equation; Homoclinic loop; Two-saddle loop; Saddle connection
Abstract:The Josephson equation
$\dot \phi=y,~\dot y=-\sin\phi+\epsilon \big(a-(1+\gamma\cos\phi)y\big)$
was researched by Sanders and Cushman in [{\it SIAM J. Math. Anal.} {\bf 17} (1986), 495-511] for its phase portraits when $\epsilon>0$ is small
by applying the averaging method. The parameter $\epsilon$ can actually be large or even any real number in the practical application of this model.
When $|\epsilon|$ is not small, we cannot apply the averaging method because the system is not near-Hamiltonian. For general $\epsilon \in \mathbb{R}$,
we present complete dynamics and more complex bifur
Co-author:Tang Yilei
First Author:Chen Hebai
Indexed by:Unit Twenty Basic Research
Discipline:数学
Document Type:J
Volume:269
Issue:6
Page Number:4884-4913
Translation or Not:no
Date of Publication:2020-04-06
Included Journals:SCI
Links to published journals:https://doi.org/10.1016/j.jde.2020.03.048
-
|
Mobile:c5336669d3965a448c03a5314e1543e9bcf049eac5a0684721d265d9a4fd56dd450f3d92d8afb856ebe14470732eaca5499f3c795d4a746431565ff8a4d7c271652480d189013f6257462b0dd7a04caaa9d9efd0f5563df7deb5745020b89fb3316e6885371fa15ce492c88a0798075b04ef90d13b963161a4361cff99d4eda6
Email:79aa0cd77ee94f07e146e8ff7fff4576fbe75b42e7394249549e646d5ea8c0c4e16d398d16ab4ad2d8dc482e9ca547f7e1465828c6099955e8956abe594fa9ea82ee050487bfd9ead6b3e6b3e1f23e90f0a95ba310bb6030ec274c7fbe5d1c69f81154ed38dac6d8103ce9d301680f429f9e9789e70febd62d7337bfe3c5ecc4
|